Skip to main content
Log in

Genome-wide methylation profiling of ADPKD identified epigenetically regulated genes associated with renal cyst development

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is a common human genetic disease characterized by the formation of multiple fluid-filled cysts in bilateral kidneys. Although mutations in polycystic kidney disease 1 (PKD1) are predominantly responsible for ADPKD, the focal and sporadic property of individual cystogenesis suggests another molecular mechanism such as epigenetic alterations. To determine the epigenomic alterations in ADPKD and their functional relevance, ADPKD and non-ADPKD individuals were analyzed by unbiased methylation profiling genome-wide and compared with their expression data. Intriguingly, PKD1 and other genes related to ion transport and cell adhesion were hypermethylated in gene-body regions, and their expressions were downregulated in ADPKD, implicating epigenetic silencing as the key mechanism underlying cystogenesis. Especially, in patients with ADPKD, PKD1 was hypermethylated in gene-body region and it was associated with recruitment of methyl-CpG-binding domain 2 proteins. Moreover, treatment with DNA methylation inhibitors retarded cyst formation of Madin-Darby Canine Kidney cells, accompanied with the upregulation of Pkd1 expression. These results are consistent with previous studies that knock-down of PKD1 was sufficient for cystogenesis. Therefore, our results reveal a critical role for hypermethylation of PKD1 and cystogenesis-related regulatory genes in cyst development, suggesting epigenetic therapy as a potential treatment for ADPKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdul-Majeed S, Nauli SM (2011) Calcium-mediated mechanisms of cystic expansion. Biochim Biophys Acta 1812:1281–1290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aran D, Toperoff G, Rosenberg M, Hellman A (2011) Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet 20:670–680

    Article  CAS  PubMed  Google Scholar 

  • Ariel M, Robinson E, McCarrey JR, Cedar H (1995) Gamete-specific methylation correlates with imprinting of the murine Xist gene. Nat Genet 9:312–315

    Article  CAS  PubMed  Google Scholar 

  • Badenas C, Torra R, Perez-Oller L, Mallolas J, Talbot-Wright R, Torregrosa V, Darnell A (2000) Loss of heterozygosity in renal and hepatic epithelial cystic cells from ADPKD1 patients. Eur J Hum Genet 8:487–492

    Article  CAS  PubMed  Google Scholar 

  • Boletta A, Qian F, Onuchic LF, Bhunia AK, Phakdeekitcharoen B, Hanaoka K, Guggino W, Monaco L, Germino GG (2000) Polycystin-1, the gene product of PKD1, induces resistance to apoptosis and spontaneous tubulogenesis in MDCK cells. Mol Cell 6:1267–1273

    Article  CAS  PubMed  Google Scholar 

  • Brasier JL, Henske EP (1997) Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J Clin Invest 99:194–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chapin HC, Caplan MJ (2010) The cell biology of polycystic kidney disease. J Cell Biol 191:701–710

    Article  CAS  PubMed  Google Scholar 

  • Choi JK (2010) Contrasting chromatin organization of CpG islands and exons in the human genome. Genome Biol 11:R70

    Article  PubMed Central  PubMed  Google Scholar 

  • Choi JK, Bae JB, Lyu J, Kim TY, Kim YJ (2009) Nucleosome deposition and DNA methylation at coding region boundaries. Genome Biol 10:R89

    Article  PubMed Central  PubMed  Google Scholar 

  • Dalgin GS, Drever M, Williams T, King T, DeLisi C, Liou LS (2008) Identification of novel epigenetic markers for clear cell renal cell carcinoma. J Urol 180:1126–1130

    Article  CAS  PubMed  Google Scholar 

  • Deaton AM, Webb S, Kerr AR, Illingworth RS, Guy J, Andrews R, Bird A (2011) Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res 21:1074–1086

    Article  CAS  PubMed  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed Central  PubMed  Google Scholar 

  • Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T, Morrow EM, Cepko CL (1997) Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91:531–541

    Article  CAS  PubMed  Google Scholar 

  • Gabow PA (1993) Autosomal dominant polycystic kidney disease. N Engl J Med 329:332–342

    Article  CAS  PubMed  Google Scholar 

  • Grantham JJ (1996) The etiology, pathogenesis, and treatment of autosomal dominant polycystic kidney disease: recent advances. Am J Kidney Dis 28:788–803

    Article  CAS  PubMed  Google Scholar 

  • Harris PC, Rossetti S, Consugar MB, Chapman AB, Torres VE, Guay-Woodford LM, Grantham JJ, Bennett WM, Meyers CM, Walker DL, Bae K, Zhang QJ, Thompson PA, Miller JP (2007) Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 18:2143–2160

    Article  PubMed  Google Scholar 

  • Ibraghimov-Beskrovnaya O, Bukanov N (2008) Polycystic kidney diseases: from molecular discoveries to targeted therapeutic strategies. Cell Mol Life Sci 65:605–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang ST, Chiou YY, Wang E, Lin HK, Lin YT, Chi YC, Wang CK, Tang MJ, Li H (2006) Defining a link with autosomal-dominant polycystic kidney disease in mice with congenitally low expression of Pkd1. Am J Pathol 168:205–220

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaslow DC, Migeon BR (1987) DNA methylation stabilizes X chromosome inactivation in eutherians but not in marsupials: evidence for multistep maintenance of mammalian X dosage compensation. Proc Natl Acad Sci USA 84:6210–6214

    Article  CAS  PubMed  Google Scholar 

  • Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, Ohgi KA, Lin C, Gleiberman A, Wang J, Brault V, Ruiz-Lozano P, Nguyen HD, Kemler R, Glass CK, Wynshaw-Boris A, Rosenfeld MG (2002) Identification of a Wnt/Dvl/beta-Catenin → Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111:673–685

    Article  CAS  PubMed  Google Scholar 

  • Koptides M, Constantinides R, Kyriakides G, Hadjigavriel M, Patsalis PC, Pierides A, Deltas CC (1998) Loss of heterozygosity in polycystic kidney disease with a missense mutation in the repeated region of PKD1. Hum Genet 103:709–717

    Article  CAS  PubMed  Google Scholar 

  • Koptides M, Mean R, Demetriou K, Pierides A, Deltas CC (2000) Genetic evidence for a trans-heterozygous model for cystogenesis in autosomal dominant polycystic kidney disease. Hum Mol Genet 9:447–452

    Article  CAS  PubMed  Google Scholar 

  • Kretzler M, Allred L (2008) Notch inhibition reverses kidney failure. Nat Med 14:246–247

    Article  CAS  PubMed  Google Scholar 

  • Lantinga-van Leeuwen IS, Dauwerse JG, Baelde HJ, Leonhard WN, van de Wal A, Ward CJ, Verbeek S, DeRuiter MC, Breuning MH, de Heer E, Peters DJM (2004) Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum Mol Genet 13:3069–3077

    Article  CAS  PubMed  Google Scholar 

  • Li X (2011) Epigenetics and autosomal dominant polycystic kidney disease. Biochim Biophys Acta 1812:1213–1218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loghman-Adham M, Nauli SM, Soto CE, Kariuki B, Zhou J (2003) Immortalized epithelial cells from human autosomal dominant polycystic kidney cysts. Am J Physiol Renal Physiol 285:F397–F412

    PubMed  Google Scholar 

  • Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468:443–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park EY, Sung YH, Yang MH, Noh JY, Park SY, Lee TY, Yook YJ, Yoo KH, Roh KJ, Kim I, Hwang YH, Oh GT, Seong JK, Ahn C, Lee HW, Park JH (2009) Cyst formation in kidney via B-Raf signaling in the PKD2 transgenic mice. J Biol Chem 284:7214–7222

    Article  CAS  PubMed  Google Scholar 

  • Park EY, Woo YM, Park JH (2011a) Polycystic kidney disease and therapeutic approaches. BMB Rep 44:359–368

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Park J, Choi JK, Lyu J, Bae MG, Lee YG, Bae JB, Park DY, Yang HK, Kim TY, Kim YJ (2011b) Identification of DNA methylation changes associated with human gastric cancer. BMC Med Genomics 4:82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pei Y, Paterson AD, Wang KR, He N, Hefferton D, Watnick T, Germino GG, Parfrey P, Somlo S, St. George-Hyslop P (2001) Bilineal disease and trans-heterozygotes in autosomal dominant polycystic kidney disease. Am J Hum Genet 68:355–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qian F, Watnick TJ, Onuchic LF, Germino GG (1996) The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. Cell 87:979–987

    Article  CAS  PubMed  Google Scholar 

  • Rauch T, Li H, Wu X, Pfeifer GP (2006) MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res 66:7939–7947

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto Y, Watanabe S, Ichimura T, Kawasuji M, Koseki H, Baba H, Nakao M (2007) Overlapping roles of the methylated DNA-binding protein MBD1 and polycomb group proteins in transcriptional repression of HOXA genes and heterochromatin foci formation. J Biol Chem 282:16391–16400

    Article  CAS  PubMed  Google Scholar 

  • Song X, Di Giovanni V, He N, Wang K, Ingram A, Rosenblum ND, Pei Y (2009) Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet 18:2328–2343

    Article  CAS  PubMed  Google Scholar 

  • Surendran K, Selassie M, Liapis H, Krigman H, Kopan R (2010) Reduced Notch signaling leads to renal cysts and papillary microadenomas. J Am Soc Nephrol 21:819–832

    Article  CAS  PubMed  Google Scholar 

  • Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, Kerr AR, Deaton A, Andrews R, James KD, Turner DJ, Illingworth R, Bird A (2010) CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464:1082–1086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomaskovic-Crook E, Thompson EW, Thiery JP (2009) Epithelial to mesenchymal transition and breast cancer. Breast Cancer Res 11:213

    Article  PubMed Central  PubMed  Google Scholar 

  • Torres VE, Boletta A, Chapman A, Gattone V, Pei Y, Qian Q, Wallace DP, Weimbs T, Wuthrich RP (2010) Prospects for mTOR inhibitor use in patients with polycystic kidney disease and hamartomatous diseases. Clin J Am Soc Nephrol 5:1312–1329

    Article  CAS  PubMed  Google Scholar 

  • Tost J, Gut IG (2007) DNA methylation analysis by pyrosequencing. Nat Protoc 2:2265–2275

    Article  CAS  PubMed  Google Scholar 

  • Vasyutina E, Treier M (2010) Molecular mechanisms in renal degenerative disease. Semin Cell Dev Biol 21:831–837

    Article  CAS  PubMed  Google Scholar 

  • Wolf G, Ritz E (2005) Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease: pathophysiology and indications. Kidney Int 67:799–812

    Article  CAS  PubMed  Google Scholar 

  • Zheleznova NN, Wilson PD, Staruschenko A (2011) Epidermal growth factor-mediated proliferation and sodium transport in normal and PKD epithelial cells. Biochim Biophys Acta 1812:1301–1313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Korean Ministry of Science and Technology to Y-J.K (Global Research Lab). This work was also supported by the Bio & Medical Technology Development Program of the NRF (2012M3A9D1054518 and 2010-0019867). The authors declare no competing financial interests. Human kidney tissues of RCC and ADPKD patients were obtained from Dr. Curie Ahn at Department of Nephrology in Seoul National University Hospital. Histology of human normal and ADPKD kidney tissues was analyzed by professor Duk-Hee Kang at Department of Nephrology in Ewha Woman’s University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Joon Kim or Jong Hoon Park.

Additional information

Y. M. Woo and J.-B. Bae contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1047 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, Y.M., Bae, JB., Oh, YH. et al. Genome-wide methylation profiling of ADPKD identified epigenetically regulated genes associated with renal cyst development. Hum Genet 133, 281–297 (2014). https://doi.org/10.1007/s00439-013-1378-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1378-0

Keywords

Navigation