Skip to main content
Log in

MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients

  • Vascular-Interventional
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

This study was an initial phase II trial in humans of molecular magnetic resonance (MR) imaging for improved visualization of thrombi in vessel territories potentially responsible for stroke using a new fibrin-specific contrast agent (EP-2104R). Eleven patients with thrombus in the left ventricle (n = 2), left or right atrium (n = 4), thoracic aorta (n = 4) or carotid artery (n = 1) as verified by an index examination (ultrasound, computed tomograpy, or conventional MR) were enrolled. All MR imaging was performed on 1.5 T whole-body MR-system using an inversion-recovery black-blood gradient-echo sequence. The same sequence was performed before and 2–6 h after low-dose intravenous administration of 4 μmol/kg EP-2104R. Two investigators assessed image quality and signal amplification. Furthermore, contrast-to-noise ratios (CNR) between the clot and the blood pool/surrounding soft tissue before and after administration of the contrast agent were compared using Student’s t-test. MR imaging and data analysis were successfully completed in 10 patients. No major adverse effects occurred. On enhanced images, thrombi demonstrated high signal amplification, typically at the clot surface, with a significantly increased contrast in comparison to the surrounding blood pool and soft tissue (CNR for clot vs. blood pool, unenhanced and enhanced: 6 ± 8 and 29 ± 14; CNR for clot vs. soft tissue, unenhanced and enhanced: 0 ± 4 and 21 ± 13; P < 0.01 for both comparisons). EP-2104R allows for molecular MR imaging of thrombi potentially responsible for stroke. High contrast between thrombus and surrounding blood and soft tissues can be achieved with enhanced imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    PubMed  CAS  Google Scholar 

  2. Golledge J, Greenhalgh RM, Davies AH (2000) The symptomatic carotid plaque. Stroke 31:774–781

    PubMed  CAS  Google Scholar 

  3. Rauch U, Osende JI, Fuster V, Badimon JJ, Fayad Z, Chesebro JH (2001) Thrombus formation on atherosclerotic plaques: pathogenesis and clinical consequences. Ann Intern Med 134:224–238

    PubMed  CAS  Google Scholar 

  4. Viles-Gonzalez JF, Fuster V, Badimon JJ (2004) Atherothrombosis: a widespread disease with unpredictable and life-threatening consequences. Eur Heart J 25:1197–1207

    Article  PubMed  CAS  Google Scholar 

  5. Kronzon I, Tunick PA (2006) Aortic atherosclerotic disease and stroke. Circulation 114:63–75

    Article  PubMed  Google Scholar 

  6. Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, Halperin JL, Le Heuzey JY, Kay GN, Lowe JE, Olsson SB, Prystowsky EN, Tamargo JL, Wann S, Smith SC, Jacobs AK, Adams CD, Anderson JL, Antman EM, Hunt SA, Nishimura R, Ornato JP, Page RL, Riegel B, Priori SG, Blanc JJ, Budaj A, Camm AJ, Dean V, Deckers JW, Despres C, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Zamorano JL (2006) ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to revise the 2001 guidelines for the management of patients with atrial fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation 114:e257–e354

    Article  PubMed  Google Scholar 

  7. Amarenco P, Cohen A, Tzourio C, Bertrand B, Hommel M, Besson G, Chauvel C, Touboul PJ, Bousser MG (1994) Atherosclerotic disease of the aortic arch and the risk of ischemic stroke. N Engl J Med 331:1474–1479

    Article  PubMed  CAS  Google Scholar 

  8. Ojio S, Takatsu H, Tanaka T, Ueno K, Yokoya K, Matsubara T, Suzuki T, Watanabe S, Morita N, Kawasaki M, Nagano T, Nishio I, Sakai K, Nishigaki K, Takemura G, Noda T, Minatoguchi S, Fujiwara H (2000) Considerable time from the onset of plaque rupture and/or thrombi until the onset of acute myocardial infarction in humans: coronary angiographic findings within 1 week before the onset of infarction. Circulation 102:2063–2069

    PubMed  CAS  Google Scholar 

  9. Fayad ZA, Fuster V (2001) Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res 89:305–316

    Article  PubMed  CAS  Google Scholar 

  10. Dennis M, Bamford J, Sandercock P, Warlow C (1990) Prognosis of transient ischemic attacks in the Oxfordshire Community Stroke Project. Stroke 21:848–853

    PubMed  CAS  Google Scholar 

  11. Lovett JK, Dennis MS, Sandercock PA, Bamford J, Warlow CP, Rothwell PM (2003) Very early risk of stroke after a first transient ischemic attack. Stroke 34:e138–e140

    Article  PubMed  CAS  Google Scholar 

  12. Johnston SC, Gress DR, Browner WS, Sidney S (2000) Short-term prognosis after emergency department diagnosis of TIA. JAMA 284:2901–2906

    Article  PubMed  CAS  Google Scholar 

  13. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    PubMed  CAS  Google Scholar 

  14. Ward MR, Pasterkamp G, Yeung AC, Borst C (2000) Arterial remodeling. Mechanisms and clinical implications. Circulation 102:1186–1191

    CAS  Google Scholar 

  15. Fuster V, Kim RJ (2005) Frontiers in cardiovascular magnetic resonance. Circulation 112:135–144

    Article  PubMed  Google Scholar 

  16. Celermajer DS (1998) Noninvasive detection of atherosclerosis. N Engl J Med 339:2014–2015

    Article  PubMed  CAS  Google Scholar 

  17. Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL (1996) Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94:932–938

    PubMed  CAS  Google Scholar 

  18. Shinnar M, Fallon JT, Wehrli S, Levin M, Dalmacy D, Fayad ZA, Badimon JJ, Harrington M, Harrington E, Fuster V (1999) The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization. Arterioscler Thromb Vasc Biol 19:2756–2761

    PubMed  CAS  Google Scholar 

  19. Corti R, Osende JI, Fayad ZA, Fallon JT, Fuster V, Mizsei G, Dickstein E, Drayer B, Badimon JJ (2002) In vivo noninvasive detection and age definition of arterial thrombus by MRI. J Am Coll Cardiol 39:1366–1373

    Article  PubMed  Google Scholar 

  20. Moody AR, Murphy RE, Morgan PS, Martel AL, Delay GS, Allder S, MacSweeney ST, Tennant WG, Gladman J, Lowe J, Hunt BJ (2003) Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia. Circulation 107:3047–3052

    Article  PubMed  Google Scholar 

  21. Chu B, Kampschulte A, Ferguson MS, Kerwin WS, Yarnykh VL, O’Brien KD, Polissar NL, Hatsukami TS, Yuan C (2004) Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study. Stroke 35:1079–1084

    Article  PubMed  Google Scholar 

  22. Saam T, Cai J, Ma L, Cai YQ, Ferguson MS, Polissar NL, Hatsukami TS, Yuan C (2006) Comparison of symptomatic and asymptomatic atherosclerotic carotid plaque features with in vivo MR imaging. Radiology 240:464–472

    Article  PubMed  Google Scholar 

  23. Kampschulte A, Ferguson MS, Kerwin WS, Polissar NL, Chu B, Saam T, Hatsukami TS, Yuan C (2004) Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging. Circulation 110:3239–3244

    Article  PubMed  CAS  Google Scholar 

  24. Botnar R, Buecker A, Wiethoff AJ, Parsons EC Jr, Katoh M, Katsimaglis G, Weisskoff RM, Lauffer RB, Graham PB, Gunther RW, Manning WJ, Spuentrup E (2004) In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation 110:1463–1466

    Article  PubMed  Google Scholar 

  25. Spuentrup E, Buecker A, Katoh M, Wiethoff AJ, Parsons EC Jr, Botnar RM, Weisskoff RM, Graham PB, Manning WJ, Gunther RW (2005) Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation 22:1377–1382

    Article  CAS  Google Scholar 

  26. Sirol M, Fuster V, Badimon JJ, Fallon JT, Moreno PR, Toussaint JF, Fayad ZA (2005) Chronic thrombus detection with in vivo magnetic resonance imaging and a fibrin-targeted contrast agent. Circulation 112:1594–1600

    Article  PubMed  Google Scholar 

  27. Spuentrup E, Fausten B, Kinzel S, Wiethoff AJ, Botnar RM, Graham PB, Haller S, Katoh M, Parsons EC Jr, Manning WJ, Busch T, Gunther RW, Buecker A (2005) Molecular magnetic resonance imaging of atrial clots in a swine model. Circulation 112:396–399

    Article  PubMed  Google Scholar 

  28. Stracke CP, Katoh M, Wiethoff AJ, Parsons EC, Spangenberg P, Spuntrup E (2007) Molecular MRI of cerebral venous sinus thrombosis using a new fibrin-specific MR contrast agent. Stroke 38:1476–1481

    Article  PubMed  CAS  Google Scholar 

  29. Botnar RM, Perez AS, Witte S, Wiethoff AJ, Laredo J, Hamilton J, Quist W, Parsons EC Jr, Vaidya A, Kolodziej A, Barrett JA, Graham PB, Weisskoff RM, Manning WJ, Johnstone MT (2004) In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 109:2023–2029

    Article  PubMed  CAS  Google Scholar 

  30. Spuentrup E, Katoh M, Wiethoff AJ, Parsons EC Jr, Botnar R, Mahnken A, Gunther RW, Buecker A (2005) Molecular magnetic resonance imaging of pulmonary emboli with a fibrin-specific contrast agent. Am J Respir Crit Care Med 172:494–500

    Article  PubMed  Google Scholar 

  31. Spuentrup E, Katoh M, Buecker A, Fausten B, Wiethoff AJ, Wildberger JE, Haage P, Parsons EC Jr, Botnar RM, Graham PB, Vettelschoss M, Gunther RW (2007) Molecular MR imaging of human thrombi in a swine model of pulmonary embolism using a fibrin-specific contrast agent. Invest Radiol 42:586–595

    Article  PubMed  CAS  Google Scholar 

  32. Maintz D, Ozgun M, Hoffmeier A, Fischbach R, Kim WY, Stuber M, Manning WJ, Heindel W, Botnar RM (2006) Selective coronary artery plaque visualization and differentiation by contrast-enhanced inversion prepared MRI. Eur Heart J 27:1732–1736

    Article  PubMed  Google Scholar 

  33. Fleckenstein JL, Archer BT, Barker BA, Vaughan JT, Parkey RW, Peshock RM (1991) Fast short-tau inversion-recovery MR imaging. Radiology 179:499–504

    PubMed  CAS  Google Scholar 

  34. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    PubMed  CAS  Google Scholar 

  35. Choudhury RP, Fuster V, Fayad ZA (2004) Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Discov 3:913–925

    Article  PubMed  CAS  Google Scholar 

  36. Leiner T, Gerretsen S, Botnar R, Lutgens E, Cappendijk V, Kooi E, van Engelshoven J (2005) Magnetic resonance imaging of atherosclerosis. Eur Radiol 15:1087–1099

    Article  PubMed  CAS  Google Scholar 

  37. Yuan C, Kerwin WS (2004) MRI of atherosclerosis. J Magn Reson Imaging 19:710–719

    Article  PubMed  Google Scholar 

  38. Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, Helft G, Aguinaldo JG, Badimon JJ, Sharma SK (2000) Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 102:506–510

    PubMed  CAS  Google Scholar 

  39. Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ (2000) Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 102:2582–2587

    PubMed  CAS  Google Scholar 

  40. Spuentrup E, Botnar RM (2006) Coronary magnetic resonance imaging: visualization of the vessel lumen and the vessel wall and molecular imaging of arteriothrombosis. Eur Radiol 16:1–14

    Article  PubMed  Google Scholar 

  41. Choudhury RP, Fuster V, Badimon JJ, Fisher EA, Fayad ZA (2002) MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol 22:1065–1074

    Article  PubMed  CAS  Google Scholar 

  42. Rentrop KP (2000) Thrombi in acute coronary syndromes: revisited and revised. Circulation 101:1619–1626

    PubMed  CAS  Google Scholar 

  43. Sitzer M, Muller W, Siebler M, Hort W, Kniemeyer HW, Jancke L, Steinmetz H (1995) Plaque ulceration and lumen thrombus are the main sources of cerebral microemboli in high-grade internal carotid artery stenosis. Stroke 26:1231–1233

    PubMed  CAS  Google Scholar 

  44. Nighoghossian N, Derex L, Douek P (2005) The vulnerable carotid artery plaque: current imaging methods and new perspectives. Stroke 36:2764–2772

    Article  PubMed  Google Scholar 

  45. Sacco RL, Benjamin EJ, Broderick JP, Dyken M, Easton JD, Feinberg WM, Goldstein LB, Gorelick PB, Howard G, Kittner SJ, Manolio TA, Whisnant JP, Wolf PA (1997) American Heart Association prevention conference. IV. Prevention and rehabilitation of stroke. Risk factors. Stroke 28:1507–1517

    PubMed  CAS  Google Scholar 

  46. Rothwell PM, Giles MF, Flossmann E, Lovelock CE, Redgrave JN, Warlow CP, Mehta Z (2005) A simple score (ABCD) to identify individuals at high early risk of stroke after transient ischaemic attack. Lancet 366:29–36

    Article  PubMed  CAS  Google Scholar 

  47. Ohyama H, Hosomi N, Takahashi T, Mizushige K, Osaka K, Kohno M, Koziol JA (2003) Comparison of magnetic resonance imaging and transesophageal echocardiography in detection of thrombus in the left atrial appendage. Stroke 34:2436–2439

    Article  PubMed  Google Scholar 

  48. Davies MJ (1996) Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation 94:2013–2020

    PubMed  CAS  Google Scholar 

  49. Marder VJ, Chute DJ, Starkman S, Abolian AM, Kidwell C, Liebeskind D, Ovbiagele B, Vinuela F, Duckwiler G, Jahan R, Vespa PM, Selco S, Rajajee V, Kim D, Sanossian N, Saver JL (2006) Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke 37:2086–2093

    Article  PubMed  Google Scholar 

  50. Paydarfar D, Krieger D, Dib N, Blair RH, Pastore JO, Stetz JJ Jr, Symes JF (2001) In vivo magnetic resonance imaging and surgical histopathology of intracardiac masses: distinct features of subacute thrombi. Cardiology 95:40–47

    Article  PubMed  CAS  Google Scholar 

  51. Moody AR, Liddicoat A, Krarup K (1997) Magnetic resonance pulmonary angiography and direct imaging of embolus for the detection of pulmonary emboli. Invest Radiol 32:431–440

    Article  PubMed  CAS  Google Scholar 

  52. Fraser DG, Moody AR, Morgan PS, Martel AL, Davidson I (2002) Diagnosis of lower-limb deep venous thrombosis: a prospective blinded study of magnetic resonance direct thrombus imaging. Ann Intern Med 136:89–98

    PubMed  Google Scholar 

  53. Lee TH, Goldman L (2000) Evaluation of the patient with acute chest pain. N Engl J Med 342:1187–1195

    Article  PubMed  CAS  Google Scholar 

  54. Kontos MC (2001) Evaluation of the Emergency Department chest pain patient. Cardiol Rev 9:266–275

    Article  PubMed  CAS  Google Scholar 

  55. Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, Finn JP, Judd RM (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218:215–223

    PubMed  CAS  Google Scholar 

  56. Peters DC, Botnar RM, Kissinger KV, Yeon SB, Appelbaum EA, Manning WJ (2006) Inversion recovery radial MRI with interleaved projection sets. Magn Reson Med 55:1150–1156

    Article  PubMed  Google Scholar 

  57. Spuentrup E, Schroeder J, Mahnken AH, Schaeffter T, Botnar RM, Kuhl HP, Hanrath P, Gunther RW, Buecker A (2003) Quantitative assessment of left ventricular function with interactive real-time spiral and radial MR imaging. Radiology 227:870–876

    Article  PubMed  Google Scholar 

  58. Guttman MA, Dick AJ, Raman VK, Arai AE, Lederman RJ, McVeigh ER (2004) Imaging of myocardial infarction for diagnosis and intervention using real-time interactive MRI without ECG-gating or breath-holding. Magn Reson Med 52:354–361

    Article  PubMed  Google Scholar 

  59. Spuentrup E, Katoh M, Stuber M, Botnar R, Schaeffter T, Buecker A, Gunther RW (2003) Coronary MR imaging using free-breathing 3D steady-state free precession with radial k-space sampling. RöFo 175:1330–1334

    PubMed  CAS  Google Scholar 

  60. Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS, McLean M, Winter P, Sicard GA, Gaffney PJ, Wickline SA, Lanza GM (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104:1280–1285

    Article  PubMed  CAS  Google Scholar 

  61. Yu X, Song SK, Chen J, Scott MJ, Fuhrhop RJ, Hall CS, Gaffney PJ, Wickline SA, Lanza GM (2000) High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 44:867–872

    Article  PubMed  CAS  Google Scholar 

  62. Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H (2003) Tissue-specific MR contrast agents. Eur J Radiol 46:33–44

    Article  PubMed  Google Scholar 

  63. Wickline SA, Neubauer AM, Winter P, Caruthers S, Lanza G (2006) Applications of nanotechnology to atherosclerosis, thrombosis, and vascular biology. Arterioscler Thromb Vasc Biol 26:435–441

    Article  PubMed  CAS  Google Scholar 

  64. Jaffer FA, Libby P, Weissleder R (2006) Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol 47:1328–1338

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank Dr. T. Kühne, German Heart Institute Berlin; Dr. A. Sasse, Medical Clinic I, University Hospital Aachen; and Dr. N. Henke, Department of Nuclear Medicine, Technical University Munich, for help with patient recruitment and support during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar Spuentrup.

Additional information

Supported in part by EPIX Pharmaceuticals, Lexington, MA, USA, and the German Research Council (SP634/2–1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spuentrup, E., Botnar, R.M., Wiethoff, A.J. et al. MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. Eur Radiol 18, 1995–2005 (2008). https://doi.org/10.1007/s00330-008-0965-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-0965-2

Keywords

Navigation