Skip to main content
Log in

The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: A systematic review and meta-analysis

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

Magnetic resonance spectroscopy (MRS) is a powerful tool for preoperative grading of gliomas. We performed a meta-analysis to evaluate the diagnostic performance of MRS in differentiating high-grade gliomas (HGGs) from low-grade gliomas (LGGs).

Methods

PubMed and Embase databases were systematically searched for relevant studies of glioma grading assessed by MRS through 27 March 2015. Based on the data from eligible studies, pooled sensitivity, specificity, diagnostic odds ratio and areas under summary receiver operating characteristic curve (SROC) of different metabolite ratios were obtained.

Results

Thirty articles comprising a total sample size of 1228 patients were included in our meta-analysis. Quantitative synthesis of studies showed that the pooled sensitivity/specificity of Cho/Cr, Cho/NAA and NAA/Cr ratios was 0.75/0.60, 0.80/0.76 and 0.71/0.70, respectively. The area under the curve (AUC) of the SROC was 0.83, 0.87 and 0.78, respectively.

Conclusions

MRS demonstrated moderate diagnostic performance in distinguishing HGGs from LGGs using tumoural metabolite ratios including Cho/Cr, Cho/NAA and NAA/Cr. Although there was no significant difference in AUC between Cho/Cr and Cho/NAA groups, Cho/NAA ratio showed higher sensitivity and specificity than Cho/Cr ratio and NAA/Cr ratio. We suggest that MRS should combine other advanced imaging techniques to improve diagnostic accuracy in differentiating HGGs from LGGs.

Key points

MRS has moderate diagnostic performance in distinguishing HGGs from LGGs.

There is no significant difference in AUC between Cho/Cr and Cho/NAA ratios.

Cho/NAA ratio is superior to NAA/Cr ratio.

Cho/NAA ratio shows higher sensitivity and specificity than Cho/Cr and NAA/Cr ratios.

MRS should combine other advanced imaging techniques to improve diagnostic accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

Cho:

Choline

CI:

Confidence intervals

Cr:

Creatine

DOR:

Diagnostic odds ratio

DTI:

Diffusion tensor imaging

DWI:

Diffusion-weighted imaging

FN:

False negative

FP:

False positive

HGGs:

High-grade gliomas

I2 :

Inconsistency index

Lac:

Lactate

LGGs:

Low-grade gliomas

LL:

Lipids and lactate

LR+:

Positive likelihood ratio

LR−:

Negative likelihood ratio

LTE:

Long echo time

MI:

Myo-inositol

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

MVS:

Multi-voxel spectroscopy

NAA:

N-acetyl-aspartate

nCho:

Normalized choline

nCr:

Normalized creatine

Pcr:

Phosphocreatine

PET:

Positron-emission tomography

QUADAS-2:

Quality Assessment Tool for Diagnostic Accuracy Studies version 2

SEN:

Sensitivity

SPE:

Specificity

SPECT:

Single photon mission computed tomography

SROC:

Summary receiver-operating characteristic curve

STE:

Short echo time

SVS:

Single-voxel spectroscopy

TN:

True negative

TP:

True positive

References

  1. Inoue T, Ogasawara K, Beppu T, Ogawa A, Kabasawa H (2005) Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg 107:174–180

    Article  PubMed  Google Scholar 

  2. Lu H, Pollack E, Young R et al (2008) Predicting grade of cerebral glioma using vascular-space occupancy MR imaging. AJNR Am J Neuroradiol 29:373–378

    Article  CAS  PubMed  Google Scholar 

  3. Chung C, Metser U, Menard C (2015) Advances in magnetic resonance imaging and positron emission tomography imaging for grading and molecular characterization of glioma. Semin Radiat Oncol 25:164–171

    Article  PubMed  Google Scholar 

  4. Bulik M, Jancalek R, Vanicek J, Skoch A, Mechl M (2013) Potential of MR spectroscopy for assessment of glioma grading. Clin Neurol Neurosurg 115:146–153

    Article  PubMed  Google Scholar 

  5. Herminghaus S, Dierks T, Pilatus U et al (2003) Determination of histopathological tumor grade in neuroepithelial brain tumors by using spectral pattern analysis of in vivo spectroscopic data. J Neurosurg 98:74–81

    Article  PubMed  Google Scholar 

  6. Dhermain FG, Hau P, Lanfermann H, Jacobs AH, van den Bent MJ (2010) Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 9:906–920

    Article  PubMed  Google Scholar 

  7. Zhang H, Ma L, Wang Q, Zheng X, Wu C, Xu BN (2014) Role of magnetic resonance spectroscopy for the differentiation of recurrent glioma from radiation necrosis: a systematic review and meta-analysis. Eur J Radiol 83:2181–2189

    Article  PubMed  Google Scholar 

  8. Hollingworth W, Medina LS, Lenkinski RE et al (2006) A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR Am J Neuroradiol 27:1404–1411

    CAS  PubMed  Google Scholar 

  9. Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

    Article  PubMed  Google Scholar 

  10. Deville WL, Buntinx F, Bouter LM et al (2002) Conducting systematic reviews of diagnostic studies: didactic guidelines. BMC Med Res Methodol 2:9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A (2006) Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med Res Methodol 6:31

    Article  PubMed  PubMed Central  Google Scholar 

  12. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

  13. Leeflang MM, Deeks JJ, Gatsonis C, Bossuyt PM (2008) Systematic reviews of diagnostic test accuracy. Ann Intern Med 149:889–897

    Article  PubMed  PubMed Central  Google Scholar 

  14. Altman DG, Bland JM (2003) Interaction revisited: the difference between two estimates. BMJ 326:219

    Article  PubMed  PubMed Central  Google Scholar 

  15. Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893

    Article  PubMed  Google Scholar 

  16. Fudaba H, Shimomura T, Abe T et al (2014) Comparison of multiple parameters obtained on 3T pulsed arterial spin-labeling, diffusion tensor imaging, and MRS and the Ki-67 labeling index in evaluating glioma grading. AJNR Am J Neuroradiol 35:2091–2098

    Article  CAS  PubMed  Google Scholar 

  17. Dunet V, Maeder P, Nicod-Lalonde M et al (2014) Combination of MRI and dynamic FET PET for initial glioma grading. Nuklearmedizin 53:155–161

    Article  CAS  PubMed  Google Scholar 

  18. Caulo M, Panara V, Tortora D et al (2014) Data-driven grading of brain gliomas: a multiparametric MR imaging study. Radiology 272:494–503

    Article  PubMed  Google Scholar 

  19. Darweesh AMN, Badawy ME, Hamesa M, Saber N (2014) Magnetic resonance spectroscopy and diffusion imaging in the evaluation of neoplastic brain lesions. Egypt J Radiol Nucl Med 45:485–493

    Article  Google Scholar 

  20. Yoon JH, Kim JH, Kang WJ et al (2014) Grading of cerebral glioma with multiparametric MR imaging and 18F-FDG-PET: concordance and accuracy. Eur Radiol 24:380–389

    Article  PubMed  Google Scholar 

  21. Metwally LIA, El-Din SE, Abdelaziz O, Hamdy IM, Elsamman AK, Abdelalim AM (2014) Predicting grade of cerebral gliomas using Myo-inositol/Creatine ratio. Egypt J Radiol Nucl Med 45:211–217

    Article  Google Scholar 

  22. Sahin N, Melhem ER, Wang S et al (2013) Advanced MR imaging techniques in the evaluation of nonenhancing gliomas: perfusion-weighted imaging compared with proton magnetic resonance spectroscopy and tumor grade. Neuroradiol J 26:531–541

    Article  PubMed  PubMed Central  Google Scholar 

  23. Roy B, Gupta RK, Maudsley AA et al (2013) Utility of multiparametric 3-T MRI for glioma characterization. Neuroradiology 55:603–613

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rao PJ, Jyoti R, Mews PJ, Desmond P, Khurana VG (2013) Preoperative magnetic resonance spectroscopy improves diagnostic accuracy in a series of neurosurgical dilemmas. Br J Neurosurg 27:646–653

    Article  CAS  PubMed  Google Scholar 

  25. Chawalparit O, Sangruchi T, Witthiwej T et al (2013) Diagnostic performance of advanced MRI in differentiating high-grade from low-grade gliomas in a setting of routine service. J Med Assoc Thai 96:1365–1373

    PubMed  Google Scholar 

  26. Aprile I, Torni C, Fiaschini P, Muti M (2012) High-Grade Cerebral Glioma Characterization: Usefulness of MR Spectroscopy and Perfusion Imaging Associated Evaluation. Neuroradiol J 25:57–66

    Article  CAS  PubMed  Google Scholar 

  27. Shokry A (2012) MRS of brain tumors: diagrammatic representations and diagnostic approach. Egypt J Radiol Nucl Med 43:603–612

    Article  Google Scholar 

  28. Liu ZL, Zhou Q, Zeng QS, Li CF, Zhang K (2012) Noninvasive evaluation of cerebral glioma grade by using diffusion-weighted imaging-guided single-voxel proton magnetic resonance spectroscopy. J Int Med Res 40:76–84

    Article  PubMed  Google Scholar 

  29. Zou QG, Xu HB, Liu F, Guo W, Kong XC, Wu Y (2011) In the assessment of supratentorial glioma grade: the combined role of multivoxel proton MR spectroscopy and diffusion tensor imaging. Clin Radiol 66:953–960

    Article  PubMed  Google Scholar 

  30. Zeng Q, Liu H, Zhang K, Li C, Zhou G (2011) Noninvasive evaluation of cerebral glioma grade by using multivoxel 3D proton MR spectroscopy. Magn Reson Imaging 29:25–31

    Article  PubMed  Google Scholar 

  31. Widhalm G, Krssak M, Minchev G et al (2011) Value of 1H-magnetic resonance spectroscopy chemical shift imaging for detection of anaplastic foci in diffusely infiltrating gliomas with non-significant contrast-enhancement. J Neurol Neurosurg Psychiatry 82:512–520

    Article  PubMed  Google Scholar 

  32. Chernov MF, Ono Y, Muragaki Y et al (2008) Differentiation of high-grade and low-grade gliomas using pattern analysis of long-echo single-voxel proton magnetic resonance spectroscopy ((1)H-MRS). Neuroradiol J 21:338–349

    Article  CAS  PubMed  Google Scholar 

  33. Di CA, Scarabino T, Trojsi F et al (2008) Proton MR spectroscopy of cerebral gliomas at 3 T: spatial heterogeneity, and tumour grade and extent. Eur Radiol 18:1727–1735

    Article  Google Scholar 

  34. Zonari P, Baraldi P, Crisi G (2007) Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology 49:795–803

    Article  PubMed  Google Scholar 

  35. Zhang K, Li C, Liu Y et al (2007) Evaluation of invasiveness of astrocytoma using 1H-magnetic resonance spectroscopy: correlation with expression of matrix metalloproteinase-2. Neuroradiology 49:913–919

    Article  PubMed  Google Scholar 

  36. Kim JH, Chang KH, Na DG et al (2006) 3T 1H-MR spectroscopy in grading of cerebral gliomas: comparison of short and intermediate echo time sequences. AJNR Am J Neuroradiol 27:1412–1418

    PubMed  Google Scholar 

  37. Stadlbauer A, Gruber S, Nimsky C et al (2006) Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology 238:958–969

    Article  PubMed  Google Scholar 

  38. Jeun SS, Kim MC, Kim BS et al (2005) Assessment of malignancy in gliomas by 3T 1H MR spectroscopy. Clin Imaging 29:10–15

    Article  PubMed  Google Scholar 

  39. Magalhaes A, Godfrey W, Shen Y, Hu J, Smith W (2005) Proton magnetic resonance spectroscopy of brain tumors correlated with pathology. Acad Radiol 12:51–57

    Article  PubMed  Google Scholar 

  40. Chen CY, Lirng JF, Chan WP, Fang CL (2004) Proton magnetic resonance spectroscopy-guided biopsy for cerebral glial tumors. J Formos Med Assoc 103:448–458

    PubMed  Google Scholar 

  41. Fountas KN, Kapsalaki EZ, Vogel RL, Fezoulidis I, Robinson JS, Gotsis ED (2004) Noninvasive histologic grading of solid astrocytomas using proton magnetic resonance spectroscopy. Stereotact Funct Neurosurg 82:90–97

    Article  PubMed  Google Scholar 

  42. Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998

    PubMed  Google Scholar 

  43. Kumar A, Kaushik S, Tripathi RP, Kaur P, Khushu S (2003) Role of in vivo proton MR spectroscopy in the evaluation of adult brain lesions: our preliminary experience. Neurol India 51:474–478

    CAS  PubMed  Google Scholar 

  44. Yang D, Korogi Y, Sugahara T et al (2002) Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology 44:656–666

    Article  CAS  PubMed  Google Scholar 

  45. Furuya S, Naruse S, Ide M et al (1997) Evaluation of metabolic heterogeneity in brain tumors using 1H-chemical shift imaging method. NMR Biomed 10:25–30

    Article  CAS  PubMed  Google Scholar 

  46. Wang W, Hu Y, Lu P et al (2014) Evaluation of the diagnostic performance of magnetic resonance spectroscopy in brain tumors: a systematic review and meta-analysis. PLoS One 9, e112577

    Article  PubMed  PubMed Central  Google Scholar 

  47. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM (2003) The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol 56:1129–1135

    Article  PubMed  Google Scholar 

  48. Server A, Kulle B, Gadmar OB, Josefsen R, Kumar T, Nakstad PH (2011) Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas. Eur J Radiol 80:462–470

    Article  PubMed  Google Scholar 

  49. Chen J, Huang SL, Li T, Chen XL (2006) In vivo research in astrocytoma cell proliferation with 1H-magnetic resonance spectroscopy: correlation with histopathology and immunohistochemistry. Neuroradiology 48:312–318

    Article  PubMed  Google Scholar 

  50. Moller-Hartmann W, Herminghaus S, Krings T et al (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44:371–381

    Article  CAS  PubMed  Google Scholar 

  51. Bertholdo D, Watcharakorn A, Castillo M (2013) Brain proton magnetic resonance spectroscopy: introduction and overview. Neuroimaging Clin N Am 23:359–380

    Article  PubMed  Google Scholar 

  52. Howe FA, Barton SJ, Cudlip SA et al (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49:223–232

    Article  CAS  PubMed  Google Scholar 

  53. Pamir MN, Ozduman K, Yildiz E, Sav A, Dincer A (2013) Intraoperative magnetic resonance spectroscopy for identification of residual tumor during low-grade glioma surgery: clinical article. J Neurosurg 118:1191–1198

    Article  CAS  PubMed  Google Scholar 

  54. Bradac O, Vrana J, Jiru F et al (2014) Recognition of anaplastic foci within low-grade gliomas using MR spectroscopy. Br J Neurosurg 28:631–636

    Article  PubMed  Google Scholar 

  55. Hattingen E, Raab P, Franz K et al (2008) Prognostic value of choline and creatine in WHO grade II gliomas. Neuroradiology 50:759–767

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Hui Zhang, PHD. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. One of the authors (Hui Zhang) has significant statistical expertise. Neither institutional review board approval nor written informed consent were required, because of the nature of our study, which was a systemic review and meta-analysis. Methodology: Meta-analysis, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiaoLei Chen or BaiNan Xu.

Additional information

Qun Wang, Hui Zhang and JiaShu Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, H., Zhang, J. et al. The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: A systematic review and meta-analysis. Eur Radiol 26, 2670–2684 (2016). https://doi.org/10.1007/s00330-015-4046-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-4046-z

Keywords

Navigation