Skip to main content

Advertisement

Log in

Decreased plasma concentrations of adiponectin in patients with slow coronary flow

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Adiponectin has multiple protective effects on vascular endothelium through anti-inflammatory and anti-atherogenic properties. Recent data suggested that endothelial activation and inflammation may contribute to the pathogenesis of slow coronary flow (SCF). Therefore, we investigated whether adiponectin plasma concentrations were decreased in patients with SCF compared to subjects with normal coronary flow. The study population consisted of 35 patients with angiographically documented SCF in all three coronary arteries and 35 sex- and age-matched cases with normal coronary flow. Coronary flow rates of all participants were determined by Thrombolysis in Myocardial Infarction (TIMI) frame count. Plasma adiponectin concentrations were measured by an enzyme-linked immunosorbent assay method using commercially available adiponectin kits. There were no statistically significant differences between the patients with SCF and the subjects with normal coronary flow in terms of demographic characteristics and cardiovascular risk factors (P > 0.05). Plasma adiponectin concentrations of patients with SCF were found to be significantly lower than those with normal coronary flow (4.77 ± 3.86 mg/ml vs 10.8 ± 6.60 mg/ml, P = 0.001, respectively). Plasma adiponectin levels were correlated significantly and inversely with mean TIMI frame count in patients with SCF (r = −0.441, P = 0.008). Furthermore, the Receiver Operator Characteristics curve of adiponectin concentrations showed that an adiponectin <4.6 mg/ml is associated with SCF with a sensitivity of 68.6%, specificity of 82.9%, positive predictive value of 80.0%, and negative predictive value of 72.5%. Our findings suggest that endothelial inflammation may play a role in the pathogenesis of SCF phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tambe AA, Demany MA, Zimmerman HA, Mascarenhas E (1972) Angina pectoris and slow flow velocity of dye in coronary arteries — a new angiographic finding. Am Heart J 84:66–71

    Article  PubMed  CAS  Google Scholar 

  2. Mangieri E, Macchiarelli G, Ciavolella M, Barilla F, Avella A, Martinotti A, Dell’Italia LJ, Scibilia G, Motta P, Campa PP (1996) Slow coronary flow: clinical and histopathological features in patients with otherwise normal epicardial coronary arteries. Cathet Cardiovasc Diagn 37:375–381

    Article  PubMed  CAS  Google Scholar 

  3. Cin VG, Pekdemir H, Camsar A, Cicek D, Akkus MN, Parmaksyz T, Katyrcybay T, Doven O (2003) Diffuse intimal thickening of coronary arteries in slow coronary flow. Jpn Heart J 44:907–919

    Article  PubMed  Google Scholar 

  4. Turhan H, Saydam GS, Erbay AR, Ayaz S, Yasar AS, Aksoy Y, Basar N, Yetkin E (2006) Increased plasma soluble adhesion molecules; ICAM-1, VCAM-1, and E-selectin levels in patients with slow coronary flow. Int J Cardiol 108:224–230

    Article  PubMed  Google Scholar 

  5. Okamoto Y, Kihara S, Funahashi T, Matsuzawa Y, Libby P (2006) Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci (Lond) 110:267–278

    Article  CAS  Google Scholar 

  6. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83

    Article  PubMed  CAS  Google Scholar 

  7. Kotani K, Sakane N, Saiga K, Kato M, Ishida K, Kato Y, Kurozawa Y (2007) Serum adiponectin levels and lifestyle factors in Japanese men. Heart Vessels 22:291–296

    Article  PubMed  Google Scholar 

  8. Kumada M, Kihara S, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N, Arita Y, Okamoto Y, Shimomura I, Hiraoka H, Nakamura T, Funahashi T, Matsuzawa Y (2003) Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol 23:85–89

    Article  PubMed  CAS  Google Scholar 

  9. Rothenbacher D, Brenner H, Marz W, Koenig W (2005) Adiponectin, risk of coronary heart disease and correlations with cardiovascular risk markers. Eur Heart J 26:1640–1646

    Article  PubMed  CAS  Google Scholar 

  10. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y (2000) Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 20:1595–1599

    PubMed  CAS  Google Scholar 

  11. Adamczak M, Wiecek A, Funahashi T, Chudek J, Kokot F, Matsuzawa Y (2003) Decreased plasma adiponectin concentration in patients with essential hypertension. Am J Hypertens 16:72–75

    Article  PubMed  CAS  Google Scholar 

  12. Matsubara M, Maruoka S, Katayose S (2002) Decreased plasma adiponectin concentrations in women with dyslipidemia. J Clin Endocrinol Metab 87:2764–2769

    Article  PubMed  CAS  Google Scholar 

  13. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (1999) Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100:2473–2476

    PubMed  CAS  Google Scholar 

  14. Shimabukuro M, Higa N, Asahi T, Oshiro Y, Takasu N, Tagawa T, Ueda S, Shimomura I, Funahashi T, Matsuzawa Y (2003) Hypoadiponectinemia is closely linked to endothelial dysfunction in man. J Clin Endocrinol Metab 88:3236–3240

    Article  PubMed  CAS  Google Scholar 

  15. Ouchi N, Ohishi M, Kihara S, Funahashi T, Nakamura T, Nagaretani H, Kumada M, Ohashi K, Okamoto Y, Nishizawa H, Kishida K, Maeda N, Nagasawa A, Kobayashi H, Hiraoka H, Komai N, Kaibe M, Rakugi H, Ogihara T, Matsuzawa Y (2003) Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension 42:231–234

    Article  PubMed  CAS  Google Scholar 

  16. Gibson CM, Cannon CP, Daley WL, Dodge JT, Jr., Alexander B, Jr., Marble SJ, McCabe CH, Raymond L, Fortin T, Poole WK, Braunwald E (1996) TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation 93:879–888

    PubMed  CAS  Google Scholar 

  17. Ouchi N, Kihara S, Funahashi T, Matsuzawa Y, Walsh K (2003) Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol 14:561–566

    Article  PubMed  CAS  Google Scholar 

  18. Mosseri M, Yarom R, Gotsman MS, Hasin Y (1986) Histologic evidence for small-vessel coronary artery disease in patients with angina pectoris and patent large coronary arteries. Circulation 74:964–972

    PubMed  CAS  Google Scholar 

  19. Erdogan D, Caliskan M, Gullu H, Sezgin AT, Yildirir A, Muderrisoglu H (2007) Coronary flow reserve is impaired in patients with slow coronary flow. Atherosclerosis 191:168–174

    Article  PubMed  CAS  Google Scholar 

  20. Sezgin AT, Sigirci A, Barutcu I, Topal E, Sezgin N, Ozdemir R, Yetkin E, Tandogan I, Kosar F, Ermis N, Yologlu S, Bariskaner E, Cehreli S (2003) Vascular endothelial function in patients with slow coronary flow. Coron Artery Dis 14:155–161

    Article  PubMed  Google Scholar 

  21. Pekdemir H, Polat G, Cin VG, Camsari A, Cicek D, Akkus MN, Doven O, Katircibasi MT, Muslu N (2004) Elevated plasma endothelin-1 levels in coronary sinus during rapid right atrial pacing in patients with slow coronary flow. Int J Cardiol 97:35–41

    Article  PubMed  Google Scholar 

  22. Tanriverdi H, Evrengul H, Mergen H, Acar C, Seleci D, Kuru O, Tanriverdi S, Kaftan A (2007) Early sign of atherosclerosis in slow coronary flow and relationship with angiotensin-converting enzyme I/D polymorphism. Heart Vessels 22:1–8

    Article  PubMed  Google Scholar 

  23. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 102:1296–1301

    PubMed  CAS  Google Scholar 

  24. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida K, Nishizawa H, Hotta K, Muraguchi M, Ohmoto Y, Yamashita S, Funahashi T, Matsuzawa Y (2001) Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 103:1057–1063

    PubMed  CAS  Google Scholar 

  25. Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N, Kumada M, Okamoto Y, Nagaretani H, Nishizawa H, Kishida K, Komuro R, Ouchi N, Kihara S, Nagai R, Funahashi T, Matsuzawa Y (2002) Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem 277:37487–37491

    Article  PubMed  CAS  Google Scholar 

  26. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ (2003) Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 278:45021–45026

    Article  PubMed  CAS  Google Scholar 

  27. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  28. Cooke JP, Dzau VJ (1997) Derangements of the nitric oxide synthase pathway, L-arginine, and cardiovascular diseases. Circulation 96:379–382

    PubMed  CAS  Google Scholar 

  29. Okamoto Y, Arita Y, Nishida M, Muraguchi M, Ouchi N, Takahashi M, Igura T, Inui Y, Kihara S, Nakamura T, Yamashita S, Miyagawa J, Funahashi T, Matsuzawa Y (2000) An adipocytederived plasma protein, adiponectin, adheres to injured vascular walls. Horm Metab Res 32:47–50

    Article  PubMed  CAS  Google Scholar 

  30. Mintz GS, Painter JA, Pichard AD, Kent KM, Satler LF, Popma JJ, Chuang YC, Bucher TA, Sokolowicz LE, Leon MB (1995) Atherosclerosis in angiographically “normal” coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol 25:1479–1485

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatice Selcuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selcuk, H., Selcuk, M.T., Temizhan, A. et al. Decreased plasma concentrations of adiponectin in patients with slow coronary flow. Heart Vessels 24, 1–7 (2009). https://doi.org/10.1007/s00380-008-1074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-008-1074-5

Key words

Navigation