Skip to main content
Log in

The effect of hydration status on the measurement of lean tissue mass by dual-energy X-ray absorptiometry

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Athletes cycle between exercise and recovery. Exercise invokes changes in total body water from thermal sweating, muscle and hepatic glycogen depletion and metabolic water loss. Recovery from exercise results in rehydration, substrate repletion, and possible glycogen supercompensation. Such changes may corrupt the measurement of hydrated tissues, such as lean tissue mass (LTM), by dual-energy X-ray absorptiometry (DXA). The purpose of this study was to determine the effect of exercise and thermal dehydration and subsequent glycogen supercompensation on DXA-based measurement of body composition.

Methods

Twelve active adult (18–29 years) males exercised at 70% VO2max on a cycle ergometer in a thermal environment (30 °C) to induce a 2.5% reduction in body mass. Participants subsequently underwent a glycogen supercompensation phase, whereby a high carbohydrate diet (8–12 g/kg body mass/day) was consumed for a 48-h period. Whole-body DXA measurement was performed at baseline, following exercise and supercompensation.

Results

Following exercise, mean body mass decreased by −1.93 kg (95% CI −2.3, −1.5), while total LTM decreased by −1.69 kg (−2.4, −1.0). Supercompensation induced a mean body mass increase of 2.53 kg (2.0, 3.1) and a total LTM increase of 2.36 kg (1.8, 2.9). No change in total fat mass or bone mineral content was observed at any timepoint.

Conclusions

Training regimens that typically induce dehydration and nutrition regimens that involve carbohydrate loading can result in apparent changes to LTM measurement by DXA. Accurate measurement of LTM in athletes requires strict observation of hydration and glycogen status to prevent manipulation of results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BM:

Body mass

BMI:

Body mass index

BMC:

Bone mineral content

BMD:

Bone mineral density

CI:

Confidence interval

DXA:

Dual-energy X-ray absorptiometry

FFM:

Fat-free mass

FM:

Fat mass

HR:

Heart rate

LTM:

Lean tissue mass

LSC:

Least significant change

PAR-Q:

Physical activity readiness questionnaire

ROI:

Region of interest

TBW:

Total body water

VO2max :

Maximal oxygen uptake

References

  • Ahlborg B, Bergstrom J, Ekelund L-, Hultman E (1967) Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiol Scand 70:129–142

    Article  CAS  Google Scholar 

  • Armstrong LE, Pumerantz AC, Fiala KA et al (2010) Human hydration indices: acute and longitudinal reference values. Int J Sport Nutr Exerc Metab 20:145–153

    Article  PubMed  Google Scholar 

  • Bartlett JD, Hawley JA, Morton JP (2015) Carbohydrate availability and exercise training adaptation: too much of a good thing? Eur J Sport Sci 15:3–12. doi:10.1080/17461391.2014.920926

    Article  PubMed  Google Scholar 

  • Bergstrom J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiol Scand 71:140–150. doi:10.1111/j.1748-1716.1967.tb03720.x

    Article  CAS  PubMed  Google Scholar 

  • Clark RR, Sullivan JC, Bartok CJ, Carrel AL (2007) DXA provides a valid minimum weight in wrestlers. Med Sci Sports Exerc 39:2069–2075. doi:10.1249/mss.0b013e31814fb423

    Article  PubMed  Google Scholar 

  • Fairchild TJ, Fletcher S, Steele P, Goodman C, Dawson B, Fournier PA (2002) Rapid carbohydrate loading after a short bout of near maximal-intensity exercise. Med Sci Sports Exerc 34:980–986

    Article  PubMed  Google Scholar 

  • Going SB, Massett MP, Hall MC et al (1993) Detection of small changes in body composition by dual-energy X-ray absorptiometry. Am J Clin Nutr 57:845–850

    Article  CAS  PubMed  Google Scholar 

  • Hackett DA, Johnson NA, Chow CM (2013) Training practices and ergogenic aids used by male bodybuilders. J Strength Cond Res 27:1609–1617. doi:10.1519/JSC.0b013e318271272a

    Article  PubMed  Google Scholar 

  • Hangartner TN, Warner S, Braillon P, Jankowski L, Shepherd J (2013) The official positions of the international society for clinical densitometry: acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J Clin Densitom 16:520–536. doi:10.1016/j.jocd.2013.08.007

    Article  PubMed  Google Scholar 

  • Hawley JA, Burke LM (2010) Carbohydrate availability and training adaptation: effects on cell metabolism. Exerc Sport Sci Rev 38:152–160. doi:10.1097/JES.0b013e3181f44dd9

    Article  PubMed  Google Scholar 

  • Hew-Butler T, Holexa BT, Fogard K, Stuempfle KJ, Hoffman MD (2015) Comparison of body composition techniques before and after a 161-km ultramarathon using DXA, BIS and BIA. Int J Sports Med 36:169–174. doi:10.1055/s-0034-1387777

    Article  CAS  PubMed  Google Scholar 

  • Jensen J, Rustad PI, Kolnes AJ, Lai YC (2011) The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol 2. doi:10.3389/fphys.2011.00112

  • Lohman TG, Harris M, Teixeira PJ, Weiss L (2000) Assessing body composition and changes in body composition. Another look at dual-energy X-ray absorptiometry. Ann N Y Acad Sci 904:45–54

    Article  CAS  PubMed  Google Scholar 

  • Meyer NL, Sundgot-Borgen J, Lohman TG et al (2013) Body composition for health and performance: a survey of body composition assessment practice carried out by the Ad Hoc Research Working Group on Body Composition, Health and Performance under the auspices of the IOC Medical Commission. Br J Sports Med 47:1044–1053. doi:10.1136/bjsports-2013-092561

    Article  PubMed  Google Scholar 

  • Moore FD, Boyden CM (1963) Body cell mass and limits of hydration of the fat-free body: their relation to estimated skeletal weight. Ann N Y Acad Sci 110:62–71

    Article  CAS  PubMed  Google Scholar 

  • Mueller SM, Anliker E, Knechtle P, Knechtle B, Toigo M (2013) Changes in body composition in triathletes during an Ironman race. Eur J Appl Physiol 113:2343–2352. doi:10.1007/s00421-013-2670-3

    Article  CAS  PubMed  Google Scholar 

  • Nana A, Slater GJ, Hopkins WG, Burke LM (2012) Effects of daily activities on dual-energy X-ray absorptiometry measurements of body composition in active people. Med Sci Sports Exerc 44:180–189. doi:10.1249/MSS.0b013e318228b60e

    Article  PubMed  Google Scholar 

  • Nana A, Slater GJ, Hopkins WG, Burke LM (2013) Effects of exercise sessions on DXA measurements of body composition in active people. Med Sci Sports Exerc 45:178–185. doi:10.1249/MSS.0b013e31826c9cfd

    Article  PubMed  Google Scholar 

  • Nana A, Slater GJ, Stewart AD, Burke LM (2015) Methodology review: using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. Int J Sport Nutr Exerc Metab 25:198–215. doi:10.1123/ijsnem.2013-0228

    Article  PubMed  Google Scholar 

  • Olsson KE, Saltin B (1970) Variation in total body water with muscle glycogen changes in man. Acta Physiol Scand 80:11–18. doi:10.1111/j.1748-1716.1970.tb04764.x

    Article  CAS  PubMed  Google Scholar 

  • Rauch LH, Rodger I, Wilson GR et al (1995) The effects of carbohydrate loading on muscle glycogen content and cycling performance. Int J Sport Nutr 5:25–36

    Article  CAS  PubMed  Google Scholar 

  • Roubenoff R, Kehayias JJ, Dawson-Hughes B, Heymsfield SB (1993) Use of dual-energy X-ray absorptiometry in body-composition studies: not yet a “gold standard”. Am J Clin Nutr 58:589–591

    Article  CAS  PubMed  Google Scholar 

  • Rouillier MA, David-Riel S, Brazeau AS, St-Pierre DH, Karelis AD (2015) Effect of an acute high carbohydrate diet on body composition using DXA in young men. Ann Nutr Metab 66:233–236. doi:10.1159/000435840

    Article  CAS  PubMed  Google Scholar 

  • Santos DA, Silva AM, Matias CN, Fields DA, Heymsfield SB, Sardinha LB (2010) Accuracy of DXA in estimating body composition changes in elite athletes using a four compartment model as the reference method. Nutr Metab (Lond) 7:22-7075-7-22. doi:10.1186/1743-7075-7-22

    Article  Google Scholar 

  • Sawka MN (1992) Physiological consequences of hypohydration: exercise performance and thermoregulation. Med Sci Sports Exerc 24:657–670

    CAS  PubMed  Google Scholar 

  • Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS (2007) American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc 39:377–390. doi:10.1249/mss.0b013e31802ca597

    Article  PubMed  Google Scholar 

  • Schoeller DA (1989) Changes in total body water with age. Am J Clin Nutr 50:1176–1181 (discussion 1231–1235)

    Article  CAS  PubMed  Google Scholar 

  • Shiose K, Yamada Y, Motonaga K et al (2016) Segmental extracellular and intracellular water distribution and muscle glycogen after 72-h carbohydrate loading using spectroscopic techniques. J Appl Physiol (1985) 121:205–211. doi:10.1152/japplphysiol.00126.2016

    Article  CAS  Google Scholar 

  • Shirreffs SM (2003) Markers of hydration status. Eur J Clin Nutr 57(Suppl 2):S6–S9. doi:10.1038/sj.ejcn.1601895

    Article  PubMed  Google Scholar 

  • Toombs RJ, Ducher G, Shepherd JA, De Souza MJ (2012) The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity (Silver Spring) 20:30–39. doi:10.1038/oby.2011.211

    Article  Google Scholar 

  • Toomey CM, Cremona C, Hughes K, Norton C, Jakeman P (2015) A review of body composition measurement in the assessment of health. Topics Clin Nutr 30:16–32

    Article  Google Scholar 

  • Wang Z, Deurenberg P, Wang W, Pietrobelli A, Baumgartner RN, Heymsfield SB (1999) Hydration of fat-free body mass: new physiological modeling approach. Am J Physiol 276:E995–E1003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the assistance of Conor Hurley, Ross McGlynn, and Alexandra Cremona with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clodagh M. Toomey.

Ethics declarations

Ethical approval

All procedures performed involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Communicated by Narihiko Kondo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toomey, C.M., McCormack, W.G. & Jakeman, P. The effect of hydration status on the measurement of lean tissue mass by dual-energy X-ray absorptiometry. Eur J Appl Physiol 117, 567–574 (2017). https://doi.org/10.1007/s00421-017-3552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3552-x

Keywords

Navigation