Skip to main content
Log in

Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Transfer of nucleic acid from cytoplasmic organelles to the nuclear genome is a well-established mechanism of evolutionary change in eukaryotes. Such transfers have occurred throughout evolution, but so far, none has been shown unequivocally to occur de novo to cause a heritable human disease. We have characterized a patient with a de novo nucleic acid transfer from the mitochondrial to the nuclear genome, a transfer that is responsible for a sporadic case of Pallister-Hall syndrome, a condition usually inherited in an autosomal dominant fashion. This mutation, a 72-bp insertion into exon 14 of the GLI3 gene, creates a premature stop codon and predicts a truncated protein product. Both the mechanism and the cause of the mitochondrial-nuclear transfer are unknown. Although the conception of this patient was temporally and geographically associated with high-level radioactive contamination following the Chernobyl accident, this case cannot, on its own, be used to establish a causal relationship between radiation exposure and this rare type of mutation. Thus, for the time being, it must be considered as an intriguing coincidence. Nevertheless, these data serve to demonstrate that de novo mitochondrial-nuclear transfer of nucleic acid is a novel mechanism of human inherited disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–c.
Fig. 2.
Fig. 3.
Fig. 4a, b.

Similar content being viewed by others

References

  • Biesecker LG (2001) Genotype phenotype correlation in human GLI3 disorders. Eur J Hum Genet 9 (Suppl. 1):76

    Google Scholar 

  • Biesecker LG, Graham JM Jr (1996) Syndrome of the month: Pallister-Hall syndrome. J Med Genet 33:585–589

    CAS  PubMed  Google Scholar 

  • Blanchard JL, Schmidt GW (1996) Mitochondrial DNA migration events in yeast and humans: integration by a common end-joining mechanism and alternative perspectives on nucleotide substitution patterns. Mol Biol Evol 13:537–548

    CAS  PubMed  Google Scholar 

  • Borensztajn K, Chafa O, Alhenc-Gelas M, Salha S, Reghis A, Fischer AM, Tapon-Bretaudiere J (2002) Characterization of two novel splice site mutations in human factor VII gene causing severe plasma factor VII deficiency and bleeding diathesis. Br J Haematol 117:168–171

    Article  CAS  PubMed  Google Scholar 

  • Czeizel A (1989) Hungarian surveillance of germinal mutations. Hum Genet 82:359–366

    CAS  PubMed  Google Scholar 

  • Czeizel AE, Elek C, Susanszky E (1991) The evaluation of the germinal mutagenic impact of Chernobyl radiological contamination in Hungary. Mutagenesis 6:285–288

    CAS  PubMed  Google Scholar 

  • Dubrova YE, Nesterov VN, Krouchinsky NG, Ostapenko VA, Neumann R, Neil DL, Jeffreys AJ (1996) Human minisatellite mutation rate after the Chernobyl accident. Nature 380:683–686

    CAS  PubMed  Google Scholar 

  • Dubrova YE, Nesterov VN, Krouchinsky NG, Ostapenko VA, Vergnaud G, Giraudeau F, Buard J, Jeffreys AJ (1997) Further evidence for elevated human minisatellite mutation rate in Belarus eight years after the Chernobyl accident. Mutat Res 381:267–278

    CAS  PubMed  Google Scholar 

  • Dubrova YE, Plumb M, Gutierrez B, Boulton E, Jeffreys AJ (2000) Transgenerational mutation by radiation. Nature 405:37

    Article  CAS  PubMed  Google Scholar 

  • Elisei R, Romei C, Vorontsova T, Cosci B, Veremeychik V, Kuchinskaya E, Basolo F, Demidchik EP, Miccoli P, Pinchera A, Pacini F (2001) RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab 86:3211–3216

    Google Scholar 

  • Golikov VY, Balonov MI, Ponomarev AV (1993) Estimation of external gamma radiation doses to the population after the Chernobyl accident. In: Merwin SE, Balonov MI (eds) The Chernobyl papers: doses to the Soviet population and early health effects studies, vol 1. Research Enterprises Publishing Segment, Richland, Washington, pp 247–288

    Google Scholar 

  • Gusev VD, Nemytikova LA, Chuzhanova NA (1999) On the complexity measures of genetic sequences. Bioinformatics 15:994–999

    Google Scholar 

  • Henze K, Martin W (2001) How do mitochondrial genes get into the nucleus? Trends Genet 17:383–387

    CAS  PubMed  Google Scholar 

  • Kang S, Graham JM, Jr, Olney AH, Biesecker LG (1997a) GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nature Genet 15:266–268

    CAS  PubMed  Google Scholar 

  • Kang S, Rosenberg M, Ko VD, Biesecker LG (1997b) Gene structure and allelic expression assay of the human GLI3 gene. Hum Genet 101:154–157

    Article  CAS  PubMed  Google Scholar 

  • Klugbauer S, Pfeiffer P, Gassenhuber H, Beimfohr C, Rabes HM (2001) RET rearrangements in radiation-induced papillary thyroid carcinomas: high prevalence of topoisomerase I sites at breakpoints and microhomology-mediated end joining in ELE1 and RET chimeric genes. Genomics 73:149–160

    Article  CAS  PubMed  Google Scholar 

  • Lazjuk GI, Kirillova IA, Nikolaev DL, Novikova IV (1993) Monitoring of congenital malformations in Belarus after the Chernobyl accident. In: Merwin SE, Balonov MI (eds) The Chernobyl papers: doses to the Soviet population and early health effects studies, vol 1. Research Enterprises Publishing Segment, Richland, Washington, pp 385–397

    Google Scholar 

  • Little J (1993) The Chernobyl accident, congenital anomalies and other reproductive outcomes. Pediatr Perinatal Epidemiol 7:121–151

    CAS  Google Scholar 

  • Mourier T, Hansen AJ, Willerslev E, Arctander P (2001) The Human Genome Project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol Biol Evol 18:1833–1837

    CAS  PubMed  Google Scholar 

  • Nikiforov YE, Koshoffer A, Nikiforova M, Stringer J, Fagin JA (1999) Chromosomal breakpoint positions suggest a direct role for radiation in inducing illegitimate recombination between the ELE1 and RET genes in radiation-induced thyroid carcinomas. Oncogene 18:6330–6334

    Article  CAS  PubMed  Google Scholar 

  • Ozerov SS, Khukhlaeva EA, Pronin IN, Trubanova NG (1997) The Pallister-Hall syndrome — a rare case and an example of the differentiated approach to the treatment of hormonally inactive hypothalamic hamartomas. Zh Vopr Neirokhir Jan-Mar:40–42

  • Rothkamm K, Kühne M, Jeggo PA, Löbrich M (2001) Radiation-induced genomic rearrangements formed by nonhomologous end-joining of DNA double-strand breaks. Cancer Res 61:3886–3893

    CAS  PubMed  Google Scholar 

  • Sankaranarayanan K (1999) Ionizing radiation and genetic risks. X. The potential "disease phenotypes" of radiation-induced genetic damage in humans: perspectives from human molecular biology and radiation genetics. Mutat Res 429:45–83

    Article  CAS  PubMed  Google Scholar 

  • Shay JW, Werbin H (1992) New evidence for the insertion of mitochondrial DNA into the human genome: significance for cancer and aging. Mutat Res 275:227–235

    CAS  PubMed  Google Scholar 

  • Singh NP, Stephens RE (1998) X-ray induced DNA double-strand breaks in human sperm. Mutagenesis 13:75–79

    CAS  PubMed  Google Scholar 

  • Stenson PD, Ball EV, Abeysinghe S, Thomas NST, Mort M, Phillips AD, Krawczak M, Cooper DN (2003) The human gene mutation database. Hum Mutat (in press)

  • Thomas R, Zischler H, Paabo S, Stoneking M (1996) Novel mitochondrial DNA insertion polymorphism and its usefulness for human population studies. Hum Biol 68:847–854

    CAS  PubMed  Google Scholar 

  • Thorsness PE, Weber ER (1996) Escape and migration of nucleic acids between chloroplasts, mitochondria, and the nucleus. Int Rev Cytol 165:207–234

    CAS  PubMed  Google Scholar 

  • Tourmen Y, Baris O, Dessen P, Jacques C, Malthiery Y, Reynier P (2002) Structure and chromosomal distribution of human mitochondrial pseudogenes. Genomics 80:71–77

    Article  CAS  PubMed  Google Scholar 

  • Vollrath D (1999) DNA markers for physical mapping. In: Birren B, Green ED, Hieter P, Klapholz S, Myers RM, Riethman H, Roskams J (eds) Genome analysis: a laboratory manual, vol 4. Cold Spring Harbor Press, Cold Spring Harbor, N.Y., pp 187–216

    Google Scholar 

  • Wallace DC, Stugard C, Murdock D, Schurr T, Brown MD (1997) Ancient mtDNA sequences in the human nuclear genome: a potential source of errors in identifying pathogenic mutations. Proc Natl Acad Sci USA 94:14900–14905

    Article  CAS  PubMed  Google Scholar 

  • Weinberg HS, Korol AB, Kirzhner VM, Avivi A, Fahima T, Nevo E, Shapiro S, Rennert G, Piatak O, Stepanova EI, Skvarskaja E (2001) Very high mutation rate in offspring of Chernobyl accident liquidators. Proc R Soc Lond [Biol] 268:1001–1005

    Google Scholar 

  • Willett-Brozick JE, Savul SA, Richey LE, Baysal BE (2001) Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation. Hum Genet 109:216–223

    CAS  PubMed  Google Scholar 

  • Woischnik M, Moraes CT (2002) Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res 12:885–893

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Emmanuel Anassis, Francis Collins, Penelope Feuillan, Alan Kimmel, Stephen Lipkin, Iosef Lurie, Robert Nussbaum, Nicholas Patronas, Kathryn Peters, Alejandro Schäffer, Peter Stenson, Joyce Turner, Edyth Wiggs, and the staff of the Camps for Children of Chernobyl for technical advice and assistance, critical review of draft manuscripts, clinical characterization of the patient, provision of data from the Human Gene Mutation Database, and assistance in communicating with the family and arranging and supporting their trips to the NIH Clinical Center. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army, the Department of Defense, nor the Department of Health and Human Services. This research was supported by intramural research funding of the National Human Genome Research Institute, National Institutes of Health. The research project was prospectively reviewed and approved by the NHGRI Institutional Review Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie G. Biesecker.

Additional information

This article has been edited by the Guest Editor, Rolf Lange

Electronic database information: URLs for the data in this article are as follows:

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm.nih.gov/Omim/, for Pallister-Hall syndrome (PHS, MIM 146510)

Human Gene Mutation Database (HGMD), http://www.hgmd.org

SNP database, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=snp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, C., Killoran, C., Thomas, N.S.T. et al. Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer. Hum Genet 112, 303–309 (2003). https://doi.org/10.1007/s00439-002-0892-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-002-0892-2

Keywords

Navigation