Skip to main content

Advertisement

Log in

A novel urinary biomarker profile to identify acute kidney injury (AKI) in critically ill neonates: a pilot study

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

The goal of this study was to assess the value of a urinary biomarker profile comprised of neutrophil gelatinase-associated lipocalin (NGAL), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF), to detect acute kidney injury (AKI) in critically ill neonates.

Methods

We conducted a prospective cohort pilot study of at-risk neonates treated in a level IIIC neonatal intensive care unit (NICU) with therapeutic hypothermia (HT) (n = 25) or extracorporeal membrane oxygenation (ECMO) (n = 10). Urine was collected at baseline, 48 h of illness, and > 24 h post-recovery of their corresponding treatments. Control samples were collected from 27 healthy newborns. The data were expressed as urinary concentrations and values normalized for urinary creatinine. AKI was defined as the presence of oliguria >24 h and/or elevated serum creatinine (SCr), or the failure to improve the estimated creatinine clearance (eCCL) by >50 % post-recovery. Non-parametric statistical tests and ROC analyses were used to interpret the data.

Results

Fifteen at-risk newborns had AKI. In the first 48 h of illness, the urinary levels of NGAL and FGF-2 had high sensitivity but poor specificity to identify neonates with AKI. At recovery, low urinary EGF levels identified neonates with AKI with a sensitivity of 74 % and specificity of 84 %. Overall, in the early stages of a critical illness, the urinary levels of NGAL and FGF-2 were sensitive, but not specific, to identify neonates at risk of AKI. Low EGF levels post-recovery identified critically ill neonates with AKI.

Conclusions

These findings require validation in larger prospective studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gupta BD, Sharma P, Bagla J, Parakh M, Soni JP (2005) Renal failure in asphyxiated neonates. Indian Pediatr 42:928–934

    PubMed  CAS  Google Scholar 

  2. Aggarwal A, Kumar P, Chowdhary G, Majumdar S, Narang A (2005) Evaluation of renal functions in asphyxiated newborns. J Trop Pediatr 51:295–299

    Article  PubMed  Google Scholar 

  3. Karlowicz MG, Adelman RD (1995) Nonoliguric and oliguric acute renal failure in asphyxiated term neonates. Pediatr Nephrol 9:718–722

    Article  PubMed  CAS  Google Scholar 

  4. Selewski DT, Jordan BK, Askenazi DJ, Dechert RE, Sarkar S (2012) Acute kidney injury in asphyxiated newborns treated with therapeutic hypothermia. J Pediatr pii: S0022-3476(12)01149

  5. Askenazi DJ, Ambalavanan N, Hamilton K, Cutter G, Laney D, Kaslow R, Georgeson K, Barnhart DC, Dimmitt RA (2011) Acute kidney injury and renal replacement therapy independently predict mortality in neonatal and pediatric noncardiac patients on extracorporeal membrane oxygenation. Pediatr Crit Care Med 12:e1–e6

    Article  PubMed  Google Scholar 

  6. Mathur NB, Agarwal HS, Maria A (2006) Acute renal failure in neonatal sepsis. Indian J Pediatr 73:499–502

    Article  PubMed  CAS  Google Scholar 

  7. Agras PI, Tarcan A, Baskin E, Cengiz N, Gurakan B, Saatci U (2004) Acute renal failure in the neonatal period. Ren Fail 26:305–309

    Article  PubMed  Google Scholar 

  8. Askenazi DJ, Montesanti A, Hunley H, Koralkar R, Pawar P, Shuaib F, Liwo A, Devarajan P, Ambalavanan N (2011) Urine biomarkers predict acute kidney injury and mortality in very low birth weight infants. J Pediatr 159(907–912):e901

    Google Scholar 

  9. Kaur S, Jain S, Saha A, Chawla D, Parmar VR, Basu S, Kaur J (2011) Evaluation of glomerular and tubular renal function in neonates with birth asphyxia. Ann Trop Paediatr 31:129–134

    Article  PubMed  CAS  Google Scholar 

  10. Askenazi DJ, Ambalavanan N, Goldstein SL (2009) Acute kidney injury in critically ill newborns: what do we know? What do we need to learn? Pediatr Nephrol 24:265–274

    Article  PubMed  Google Scholar 

  11. Drukker A, Guignard JP (2002) Renal aspects of the term and preterm infant: a selective update. Curr Opin Pediatr 14:175–182

    Article  PubMed  Google Scholar 

  12. Krawczeski CD, Woo JG, Wang Y, Bennett MR, Ma Q, Devarajan P (2011) Neutrophil gelatinase-associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass. J Pediatr 158(1009–1015):e1001

    Google Scholar 

  13. Schmidt-Ott KM (2011) Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury–where do we stand today? Nephrol Dial Transplant 26:762–764

    Article  PubMed  CAS  Google Scholar 

  14. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P (2003) Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14:2534–2543

    Article  PubMed  CAS  Google Scholar 

  15. Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D’Agati V, Devarajan P, Barasch J (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 115:610–621

    PubMed  CAS  Google Scholar 

  16. Parravicini E, Nemerofsky SL, Michelson KA, Huynh TK, Sise ME, Bateman DA, Lorenz JM, Barasch JM (2010) Urinary neutrophil gelatinase-associated lipocalin is a promising biomarker for late-onset culture-positive sepsis in very low birth weight infants. Pediatr Res 67:636–640

    Article  PubMed  CAS  Google Scholar 

  17. Paragas N, Qiu A, Zhang Q, Samstein B, Deng SX, Schmidt-Ott KM, Viltard M, Yu W, Forster CS, Gong G, Liu Y, Kulkarni R, Mori K, Kalandadze A, Ratner AJ, Devarajan P, Landry DW, D’Agati V, Lin CS, Barasch J (2011) The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat Med 17:216–222

    Article  PubMed  CAS  Google Scholar 

  18. Ray P, Acheson D, Chitrakar R, Cnaan A, Gibbs K, Hirschman GH, Christen E, Trachtman H (2002) Basic fibroblast growth factor among children with diarrhea-associated hemolytic uremic syndrome. J Am Soc Nephrol 13:699–707

    PubMed  CAS  Google Scholar 

  19. Ray PE, Liu XH, Xu L, Rakusan T (1999) Basic fibroblast growth factor in HIV-associated hemolytic uremic syndrome. Pediatr Nephrol 13:586–593

    Article  PubMed  CAS  Google Scholar 

  20. Liu XH, Aigner A, Wellstein A, Ray PE (2001) Up-regulation of a fibroblast growth factor binding protein in children with renal diseases. Kidney Int 59:1717–1728

    Article  PubMed  CAS  Google Scholar 

  21. Soler-Garcia AA, Rakhmanina NY, Mattison PC, Ray PE (2009) A urinary biomarker profile for children with HIV-associated renal diseases. Kidney Int 76:207–214

    Article  PubMed  CAS  Google Scholar 

  22. Tsau YK, Sheu JN, Chen CH, Teng RJ, Chen HC (1996) Decreased urinary epidermal growth factor in children with acute renal failure: epidermal growth factor/creatinine ratio not a reliable parameter for urinary epidermal growth factor excretion. Pediatr Res 39:20–24

    Article  PubMed  CAS  Google Scholar 

  23. Chen L, Liu W (1997) Effect of asphyxia on urinary epidermal growth factor levels in newborns. J Tongi Med Univ 17:144–146

    Article  CAS  Google Scholar 

  24. Basile DP (2007) The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int 72:151–156

    Article  PubMed  CAS  Google Scholar 

  25. Kiley SC, Chevalier RL (2009) Urinary biomarkers: the future looks promising. Kidney Int 76:133–134

    Article  PubMed  CAS  Google Scholar 

  26. Grandaliano G, Gesualdo L, Bartoli F, Ranieri E, Monno R, Leggio A, Paradies G, Caldarulo E, Infante B, Schena FP (2000) MCP-1 and EGF renal expression and urine excretion in human congenital obstructive nephropathy. Kidney Int 58:182–192

    Article  PubMed  CAS  Google Scholar 

  27. Kwon O, Ahn K, Zhang B, Lockwood T, Dhamija R, Anderson D, Saqib N (2010) Simultaneous monitoring of multiple urinary cytokines may predict renal and patient outcome in ischemic AKI. Ren Fail 32:699–708

    Article  PubMed  CAS  Google Scholar 

  28. Askenazi DJ, Koralkar R, Hundley HE, Montesanti A, Parwar P, Sonjara S, Ambalavanan N (2012) Urine biomarkers predict acute kidney injury in newborns. J Pediatr 161(270–275):e271

    Google Scholar 

  29. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, Fanaroff AA, Poole WK, Wright LL, Higgins RD, Finer NN, Carlo WA, Duara S, Oh W, Cotten CM, Stevenson DK, Stoll BJ, Lemons JA, Guillet R, Jobe AH (2005) Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353:1574–1584

    Article  PubMed  CAS  Google Scholar 

  30. Schwartz GJ, Feld LG, Langford DJ (1984) A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr 104:849–854

    Article  PubMed  CAS  Google Scholar 

  31. Huynh TK, Bateman DA, Parravicini E, Lorenz JM, Nemerofsky SL, Sise ME, Bowman TM, Polesana E, Barasch JM (2009) Reference values of urinary neutrophil gelatinase-associated lipocalin in very low birth weight infants. Pediatr Res 66:528–532

    Article  PubMed  CAS  Google Scholar 

  32. Lavery AP, Meinzen-Derr JK, Anderson E, Ma Q, Bennett MR, Devarajan P, Schibler KR (2008) Urinary NGAL in premature infants. Pediatr Res 64:423–428

    Article  PubMed  CAS  Google Scholar 

  33. Parravicini E (2010) The clinical utility of urinary neutrophil gelatinase-associated lipocalin in the neonatal ICU. Curr Opin Pediatr 22:146–150

    Article  PubMed  Google Scholar 

  34. Ray PE, Tassi E, Liu XH, Wellstein A (2006) Role of fibroblast growth factor-binding protein in the pathogenesis of HIV-associated hemolytic uremic syndrome. Am J Physiol Regul Integr Comp Physiol 290:R105–R113

    Article  PubMed  CAS  Google Scholar 

  35. Watanabe K, Ono A, Hirata Y, Fukuda Y, Kojima T, Kobayashi Y (1989) Maturational changes and origin of urinary human epidermal growth factor in the neonatal period. Biol Neonate 56:241–245

    Article  PubMed  CAS  Google Scholar 

  36. Evans NJ, Rutter N, Gregory H (1986) Urinary excretion of epidermal growth factor in the newborn. Early Hum Dev 14:277–282

    Article  PubMed  CAS  Google Scholar 

  37. Di Paolo S, Gesualdo L, Stallone G, Ranieri E, Schena FP (1997) Renal expression and urinary concentration of EGF and IL-6 in acutely dysfunctioning kidney transplanted patients. Nephrol Dial Transplant 12:2687–2693

    Article  PubMed  Google Scholar 

  38. Mattila AL, Perheentupa J, Pesonen K, Viinikka L (1985) Epidermal growth factor in human urine from birth to puberty. J Clin Endocrinol Metab 61:997–1000

    Article  PubMed  CAS  Google Scholar 

  39. Bagli DJ, Van Savage JG, Khoury AE, Carr M, McLorie GA (1997) Basic fibroblast growth factor in the urine of children with voiding pathology. J Urol 158:1123–1127

    Article  PubMed  CAS  Google Scholar 

  40. Scott SM, Guardian CM, Angelus P, Backstrom C (1991) Developmental pattern of urinary epidermal growth factor in the premature infant and the influence of gender. J Clin Endocrinol Metab 72:588–593

    Article  PubMed  CAS  Google Scholar 

  41. Marler JJ, Fishman SJ, Kilroy SM, Fang J, Upton J, Mulliken JB, Burrows PE, Zurakowski D, Folkman J, Moses MA (2005) Increased expression of urinary matrix metalloproteinases parallels the extent and activity of vascular anomalies. Pediatrics 116:38–45

    Article  PubMed  Google Scholar 

  42. Kaplan F, Sawyer J, Connors S, Keough K, Shore E, Gannon F, Glaser D, Rocke D, Zasloff M, Folkman J (1998) Urinary basic fibroblast growth factor. A biochemical marker for preosseous fibroproliferative lesions in patients with fibrodysplasia ossificans progressiva. Clin Orthop Relat Res 346:59–65

    PubMed  Google Scholar 

  43. Gupta GK, Milner L, Linshaw MA, McCauley RG, Connors S, Folkman J, Bianchi DW (2000) Urinary basic fibroblast growth factor: a noninvasive marker of progressive cystic renal disease in a child. Am J Med Genet 93:132–135

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH R0-1 HL-102497, R0-1 HL-55605, R0-1 DK-049419 and U54- HD071601.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to An N. Massaro or Patricio E. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, S.B., Massaro, A.N., Soler-García, Á.A. et al. A novel urinary biomarker profile to identify acute kidney injury (AKI) in critically ill neonates: a pilot study. Pediatr Nephrol 28, 2179–2188 (2013). https://doi.org/10.1007/s00467-013-2524-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2524-6

Keywords

Navigation