Skip to main content
Log in

Composition of polyamines and amino acids in plant-source foods for human consumption

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Dietary polyamines and amino acids (AAs) are crucial for human growth, development, reproduction, and health. However, the scientific literature shows large variations in polyamine and AA concentrations among major staple foods of plant origin, and there is a scarcity of information regarding their complete composition of AAs. To provide a much-needed database, we quantified polyamines, agmatine, and AAs in select plant-source foods. On the dry matter basis, total polyamines were most abundant in corn grains, followed by soybeans, sweet potatoes, pistachio nuts, potatoes, peanuts, wheat flour and white rice in descending order. Glutamine was the most abundant AA in pistachio nuts, wheat flour and white rice, arginine in peanuts, leucine in corn grains, glutamate in soybeans, and asparagine in potatoes and sweet potatoes. Glutamine was the second most abundant AA in corn grains, peanuts, potatoes, and soybeans, arginine in pistachio nuts, proline in wheat flour, and glutamate in sweet potatoes and white rice. Free AAs represented ≤ 3.1% of total AAs in corn grains, peanuts, pistachio nuts, soybeans, wheat flour and white rice, but 34.4% and 28.5% in potatoes and sweet potatoes, respectively. Asparagine accounted for 32.3%, 17.5%, and 19.4% of total free AAs in potatoes, sweet potatoes, and white rice, respectively. The content of histidine, glycine, lysine, tryptophan, methionine, cysteine, and threonine was relatively low in corn grains, potatoes, sweet potatoes, and white rice. All of the analyzed plant-source foods lacked taurine, creatine, carnosine and anserine (antioxidants that are abundant in meats and also present in milk), and contained little 4-hydroxyproline. Proper proportions of plant- and animal-source products are likely most desirable for optimizing human nutrition and health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AAs:

Amino acids

BCAAs:

Branched-chain amino acids

DM:

Dry matter

HPLC:

High-performance liquid chromatography

References

  • Abiose SH, Ikujenlola AV (2014) Comparison of chemical composition, functional properties and amino acids composition of quality protein maize and common maize (Zea mays L). Afr J Food Sci Technol 5:81–89

    Google Scholar 

  • Agostinelli E (2016) Polyamines and transglutaminases: future perspectives. Amino Acids 48:2273–2281

    Article  CAS  PubMed  Google Scholar 

  • Agostinelli E, Marques MP, Calheiros R, Gil FP, Tempera G, Viceconte N, Battaglia V, Grancara S, Toninello A (2010) Polyamines: fundamental characters in chemistry and biology. Amino Acids 38:393–403

    Article  CAS  PubMed  Google Scholar 

  • Assaad H, Zhou L, Carroll RJ, Wu G (2014) Rapid publication-ready MS-Word tables for one-way ANOVA. SpringerPlus 3:474

    Article  PubMed  PubMed Central  Google Scholar 

  • Badenhop AF, Hackler LR (1971) Protein quality of dry roasted soybeans: amino acid composition and protein efficiency ratio. J Food Sci 36:1–4

    Article  CAS  Google Scholar 

  • Bardócz S, Grant G, Brown DS, Ralph A, Pusztai A (1993) Polyamines in food—implications for growth and health. J Nutr Biochem 4:66–71

    Article  Google Scholar 

  • Bardócz S, Duguid TJ, Brown DS, Grant G, Pusztai A, White A, Ralph A (1995) The importance of dietary polyamines in cell regeneration and growth. Br J Nutr 73:819–828

    Article  PubMed  Google Scholar 

  • Bártová V, Bárta J, Brabcová A, Zdráhal Z, Horackova V (2015) Amino acid composition and nutritional value of four cultivated South American potato species. J Food Compos Anal 40:78–85

    Article  CAS  Google Scholar 

  • Blachier F, Mariotti F, Huneau JF, Tomé D (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33:547–562

    Article  CAS  PubMed  Google Scholar 

  • Blachier F, Davila AM, Benamouzig R, Tome D (2011) Channelling of arginine in NO and polyamine pathways in colonocytes and consequences. Front Biosci (Landmark Ed) 16:1331–1343

    Article  CAS  Google Scholar 

  • Bazer FW, Burghardt RC, Johnson GA, Spencer TE, Wu G (2018) Mechanisms for the establishment and maintenance of pregnancy: synergies from scientific collaborations. Biol Reprod 99:225–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung KH, Shin KO, Hwang HJ, Choi KS (2013) Chemical composition of nuts and seeds sold in Korea. Nutr Res Pract 7:82–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke JA, Brar GS, Procopiou J (1976) Fatty acid, carbohydrate and amino acid composition of pistachio (Pistacia vera) kernels. Qual Plant 25:219–225

    Article  CAS  Google Scholar 

  • Dai ZL, Wu ZL, Jia SC, Wu G (2014a) Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B 964:116–127

    Article  CAS  Google Scholar 

  • Dai ZL, Wu ZL, Wang JJ, Wang XQ, Jia SC, Bazer FW, Wu G (2014b) Analysis of polyamines in biological samples by HPLC involving pre-column derivatization with o-phthalaldehyde and N-acetyl-l-cysteine. Amino Acids 46:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • Dai ZL, Wu ZL, Hang SQ, Zhu WY, Wu G (2015) Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol Hum Reprod 21:389–409

    Article  CAS  PubMed  Google Scholar 

  • Ducci M, Pacchini S, Niccolini A, Gazzano A, Cerri D, Gadea J, Bobowiec R, Sighieri C, Martelli F (2006) Concentrations of carnosine, anserine, L-histidine and 3-methyl histidine in boar spermatozoa and sheep milk by a modified HPLC method. Pol J Vet Sci 9:159–163

    CAS  PubMed  Google Scholar 

  • Eisenberg T, Knauer H, Schauer A et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314

    Article  CAS  PubMed  Google Scholar 

  • Ewart JAD (1967) Amino acid analyses of cereal flour proteins. J Sci Food Agric 18:548–552

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Li S, Wu ZL, Dai ZL, Li J, Wang XL, Wu G (2019) Glycine supplementation to breast-fed piglets attenuates postweaning jejunal epithelial apoptosis: a functional role of CHOP signaling. Amino Acids 51:463–473

    Article  CAS  PubMed  Google Scholar 

  • FAO (2017) FAOSTAT—Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/FBS. Accessed 6 March 2019

  • FAO/WHO/UNU (2007) Technical Report Series 935: protein and amino acid requirements in human nutrition. WHO Press, Geneva, pp 1–265

    Google Scholar 

  • Farriol M, Venereo Y, Orta X, Company C, Gomez P, Delgado G et al (2004) Ingestion of antioxidants and polyamines in patients with severe burns [in Spanish]. Nutr Hosp 19:300–304

    CAS  PubMed  Google Scholar 

  • Fu WJ, Stromberg AJ, Viele K et al (2010) Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology. J Nutr Biochem 21:561–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldflus F, Ceccantini M, Santos W (2006) Amino acid content of soybean samples collected in different Brazilian states – Harvest 2003/2004. Braz J Poultry Sci 8:105–111

    Article  Google Scholar 

  • Han J, Liu K (2010) Changes in composition and amino acid profile during dry grind ethanol processing from corn and estimation of yeast contribution toward DDGS proteins. J Agric Food Chem 58:3430–3437

    Article  CAS  PubMed  Google Scholar 

  • Haynes TE, Li P, Li XL et al (2009) l-Glutamine or l-alanyl-l-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, Wu G (2017) Nutritionally nonessential amino acids: A misnomer in nutritional sciences. Adv Nutr 8:137–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou YQ, Wu G (2018) Nutritionally essential amino acids. Adv Nutr 9:849–851

    PubMed  Google Scholar 

  • Hou YQ, Yin YL, Wu G (2015) Dietary essentiality of "nutritionally nonessential amino acids" for animals and humans. Exp Biol Med 240:997–1007

    Article  CAS  Google Scholar 

  • Hughes BP (1957) The amino -acid composition of potato protein and of cooked potato. Br J Nutr 12:188–195

    Article  Google Scholar 

  • Hunter DC, Burritt DJ (2012) Polyamines of plant origin—an important dietary consideration for human health. In: Rao V (ed) Phytochemicals as nutraceuticals—global approaches to their role in nutrition and health. InTech, Rijeka, pp 225–244

    Google Scholar 

  • Institute of Medicine (IOM) (2005) Dietary reference intakes for energy, carbohydrates, fiber, fat, fatty acids, cholesterol, proteins, and amino acids. The National Academies Press, Washington, DC

    Google Scholar 

  • Ji Y, Dai ZL, Sun SQ, Ma XS, Yang Y, Tso P, Wu G, Wu ZL (2018) Hydroxyproline attenuates dextran sulfate sodium-induced colitis in mice: involvement of the NF-κB signaling and oxidative stress. Mol Nutr Food Res 62:1800494

    Article  CAS  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    Article  CAS  PubMed  Google Scholar 

  • Kahana C (2009) Regulation of cellular polyamine levels and cellular proliferation by antizyme and antizyme inhibitor. Essays Biochem 46:47–61

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Miyazaki T, Yamaguchi M, Ohkura Y (1983) High performance liquid chromatography of guanidino compounds using benzoin as pre-column derivatization reagent. J Chromatogr 268:417–424

    Article  CAS  Google Scholar 

  • Kalač P (2014) Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem 161:27–39

    Article  CAS  PubMed  Google Scholar 

  • Kalač P, Krizek M, Pelikánová T, Langová M, Veškrna O (2005) Contents of polyamines in selected foods. Food Chem 90:561–564

    Article  CAS  Google Scholar 

  • Kaldy MS, Markakis P (1972) Amino acid composition of selected potato varieties. J Food Sci 37:375–377

    Article  CAS  Google Scholar 

  • Keeney DR (1970) Protein and amino acid composition of maize grain as influenced by variety and fertility. J Sci Food Agric 21:182–184

    Article  CAS  Google Scholar 

  • Khoi BH, Dien LD, Lásztity R, Salgó A (1987) The protein and the amino acid composition of some rice and maize varieties grown in North Vietnam. J Sci Food Agric 39:137–143

    Article  Google Scholar 

  • Kong XF, Wang XQ, Yin YL, Li XL, Gao HJ, Bazer FW, Wu G (2014) Putrescine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. Biol Reprod 91:106

    Article  CAS  PubMed  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Larqué E, Sabater-Molina A, Zamora S (2007) Biological significance of dietary polyamines. Nutrition 23:87–95

    Article  CAS  PubMed  Google Scholar 

  • Lefèvre PL, Palin MF, Murphy BD (2011) Polyamines on the reproductive landscape. Endocr Rev 32:694–712

    Article  CAS  PubMed  Google Scholar 

  • Lenis YY, Elmetwally MA, Tang WJ, Satterfield C, Dunlap K, Wu G, Bazer FW (2018) Functional roles of agmatinase during the peri-implantation period of pregnancy in sheep. Amino Acids 50:293–308

    Article  CAS  PubMed  Google Scholar 

  • Li P, Wu G (2018) Roles of dietary glycine, proline and hydroxyproline in collagen synthesis and animal growth. Amino Acids 50:29–38

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Rezaei R, Li P, Wu G (2011) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • McDermott EE, Pace J (1957) The content of amino-acids in white flour and bread. Br J Nutr 11:446–452

    Article  CAS  PubMed  Google Scholar 

  • Mossé J, Huet JC, Baudet J (1988) The amino acid composition of rice grain as a function of nitrogen content as compared with other cereals: a reappraisal of rice chemical scores. J Cereal Sci 8:165–175

    Article  Google Scholar 

  • Nishibori N, Fujihara S, Akatuki T (2007) Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem 100:491–497

    Article  CAS  Google Scholar 

  • Nishimura K, Shiina R, Kashiwagi K, Igarashi K (2006) Decrease in polyamines with aging and their ingestion from food and drink. J Biochem 139:81–90

    Article  CAS  PubMed  Google Scholar 

  • Okamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S (1997) Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem 61:1582–1584

    Article  CAS  PubMed  Google Scholar 

  • Ooman HAPC, Spoon W, Heesterman JE, Reinard J, Luyken R, Slum P (1961) The sweet potato as the staff of life of the highland Papuan. Trop Geogr Med 13:55–66

    Google Scholar 

  • Patrick RM, Hoskins FH, Wilson E, Peterson FJ (1974) Protein and amino acid content of rice as affected by application of nitrogen fertilizer. Cereal Chem 51:84–95

    CAS  Google Scholar 

  • Pegg AE, Casero RA Jr (2011) Current status of the polyamine research field. Methods Mol Biol 720:3–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Leal O, Merali S (2012) Regulation of polyamine metabolism by translational control. Amino Acids 42:611–617

    Article  CAS  PubMed  Google Scholar 

  • Purcell AE, Walter WM Jr (1982) Stability of amino acids during cooking and processing of sweet potatoes. J Agric Food Chem 30:443–444

    Article  CAS  PubMed  Google Scholar 

  • Ralph A, Englyst K, Bardócz S (1999) Polyamine content of the human diet. In: Bardócz S, White A (eds) Polyamines in health and nutrition. Kluwer, Massachusetts, pp 123–137

    Google Scholar 

  • Rizzo G, Baroni L (2018) Soy, soy foods and their role in vegetarian diets. Nutrients 10:43

    Article  CAS  PubMed Central  Google Scholar 

  • San Gabriel A, Uneyama H (2013) Amino acid sensing in the gastrointestinal tract. Amino Acids 45:451–461

    Article  CAS  PubMed  Google Scholar 

  • Shoup FK, Pomeranz Y, Deyoe CW (1966) Amino acid composition of wheat varieties and flours varying widely in bread-making potentialities. J Food Sci 31:94–101

    Article  CAS  Google Scholar 

  • Slocum RD, Flores HE (1992) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton

    Google Scholar 

  • Soda K, Dobashi Y, Kano Y, Tsujinaka S, Konishi F (2009a) Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp Gerontol 44:727–732

    Article  CAS  PubMed  Google Scholar 

  • Soda K, Kano Y, Sakuragi M, Takao K, Lefor A, Konishi F (2009b) Long-term oral polyamine intake increases blood polyamine concentrations. J Nutr Sci Vitaminol 55:361–366

    Article  CAS  PubMed  Google Scholar 

  • Sooranna SR, Hirani J, Das I (1998) Polyamines in pregnancy. Biochem Soc Trans 26:S101

    Article  CAS  PubMed  Google Scholar 

  • Tan B, Yin Y, Kong X et al (2010) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38:1227–1235

    Article  CAS  PubMed  Google Scholar 

  • Tiburcio AF, Alcázar R (2018) Potential applications of polyamines in agriculture and plant biotechnology. Methods Mol Biol 1694:489–508

    Article  CAS  PubMed  Google Scholar 

  • Tiburcio AF, Campos JL, Figueras X, Besford RT (1993) Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regul 12:331–340

    Article  CAS  Google Scholar 

  • USDA (2018) Economic Research Service. Food availability and consumption in the United States. https://www.ers.usda.gov/data-products/ag-and-food-statistics-charting-the-essentials/food-availability-and-consumption.aspx. 2016 data. Accessed 8 March 2019

  • Venkatachalam M, Sathe SK (2006) Chemical composition of selected edible nut seeds. J Agric Food Chem 54:4705–4714

    Article  CAS  Google Scholar 

  • Wang HL, Cavins JF (1989) Yield and amino acid composition of fractions obtained during tofu production. Cereal Chem 66:359–361

    CAS  Google Scholar 

  • Wang XQ, Ying W, Dunlap KA, Lin G, Satterfield MC, Burghardt RC, Wu G, Bazer FW (2014) Arginine decarboxylase and agmatinase: an alternative pathway for de novo biosynthesis of polyamines for development of mammalian concept uses. Biol Reprod 90:84

    PubMed  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu G (2016) Dietary protein intake and human health. Food Funct 7:1251–1265

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2018) Principles of animal nutrition. CRC Press, Boca Raton

    Google Scholar 

  • Wu G, Wu ZL, Dai ZL, Yang Y, Wang WW, Liu C, Wang B, Wang JJ, Yin YL (2013) Dietary requirements of “nutritionally non-essential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Cross HR (2014) Land-based production of animal protein: impacts, efficiency, and sustainability. Ann NY Acad Sci 1328:18–28

    Article  PubMed  Google Scholar 

  • Wu G, Cross HR, Gehring KB, Savell JW, Arnold AN, McNeill SH (2016) Composition of free and peptide-bound amino acids in beef chuck, loin, and round cuts. J Anim Sci 94:2603–2613

    Article  CAS  PubMed  Google Scholar 

  • Wu ZL, Hou YQ, Dai ZL, Hu CA, Wu G (2019) Metabolism, nutrition and redox signaling of hydroxyproline. Antioxid Redox Signal 30:674–682

    Article  CAS  PubMed  Google Scholar 

  • Yeoh HH, Truong VD (1996) Amino acid composition and nitrogen-to-protein conversion factors for sweet potato. Trop Sci 36:243–246

    Google Scholar 

  • Young CT (1980) Amino acid composition of three commercial peanut varieties. J Food Sci 45:1086–1087

    Article  CAS  Google Scholar 

  • Young VR, Pellett PL (1994) Plant proteins in relation to human protein and amino acid nutrition. Am J Clin Nutr 59:1203S–1212S

    Article  CAS  PubMed  Google Scholar 

  • Zoumas-Morse C, Rock CL, Quintana EL, Neuhouser ML, Gerner EW, Meyskens FL (2007) Development of a polyamine database for assessing dietary intake. J Am Diet Assoc 107:1024–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the Hubei Hundred Talent Program, Hubei Provincial Foundation of Natural Science (2016CFA070), the Program of National Agricultural Research Outstanding Talents of China (2015), the U.S. Beef Checkoff through the National Cattlemen’s Beef Association (NCBA), and Texas A&M AgriLife Research (H-8200). We thank Dr. Gayan I. Nawaratna for technical assistance in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

This study involved plant-source foods. No approval of animal use protocols is required.

Informed consent

No informed consent is required for this study.

Additional information

Handling Editor: F. Blachier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., He, W., Hu, S. et al. Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51, 1153–1165 (2019). https://doi.org/10.1007/s00726-019-02751-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-019-02751-0

Keywords

Navigation