Skip to main content

Advertisement

Log in

Testing thermal resistance of viruses

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Representative viral strains recommended for virucidal testing of biocides in human medicine were used for testing viral resistance to dry heat using the new Keredusy hot instrument. The results demonstrate that poliovirus type 1 could be inactivated by treatment at 75°C for 1 h. For inactivation of adenovirus type 5, 2 h at 85°C was needed. The infectivity of polyomavirus SV40 could only be influenced significantly by a temperature of 95°C over a period of 1 h, whereas vaccinia virus and bovine viral diarrhea virus needed a time interval of 2 h at 95°C. The infectivity of bovine parvovirus could not be influenced significantly by exposure to 95°C for 2 h. In conclusion, human viruses and their surrogates for testing biocides may have a considerable thermal resistance that makes them difficult to be inactivated only by dry heat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Anonymous (2005) Leitlinie der Deutschen Vereinigung zur Bekämpfung der Viruskrankheiten e.V. und des Robert Koch-Instituts zur Prüfung von chemischen Desinfektionsmitteln auf Wirksamkeit gegen Viren in der Humanmedizin, Fassung vom 15. Juni 2005. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 48:1420–1426

  2. Blümel J, Schmidt I, Willkommen H, Löwer J (2002) Inactivation of parvovirus B19 during pasteurization of human serum albumin. Transfusion 42:1011–1018

    Article  PubMed  Google Scholar 

  3. Bräuninger S, Fischer I, Peters J (1994) The temperature stability of bovine parvovirus. Zentralbl Hyg Umweltmed 196:270–278

    Google Scholar 

  4. Bräuninger S, Peters S, Borchers U, Kao M (2000) Further studies on thermal resistance of bovine parvovirus against most and dry heat. Int J Hyg Environ Health 203:71–75

    Article  Google Scholar 

  5. Croci L, Ciccozzi M, De Medici D, Di Pasquale S, Fiore A, Mele A, Toti L (1999) Inactivation of hepatitis A virus in heat-treated mussels. J Appl Microbiol 87:884–888

    Article  PubMed  CAS  Google Scholar 

  6. Gantzer C, Levi Y, Schwartzbrod L (1996) Effect of heat on the survival of infectious coxsackievirus B3 and its genome in water. Zentralbl Hyg Umweltmed 199:76–83

    PubMed  CAS  Google Scholar 

  7. Kamolsiripichaiporn S, Subharat S, Udon R, Thongtha P, Nuanualsuwan S (2007) Thermal inactivation of foot-and-mouth disease viruses in suspension. Appl Environ Microbiol 73:7177–7184

    Article  PubMed  CAS  Google Scholar 

  8. Mani B, Gerber M, Lieby P, Bosschetti N, Kempf C, Ros C (2007) Molecular mechanism underlying B19 virus inactivation and comparison to other parvovirus. Transfusion 47:1765–1774

    Article  PubMed  CAS  Google Scholar 

  9. Middleton JK, Agosto MA, Severson TF, Yin J, Nibert ML (2007) Thermostabilizing mutations in reovirus outer-capsid protein mu1 selected by heat inactivation of infectious subvirion particles. Virology 361:412–425

    Article  PubMed  CAS  Google Scholar 

  10. Ng PK, Dobkin MB (1985) Pasteurization of antihemophilic factor and model virus inactivation studies. Thrombosis Res 39:439–447

    Article  CAS  Google Scholar 

  11. Prikod`ko GG, Vasilyeva I, Reyes H, Wong S, Brown KE, Jameson T, Busby TF (2005) Evaluation of a new LightCycler reverse transcription-polymerase chain reaction infectivity assay for detection of human parvovirus B19 in dry-heat inactivation studies. Transfusion 45:1011–1019

    Article  Google Scholar 

  12. Roberts PL, Hart H (2000) Comparison of the inactivation of canine and bovine parvovirus by freeze–drying and dry-heat treatment in two high purity factor VIII concentrates. Biologicals 28:185–188

    Article  PubMed  Google Scholar 

  13. Sattar SA (2004) Microbicides and the environmental control of nosocomial infections. J Hosp Infect 56(Suppl 2):S64–S69

    Article  PubMed  Google Scholar 

  14. Sattar SA, Adegbunrin O, Ramirez J (2002) Combined application of simulated reuse and quantitative carrier test to assess high-level disinfection: experiments with an accelerated hydrogen peroxide-based formulation. Am J Infect Control 30:449–457

    Article  PubMed  Google Scholar 

  15. Shiomi H, Urasawa T, Urasawa S, Kobayashi N, Abe S, Taniguchi K (2004) Isolation and characterisation of poliovirus mutants resistant to heating at 50 degrees Celsius for 30 min. J Med Virol 74:484–491

    Article  PubMed  CAS  Google Scholar 

  16. von Rheinbnaben F, Wolff MH (2002) Handbuch der viruswirksamen Desinfektion. Springer, Berlin

    Google Scholar 

  17. Wright SA, Bieluch VM (1993) Selected nosocomial viral infections. Heart Lung 22:183–187

    PubMed  CAS  Google Scholar 

  18. Wutzler P, Sauerbrei A (2004) Virucidal activity of the new disinfectant monopercitric acid. Lett Appl Microbiol 39:194–198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Medizin&Service GmbH (Chemnitz, Germany) supported this work by providing the Keredusy hot instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Sauerbrei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauerbrei, A., Wutzler, P. Testing thermal resistance of viruses. Arch Virol 154, 115–119 (2009). https://doi.org/10.1007/s00705-008-0264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-008-0264-x

Keywords

Navigation