Skip to main content

Advertisement

Log in

Interactions between coagulation and complement—their role in inflammation

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The parallel expression of activation products of the coagulation, fibrinolysis, and complement systems has long been observed in both clinical and experimental settings. Several interconnections between the individual components of these cascades have also been described, and the list of shared regulators is expanding. The co-existence and interplay of hemostatic and inflammatory mediators in the same microenvironment typically ensures a successful host immune defense in compromised barrier settings. However, dysregulation of the cascade activities or functions of inhibitors in one or both systems can result in clinical manifestations of disease, such as sepsis, systemic lupus erythematosus, or ischemia–reperfusion injury, with critical thrombotic and/or inflammatory complications. An appreciation of the precise relationship between complement activation and thrombosis may facilitate the development of novel therapeutics, as well as improve the clinical management of patients with thrombotic conditions that are characterized by complement-associated inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

aHUS:

Atypical hemolytic uremic syndrome

C1INH:

C1 inhibitor

C4BP:

C4b-binding protein

C3aR:

C3a receptor

C5aR:

C5a receptor

C5L2:

C5a receptor-like 2

DAF:

Decay accelerating factor

DIC:

Disseminated intravascular coagulation

DSS:

Dextran sulphate sodium

HAE:

Hereditary angioedema

HMGB1:

High mobility globulin B1

IBD:

Inflammatory bowel disease

IL:

Interleukin

LPS:

Lipopolysaccharide

MAC:

Membrane-attack complex

MASP:

Mannose-binding lectin-associated serine proteinase

MBL:

Mannose-binding lectin

MCP-1:

Monocytes chemoattractant protein 1

MIF:

Migration-inhibitory factor

MIP-1:

Macrophage inflammatory protein 1

PAI-1:

Plasminogen activator inhibitor 1

PAR:

Proteinase-activated receptor

PNH:

Paroxysmal nocturnal hemoglobinuria

SIRS:

Systemic inflammatory response syndrome

SLE:

Systemic lupus erythematosus

TAFI:

Thrombin activatable fibrinolysis inhibitor

TF:

Tissue factor

TNF:

Tumor necrosis factor

tPA:

Tissue plasminogen activator

uPA:

Urokinase plasminogen activator

uPAR:

Urokinase plasminogen activator receptor

References

  1. Reid KB, Porter RR (1981) The proteolytic activation systems of complement. Annu Rev Biochem 50:433–464

    PubMed  CAS  Google Scholar 

  2. Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797

    PubMed  CAS  Google Scholar 

  3. Jackson CM, Nemerson Y (1980) Blood coagulation. Annu Rev Biochem 49:765–811

    PubMed  CAS  Google Scholar 

  4. Adams RL, Bird RJ (2009) Review article: coagulation cascade and therapeutics update: relevance to nephrology. Part 1: Overview of coagulation, thrombophilias and history of anticoagulants. Nephrology (Carlton) 14:462–470

    CAS  Google Scholar 

  5. Francis CW, Marder VJ (1987) Physiologic regulation and pathologic disorders of fibrinolysis. Hum Pathol 18:263–274

    PubMed  CAS  Google Scholar 

  6. Kane KK (1984) Fibrinolysis—a review. Ann Clin Lab Sci 14:443–449

    PubMed  CAS  Google Scholar 

  7. Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:D227–D233

    PubMed  CAS  Google Scholar 

  8. Rawlings ND (2010) Peptidase inhibitors in the MEROPS database. Biochimie 92:1463–1483

    PubMed  CAS  Google Scholar 

  9. Barrett AJ, Rawlings ND, Woessner JF (2004) Handbook of proteolytic enzymes. Elsevier Academic Press, San Diego

    Google Scholar 

  10. Macfarlane RG (1948) Normal and abnormal blood coagulation: a review. J Clin Pathol 1:113–143

    Google Scholar 

  11. Lachmann P (2006) Complement before molecular biology. Mol Immunol 43:496–508

    PubMed  CAS  Google Scholar 

  12. Hoffman R, Benz E Jr., Shattil SJ, Furie B, Cohen HJ, Silberstein LE, McGlave P (2005). Hematology: basic principles and practice. Elsevier Churchill Livingstone, Philadelphia

  13. Walsh PN (2004) Platelet coagulation–protein interactions. Semin Thromb Hemost 30:461–471

    PubMed  CAS  Google Scholar 

  14. Davie EW, Ratnoff OD (1964) Waterfall sequence for intrinsic blood clotting. Science 145:1310–1312

    PubMed  CAS  Google Scholar 

  15. Hoffman M (2003) Remodeling the blood coagulation cascade. J Thromb Thrombolysis 16:17–20

    PubMed  CAS  Google Scholar 

  16. Rakic JM, Maillard C, Jost M, Bajou K, Masson V, Devy L, Lambert V, Foidart JM, Noel A (2003) Role of plasminogen activator-plasmin system in tumor angiogenesis. Cell Mol Life Sci 60:463–473

    PubMed  CAS  Google Scholar 

  17. Van de Werf FJ, Topol EJ, Sobel BE (2009) The impact of fibrinolytic therapy for ST-segment-elevation acute myocardial infarction. J Thromb Haemost 7:14–20

    PubMed  Google Scholar 

  18. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–1587

    Google Scholar 

  19. Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD (2005) Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 26:1–43

    PubMed  CAS  Google Scholar 

  20. Riewald M, Ruf W (2003) Proteinase-activated receptor activation by coagulation proteinases. Drug Develop Res 59:400–407

    CAS  Google Scholar 

  21. Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407:258–264

    PubMed  CAS  Google Scholar 

  22. Kuliopulos A, Covic L, Seeley SK, Sheridan PJ, Helin J, Costello CE (1999) Plasmin desensitization of the PAR1 thrombin receptor: kinetics, sites of truncation, and implications for thrombolytic therapy. Biochemistry 38:4572–4585

    PubMed  CAS  Google Scholar 

  23. Laumonnier Y, Syrovets T, Burysek L, Simmet T (2006) Identification of the annexin A2 heterotetramer as a receptor for the plasmin-induced signaling in human peripheral monocytes. Blood 107:3342–3349

    PubMed  CAS  Google Scholar 

  24. Li Q, Laumonnier Y, Syrovets T, Simmet T (2007) Plasmin triggers cytokine induction in human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol 27:1383–1389

    PubMed  Google Scholar 

  25. Lambris JD, Ricklin D, Geisbrecht BV (2008) Complement evasion by human pathogens. Nat Rev Microbiol 6:132–142

    PubMed  CAS  Google Scholar 

  26. Ricklin D, Lambris JD (2007) Complement-targeted therapeutics. Nat Biotechnol 25:1265–1275

    PubMed  CAS  Google Scholar 

  27. Le FG, Kemper C (2009) Complement: coming full circle. Arch Immunol Ther Exp (Warsz) 57:393–407

    Google Scholar 

  28. Dunkelberger JR, Song WC (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20:34–50

    PubMed  CAS  Google Scholar 

  29. Markiewski MM, Lambris JD (2007) The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol 171:715–727

    PubMed  CAS  Google Scholar 

  30. Kemper C, Atkinson JP, Hourcade DE (2010) Properdin: emerging roles of a pattern-recognition molecule. Annu Rev Immunol 28:131–155

    PubMed  CAS  Google Scholar 

  31. Pangburn MK, Muller-Eberhard HJ (1986) The C3 convertase of the alternative pathway of human complement. Enzymic properties of the bimolecular proteinase. Biochem J 235:723–730

    PubMed  CAS  Google Scholar 

  32. Volanakis JE (1989) C3 convertases of complement. Molecular genetics, structure and function of the catalytic domains, C2 and B. Year Immunol 4:218–230

    PubMed  CAS  Google Scholar 

  33. Klos A, Tenner AJ, Johswich KO, Ager RR, Reis ES, Kohl J (2009) The role of the anaphylatoxins in health and disease. Mol Immunol 46:2753–2766

    PubMed  CAS  Google Scholar 

  34. Kalant D, MacLaren R, Cui W, Samanta R, Monk PN, Laporte SA, Cianflone K (2005) C5L2 is a functional receptor for acylation-stimulating protein. J Biol Chem 280:23936–23944

    PubMed  CAS  Google Scholar 

  35. Ward PA (2009) Functions of C5a receptors. J Mol Med 87:375–378

    PubMed  CAS  Google Scholar 

  36. Van Lith LH, Oosterom J, Van EA, Zaman GJ (2009) C5a-stimulated recruitment of beta-arrestin2 to the nonsignaling 7-transmembrane decoy receptor C5L2. J Biomol Screen 14:1067–1075

    PubMed  Google Scholar 

  37. Bamberg CE, Mackay CR, Lee H, Zahra D, Jackson J, Lim YS, Whitfeld PL, Craig S, Corsini E, Lu B, Gerard C, Gerard NP (2010) The C5a receptor (C5aR) C5L2 is a modulator of C5aR-mediated signal transduction. J Biol Chem 285:7633–7644

    PubMed  CAS  Google Scholar 

  38. Scola AM, Johswich KO, Morgan BP, Klos A, Monk PN (2009) The human complement fragment receptor, C5L2, is a recycling decoy receptor. Mol Immunol 46:1149–1162

    PubMed  CAS  Google Scholar 

  39. Megyeri M, Mako V, Beinrohr L, Doleschall Z, Prohaszka Z, Cervenak L, Zavodszky P, Gal P (2009) Complement protease MASP-1 activates human endothelial cells: PAR4 activation is a link between complement and endothelial function. J Immunol 183:3409–3416

    PubMed  CAS  Google Scholar 

  40. Pham CT (2006) Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 6:541–550

    PubMed  CAS  Google Scholar 

  41. Dulon S, Leduc D, Cottrell GS, D’Alayer J, Hansen KK, Bunnett NW, Hollenberg MD, Pidard D, Chignard M (2005) Pseudomonas aeruginosa elastase disables proteinase-activated receptor 2 in respiratory epithelial cells. Am J Respir Cell Mol Biol 32:411–419

    PubMed  CAS  Google Scholar 

  42. Schmidtchen A, Holst E, Tapper H, Bjorck L (2003) Elastase-producing Pseudomonas aeruginosa degrade plasma proteins and extracellular products of human skin and fibroblasts, and inhibit fibroblast growth. Microb Pathog 34:47–55

    PubMed  CAS  Google Scholar 

  43. Jagels MA, Travis J, Potempa J, Pike R, Hugli TE (1996) Proteolytic inactivation of the leukocyte C5a receptor by proteinases derived from Porphyromonas gingivalis. Infect Immun 64:1984–1991

    PubMed  CAS  Google Scholar 

  44. Wingrove JA, DiScipio RG, Chen Z, Potempa J, Travis J, Hugli TE (1992) Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J Biol Chem 267:18902–18907

    PubMed  CAS  Google Scholar 

  45. Hajishengallis G, Lambris JD (2010) Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol 31:154–163

    PubMed  CAS  Google Scholar 

  46. Mollnes TE, Garred P, Bergseth G (1988) Effect of time, temperature and anticoagulants on in vitro complement activation: consequences for collection and preservation of samples to be examined for complement activation. Clin Exp Immunol 73:484–488

    PubMed  CAS  Google Scholar 

  47. Wiggins RC, Giclas PC, Henson PM (1981) Chemotactic activity generated from the fifth component of complement by plasma kallikrein of the rabbit. J Exp Med 153:1391–1404

    PubMed  CAS  Google Scholar 

  48. DiScipio RG (1982) The activation of the alternative pathway C3 convertase by human plasma kallikrein. Immunology 45:587–595

    PubMed  CAS  Google Scholar 

  49. Hiemstra PS, Daha MR, Bouma BN (1985) Activation of factor B of the complement system by kallikrein and its light chain. Thromb Res 38:491–503

    PubMed  CAS  Google Scholar 

  50. Thoman ML, Meuth JL, Morgan EL, Weigle WO, Hugli TE (1984) C3d-K, a kallikrein cleavage fragment of iC3b is a potent inhibitor of cellular proliferation. J Immunol 133:2629–2633

    PubMed  CAS  Google Scholar 

  51. Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, Lambris JD, Warner RL, Flierl MA, Hoesel LM, Gebhard F, Younger JG, Drouin SM, Wetsel RA, Ward PA (2006) Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 12:682–687

    PubMed  CAS  Google Scholar 

  52. Amara U, Flierl MA, Rittirsch D, Klos A, Chen H, Acker B, Bruckner UB, Nilsson B, Gebhard F, Lambris JD, Huber-Lang M (2010) Molecular intercommunication between the complement and coagulation systems. J Immunol 185:5628–5636

    PubMed  CAS  Google Scholar 

  53. Del Conde I, Crúz MA, Zhang H, López JA, Afshar-Kharghan V (2005) Platelet activation leads to activation and propagation of the complement system. J Exp Med 201:871–879

    PubMed  Google Scholar 

  54. Ghebrehiwet B, Silverberg M, Kaplan AP (1981) Activation of the classical pathway of complement by Hageman factor fragment. J Exp Med 153:665–676

    PubMed  CAS  Google Scholar 

  55. Ghebrehiwet B, Randazzo BP, Dunn JT, Silverberg M, Kaplan AP (1983) Mechanisms of activation of the classical pathway of complement by Hageman factor fragment. J Clin Invest 71:1450–1456

    PubMed  CAS  Google Scholar 

  56. Hamad OA, Nilsson PH, Lasaosa M, Ricklin D, Lambris JD, Nilsson B, Ekdahl KN (2010) Contribution of chondroitin sulfate A to the binding of complement proteins to activated platelets. PLoS One 5:e12889

    PubMed  Google Scholar 

  57. Endo Y, Nakazawa N, Iwaki D, Takahashi M, Matsushita M, Fujita T (2009) Interactions of ficolin and mannose-binding lectin with fibrinogen/fibrin augment the lectin complement pathway. J Innate Immun 2:33–42

    PubMed  Google Scholar 

  58. Krarup A, Wallis R, Presanis JS, Gal P, Sim RB (2007) Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS One 2:e623

    PubMed  Google Scholar 

  59. Gulla KC, Gupta K, Krarup A, Gal P, Schwaeble WJ, Sim RB, O’Connor CD, Hajela K (2010) Activation of mannan-binding lectin-associated serine proteases leads to generation of a fibrin clot. Immunology 129:482–495

    PubMed  CAS  Google Scholar 

  60. Platt JL, Dalmasso AP, Lindman BJ, Ihrcke NS, Bach FH (1991) The role of C5a and antibody in the release of heparan sulfate from endothelial cells. Eur J Immunol 21:2887–2890

    PubMed  CAS  Google Scholar 

  61. Marcum JA, Atha DH, Fritze LM, Nawroth P, Stern D, Rosenberg RD (1986) Cloned bovine aortic endothelial cells synthesize anticoagulantly active heparan sulfate proteoglycan. J Biol Chem 261:7507–7517

    PubMed  CAS  Google Scholar 

  62. Zaferani A, Vives RR, van der PP, Hakvoort JJ, Navis GJ, van GH, Daha MR, Lortat-Jacob H, Seelen MA, van den BJ (2011) Identification of tubular heparan sulfate as a docking platform for the alternative complement component properdin in proteinuric renal disease. J Biol Chem 286:5359–5367

  63. Polley MJ, Nachman R (1978) The human complement system in thrombin-mediated platelet function. J Exp Med 147:1713–1726

    PubMed  CAS  Google Scholar 

  64. Sims PJ, Wiedmer T (1991) The response of human platelets to activated components of the complement system. Immunol Today 12:338–342

    PubMed  CAS  Google Scholar 

  65. Wiedmer T, Sims PJ (1985) Effect of complement proteins C5b-9 on blood platelets. Evidence for reversible depolarization of membrane potential. J Biol Chem 260:8014–8019

    PubMed  CAS  Google Scholar 

  66. Ando B, Wiedmer T, Hamilton KK, Sims PJ (1988) Complement proteins C5b-9 initiate secretion of platelet storage granules without increased binding of fibrinogen or von Willebrand factor to newly expressed cell surface GPIIb-IIIa. J Biol Chem 263:11907–11914

    PubMed  CAS  Google Scholar 

  67. Wiedmer T, Esmon CT, Sims PJ (1986) Complement proteins C5b-9 stimulate procoagulant activity through platelet prothrombinase. Blood 68:875–880

    PubMed  CAS  Google Scholar 

  68. Sims PJ, Faioni EM, Wiedmer T, Shattil SJ (1988) Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 263:18205–18212

    PubMed  CAS  Google Scholar 

  69. Hamilton KK, Hattori R, Esmon CT, Sims PJ (1990) Complement proteins C5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrombinase enzyme complex. J Biol Chem 265:3809–3814

    PubMed  CAS  Google Scholar 

  70. Peerschke EI, Reid KB, Ghebrehiwet B (1993) Platelet activation by C1q results in the induction of alpha IIb/beta 3 integrins (GPIIb-IIIa) and the expression of P-selectin and procoagulant activity. J Exp Med 178:579–587

    PubMed  CAS  Google Scholar 

  71. Skoglund C, Wettero J, Tengvall P, Bengtsson T (2010) C1q induces a rapid up-regulation of P-selectin and modulates collagen-and collagen-related peptide-triggered activation in human platelets. Immunobiology 215:987–995

    PubMed  CAS  Google Scholar 

  72. Polley MJ, Nachman RL (1983) Human platelet activation by C3a and C3a des-arg. J Exp Med 158:603–615

    PubMed  CAS  Google Scholar 

  73. Gushiken FC, Han H, Li J, Rumbaut RE, fshar-Kharghan V (2009) Abnormal platelet function in C3-deficient mice. J Thromb Haemost 7:865–870

    PubMed  CAS  Google Scholar 

  74. Qin X, Krumrei N, Grubissich L, Dobarro M, Aktas H, Perez G, Halperin JA (2003) Deficiency of the mouse complement regulatory protein mCd59b results in spontaneous hemolytic anemia with platelet activation and progressive male infertility. Immunity 18:217–227

    PubMed  CAS  Google Scholar 

  75. Hamad OA, Nilsson PH, Wouters D, Lambris JD, Ekdahl KN, Nilsson B (2010) Complement component C3 binds to activated normal platelets without preceding proteolytic activation and promotes binding to complement receptor 1. J Immunol 184:2686–2692

    PubMed  CAS  Google Scholar 

  76. Ikeda K, Nagasawa K, Horiuchi T, Tsuru T, Nishizaka H, Niho Y (1997) C5a induces tissue factor activity on endothelial cells. Thromb Haemost 77:394–398

    PubMed  CAS  Google Scholar 

  77. Ritis K, Doumas M, Mastellos D, Micheli A, Giaglis S, Magotti P, Rafail S, Kartalis G, Sideras P, Lambris JD (2006) A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J Immunol 177:4794–4802

    PubMed  CAS  Google Scholar 

  78. Kambas K, Markiewski MM, Pneumatikos IA, Rafail SS, Theodorou V, Konstantonis D, Kourtzelis I, Doumas MN, Magotti P, DeAngelis RA, Lambris JD, Ritis KD (2008) C5a and TNF-alpha up-regulate the expression of tissue factor in intra-alveolar neutrophils of patients with the acute respiratory distress syndrome. J Immunol 180:7368–7375

    PubMed  CAS  Google Scholar 

  79. Tedesco F, Pausa M, Nardon E, Introna M, Mantovani A, Dobrina A (1997) The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J Exp Med 185:1619–1627

    PubMed  CAS  Google Scholar 

  80. Sillaber C, Baghestanian M, Bevec D, Willheim M, Agis H, Kapiotis S, Fureder W, Bankl HC, Kiener HP, Speiser W, Binder BR, Lechner K, Valent P (1999) The mast cell as site of tissue-type plasminogen activator expression and fibrinolysis. J Immunol 162:1032–1041

    PubMed  CAS  Google Scholar 

  81. Wojta J, Kaun C, Zorn G, Ghannadan M, Hauswirth AW, Sperr WR, Fritsch G, Printz D, Binder BR, Schatzl G, Zwirner J, Maurer G, Huber K, Valent P (2002) C5a stimulates production of plasminogen activator inhibitor-1 in human mast cells and basophils. Blood 100:517–523

    PubMed  CAS  Google Scholar 

  82. Wojta J, Huber K, Valent P (2003) New aspects in thrombotic research: complement induced switch in mast cells from a profibrinolytic to a prothrombotic phenotype. Pathophysiol Haemost Thromb 33:438–441

    PubMed  Google Scholar 

  83. Levi M, van der Tom P (2010) Inflammation and coagulation. Crit Care Med 38:S26–S34

    PubMed  CAS  Google Scholar 

  84. Levi M, van der Tom P (2005) Two-way interactions between inflammation and coagulation. Trends Cardiovasc Med 15:254–259

    PubMed  CAS  Google Scholar 

  85. Markiewski MM, DeAngelis RA, Lambris JD (2006) Liver inflammation and regeneration: two distinct biological phenomena or parallel pathophysiologic processes? Mol Immunol 43:45–56

    PubMed  CAS  Google Scholar 

  86. Markiewski MM, DeAngelis RA, Strey CW, Foukas PG, Gerard C, Gerard N, Wetsel RA, Lambris JD (2009) The regulation of liver cell survival by complement. J Immunol 182:5412–5418

    PubMed  CAS  Google Scholar 

  87. Shebuski RJ, Kilgore KS (2002) Role of inflammatory mediators in thrombogenesis. J Pharmacol Exp Ther 300:729–735

    PubMed  CAS  Google Scholar 

  88. Szotowski B, Antoniak S, Poller W, Schultheiss HP, Rauch U (2005) Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circ Res 96:1233–1239

    PubMed  CAS  Google Scholar 

  89. Burstein SA, Peng J, Friese P, Wolf RF, Harrison P, Downs T, Hamilton K, Comp P, Dale GL (1996) Cytokine-induced alteration of platelet and hemostatic function. Stem Cells 14(Suppl 1):154–162

    PubMed  Google Scholar 

  90. Verardi S, Page RC, Ammons WF, Bordin S (2007) Differential chemokine response of fibroblast subtypes to complement C1q. J Periodontal Res 42:62–68

    PubMed  CAS  Google Scholar 

  91. Lidington EA, Haskard DO, Mason JC (2000) Induction of decay-accelerating factor by thrombin through a protease-activated receptor 1 and protein kinase C-dependent pathway protects vascular endothelial cells from complement-mediated injury. Blood 96:2784–2792

    PubMed  CAS  Google Scholar 

  92. Campbell W, Okada N, Okada H (2001) Carboxypeptidase R is an inactivator of complement-derived inflammatory peptides and an inhibitor of fibrinolysis. Immunol Rev 180:162–167

    PubMed  CAS  Google Scholar 

  93. Bajzar L, Morser J, Nesheim M (1996) TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex. J Biol Chem 271:16603–16608

    PubMed  CAS  Google Scholar 

  94. Levi M, Opal SM (2006) Coagulation abnormalities in critically ill patients. Crit Care 10:222

    PubMed  Google Scholar 

  95. Degen JL, Bugge TH, Goguen JD (2007) Fibrin and fibrinolysis in infection and host defense. J Thromb Haemost 5(Suppl 1):24–31

    PubMed  CAS  Google Scholar 

  96. Hecke F, Schmidt U, Kola A, Bautsch W, Klos A, Kohl J (1997) Circulating complement proteins in multiple trauma patients—correlation with injury severity, development of sepsis, and outcome. Crit Care Med 25:2015–2024

    PubMed  CAS  Google Scholar 

  97. Markiewski MM, DeAngelis RA, Lambris JD (2008) Complexity of complement activation in sepsis. J Cell Mol Med 12:2245–2254

    PubMed  CAS  Google Scholar 

  98. Ward PA, Gao H (2009) Sepsis, complement and the dysregulated inflammatory response. J Cell Mol Med 13:4154–4160

    PubMed  CAS  Google Scholar 

  99. Castellheim A, Brekke OL, Espevik T, Harboe M, Mollnes TE (2009) Innate immune responses to danger signals in systemic inflammatory response syndrome and sepsis. Scand J Immunol 69:479–491

    PubMed  CAS  Google Scholar 

  100. Daniels R, Nutbeam T (2010) ABC of Sepsis. Blackwell Publishing Ltd, Chichester

    Google Scholar 

  101. Rittirsch D, Flierl MA, Ward PA (2008) Harmful molecular mechanisms in sepsis. Nat Rev Immunol 8:776–787

    PubMed  CAS  Google Scholar 

  102. Ward PA (2004) The dark side of C5a in sepsis. Nat Rev Immunol 4:133–142

    PubMed  CAS  Google Scholar 

  103. Laudes IJ, Chu JC, Sikranth S, Huber-Lang M, Guo RF, Riedemann N, Sarma JV, Schmaier AH, Ward PA (2002) Anti-c5a ameliorates coagulation/fibrinolytic protein changes in a rat model of sepsis. Am J Pathol 160:1867–1875

    PubMed  CAS  Google Scholar 

  104. Knoebl P (2010) Blood coagulation disorders in septic patients. Wien Med Wochenschr 160:129–138

    PubMed  Google Scholar 

  105. Gando S (2010) Microvascular thrombosis and multiple organ dysfunction syndrome. Crit Care Med 38:S35–S42

    PubMed  Google Scholar 

  106. Deitch EA (1992) Multiple organ failure. Pathophysiology and potential future therapy. Ann Surg 216:117–134

    PubMed  CAS  Google Scholar 

  107. Barie PS, Hydo LJ, Pieracci FM, Shou J, Eachempati SR (2009) Multiple organ dysfunction syndrome in critical surgical illness. Surg Infect (Larchmt) 10:369–377

    Google Scholar 

  108. Ten Cate H, Schoenmakers SH, Franco R, Timmerman JJ, Groot AP, Spek CA, Reitsma PH (2001) Microvascular coagulopathy and disseminated intravascular coagulation. Crit Care Med 29:S95–S97

    PubMed  CAS  Google Scholar 

  109. Younger JG, Bracho DO, Chung-Esaki HM, Lee M, Rana GK, Sen A, Jones AE (2010) Complement activation in emergency department patients with severe sepsis. Acad Emerg Med 17:353–359

    PubMed  Google Scholar 

  110. Semple JW, Freedman J (2010) Platelets and innate immunity. Cell Mol Life Sci 67:499–511

    PubMed  CAS  Google Scholar 

  111. Gawaz M, Dickfeld T, Bogner C, Fateh-Moghadam S, Neumann FJ (1997) Platelet function in septic multiple organ dysfunction syndrome. Intensive Care Med 23:379–385

    PubMed  CAS  Google Scholar 

  112. Ekdahl KN, Nilsson B (1995) Phosphorylation of complement component C3 and C3 fragments by a human platelet protein kinase. Inhibition of factor I-mediated cleavage of C3b. J Immunol 154:6502–6510

    PubMed  CAS  Google Scholar 

  113. Nilsson-Ekdahl K, Nilsson B (2001) Phosphorylation of C3 by a casein kinase released from activated human platelets increases opsonization of immune complexes and binding to complement receptor type 1. Eur J Immunol 31:1047–1054

    PubMed  CAS  Google Scholar 

  114. Hack CE, Nuijens JH, Felt-Bersma RJ, Schreuder WO, Eerenberg-Belmer AJ, Paardekooper J, Bronsveld W, Thijs LG (1989) Elevated plasma levels of the anaphylatoxins C3a and C4a are associated with a fatal outcome in sepsis. Am J Med 86:20–26

    PubMed  CAS  Google Scholar 

  115. Rittirsch D, Flierl MA, Nadeau BA, Day DE, Huber-Lang M, Mackay CR, Zetoune FS, Gerard NP, Cianflone K, Kohl J, Gerard C, Sarma JV, Ward PA (2008) Functional roles for C5a receptors in sepsis. Nat Med 14:551–557

    PubMed  CAS  Google Scholar 

  116. Hawlisch H, Belkaid Y, Baelder R, Hildeman D, Gerard C, Kohl J (2005) C5a negatively regulates toll-like receptor 4-induced immune responses. Immunity 22:415–426

    PubMed  CAS  Google Scholar 

  117. Riedemann NC, Guo RF, Gao H, Sun L, Hoesel M, Hollmann TJ, Wetsel RA, Zetoune FS, Ward PA (2004) Regulatory role of C5a on macrophage migration inhibitory factor release from neutrophils. J Immunol 173:1355–1359

    PubMed  CAS  Google Scholar 

  118. Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD (2007) Complement and coagulation: strangers or partners in crime? Trends Immunol 28:184–192

    PubMed  CAS  Google Scholar 

  119. Wiedmer T, Hall SE, Ortel TL, Kane WH, Rosse WF, Sims PJ (1993) Complement-induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria. Blood 82:1192–1196

    PubMed  CAS  Google Scholar 

  120. Karpman D, Manea M, Vaziri-Sani F, Stahl AL, Kristoffersson AC (2006) Platelet activation in hemolytic uremic syndrome. Semin Thromb Hemost 32:128–145

    PubMed  Google Scholar 

  121. Coppola L, Guastafierro S, Verrazzo G, Coppola A, De LD, Tirelli A (2002) C1 inhibitor infusion modifies platelet activity in hereditary angioedema patients. Arch Pathol Lab Med 126:842–845

    PubMed  CAS  Google Scholar 

  122. Nangaku M, Couser WG (2005) Mechanisms of immune-deposit formation and the mediation of immune renal injury. Clin Exp Nephrol 9:183–191

    PubMed  CAS  Google Scholar 

  123. Shushakova N, Tkachuk N, Dangers M, Tkachuk S, Park JK, Hashimoto K, Haller H, Dumler I (2005) Urokinase-induced activation of the gp130/Tyk2/Stat3 pathway mediates a pro-inflammatory effect in human mesangial cells via expression of the anaphylatoxin C5a receptor. J Cell Sci 118:2743–2753

    PubMed  CAS  Google Scholar 

  124. Mocco J, Wilson DA, Komotar RJ, Sughrue ME, Coates K, Sacco RL, Elkind MS, Connolly ES Jr (2006) Alterations in plasma complement levels after human ischemic stroke. Neurosurgery 59:28–33

    PubMed  CAS  Google Scholar 

  125. Banz Y, Rieben R (2011) Role of complement and perspectives for intervention in ischemia-reperfusion damage. Ann Med doi:10.3109/07853890.2010.535556

  126. Cervera A, Planas AM, Justicia C, Urra X, Jensenius JC, Torres F, Lozano F, Chamorro A (2010) Genetically-defined deficiency of mannose-binding lectin is associated with protection after experimental stroke in mice and outcome in human stroke. PLoS One 5:e8433

    PubMed  Google Scholar 

  127. Lood C, Gullstrand B, Truedsson L, Olin AI, Alm GV, Ronnblom L, Sturfelt G, Eloranta ML, Bengtsson AA (2009) C1q inhibits immune complex-induced interferon-alpha production in plasmacytoid dendritic cells: a novel link between C1q deficiency and systemic lupus erythematosus pathogenesis. Arthritis Rheum 60:3081–3090

    PubMed  CAS  Google Scholar 

  128. Robson MG, Walport MJ (2001) Pathogenesis of systemic lupus erythematosus (SLE). Clin Exp Allergy 31:678–685

    PubMed  CAS  Google Scholar 

  129. Palatinus A, Adams M (2009) Thrombosis in systemic lupus erythematosus. Semin Thromb Hemost 35:621–629

    PubMed  CAS  Google Scholar 

  130. Nilsson B, Korsgren O, Lambris JD, Ekdahl KN (2010) Can cells and biomaterials in therapeutic medicine be shielded from innate immune recognition? Trends Immunol 31:32–38

    PubMed  CAS  Google Scholar 

  131. Kourtzelis I, Markiewski MM, Doumas M, Rafail S, Kambas K, Mitroulis I, Panagoutsos S, Passadakis P, Vargemezis V, Magotti P, Qu H, Mollnes TE, Ritis K, Lambris JD (2010) Complement anaphylatoxin C5a contributes to hemodialysis-associated thrombosis. Blood 116:631–639

    PubMed  CAS  Google Scholar 

  132. Brenner P, Keller M, Beiras-Fernandez A, Uchita S, Kur F, Thein E, Wimmer C, Hammer C, Schmoeckel M, Reichart B (2010) Prevention of hyperacute xenograft rejection through direct thrombin inhibition with hirudin. Annals of Transplantation: quarterly of the Polish Transplantation Society 15:30–37

    CAS  Google Scholar 

  133. Freue GV, Sasaki M, Meredith A, Gunther OP, Bergman A, Takhar M, Mui A, Balshaw RF, Ng RT, Opushneva N, Hollander Z, Li G, Borchers CH, Wilson-McManus J, McManus BM, Keown PA, McMaster WR (2010) Proteomic signatures in plasma during early acute renal allograft rejection. Mol Cell Proteomics 9:1954–1967

    PubMed  CAS  Google Scholar 

  134. Ingegnoli F, Fantini F, Griffini S, Soldi A, Meroni PL, Cugno M (2010) Anti-tumor necrosis factor alpha therapy normalizes fibrinolysis impairment in patients with active rheumatoid arthritis. Clin Exp Rheumatol 28:254–257

    PubMed  CAS  Google Scholar 

  135. Lu F, Fernandes SM, Davis AE III (2010) The role of the complement and contact systems in the dextran sulfate sodium—induced colitis model: the effect of C1 inhibitor in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 298:G878–G883

    PubMed  CAS  Google Scholar 

  136. Cugno M, Tedeschi A, Crosti C, Marzano AV (2009) Activation of blood coagulation in autoimmune skin disorders. Expert Rev Clin Immunol 5:605–613

    PubMed  CAS  Google Scholar 

  137. Wagner E, Frank MM (2010) Therapeutic potential of complement modulation. Nat Rev Drug Discov 9:43–56

    PubMed  CAS  Google Scholar 

  138. Qu H, Ricklin D, Lambris JD (2009) Recent developments in low molecular weight complement inhibitors. Mol Immunol 47:185–195

    PubMed  CAS  Google Scholar 

  139. Hillmen P, Muus P, Duhrsen U, Risitano AM, Schubert J, Luzzatto L, Schrezenmeier H, Szer J, Brodsky RA, Hill A, Socie G, Bessler M, Rollins SA, Bell L, Rother RP, Young NS (2007) Effect of the complement inhibitor eculizumab on thromboembolism in patients with paroxysmal nocturnal hemoglobinuria. Blood 110:4123–4128

    PubMed  CAS  Google Scholar 

  140. Testa L, Van Gaal WJ, Bhindi R, Biondi-Zoccai GG, Abbate A, Agostoni P, Porto I, Andreotti F, Crea F, Banning AP (2008) Pexelizumab in ischemic heart disease: a systematic review and meta-analysis on 15,196 patients. J Thorac Cardiovasc Surg 136:884–893

    PubMed  CAS  Google Scholar 

  141. Flierl MA, Rittirsch D, Nadeau BA, Day DE, Zetoune FS, Sarma JV, Huber-Lang MS, Ward PA (2008) Functions of the complement components C3 and C5 during sepsis. FASEB J 22:3483–3490

    PubMed  CAS  Google Scholar 

  142. Ricklin D, Lambris JD (2008) Compstatin: a complement inhibitor on its way to clinical application. Adv Exp Med Biol 632:273–292

    PubMed  CAS  Google Scholar 

  143. Chi ZL, Yoshida T, Lambris JD, Iwata T (2010) Suppression of drusen formation by compstatin, a peptide inhibitor of complement C3 activation, on cynomolgus monkey with early-onset macular degeneration. Adv Exp Med Biol 703:127–135

    PubMed  CAS  Google Scholar 

  144. Potentia (2007) Potentia Pharmaceuticals announces initiation of Phase I clinical trials to evaluate its lead compound for age-related macular degeneration. Potentia Press Release, April 5, 2007

  145. Silasi-Mansat R, Zhu H, Popescu NI, Peer G, Sfyroera G, Magotti P, Ivanciu L, Lupu C, Mollnes TE, Taylor FB, Kinasewitz G, Lambris JD, Lupu F (2010) Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of Escherichia coli sepsis. Blood 116:1002–1010

    PubMed  CAS  Google Scholar 

  146. Thuerer GR, Angevine DM (1949) Influence of dicumarol on streptococcic infection in rabbits. Arch Pathol (Chic) 48:274–277

    CAS  Google Scholar 

  147. Weiler JM, Linhardt RJ (1991) Antithrombin III regulates complement activity in vitro. J Immunol 146:3889–3894

    PubMed  CAS  Google Scholar 

  148. Ranjbaran H, Wang Y, Manes TD, Yakimov AO, Akhtar S, Kluger MS, Pober JS, Tellides G (2006) Heparin displaces interferon-gamma-inducible chemokines (IP-10, I-TAC, and Mig) sequestered in the vasculature and inhibits the transendothelial migration and arterial recruitment of T cells. Circulation 114:1293–1300

    PubMed  CAS  Google Scholar 

  149. Baldus S, Rudolph V, Roiss M, Ito WD, Rudolph TK, Eiserich JP, Sydow K, Lau D, Szocs K, Klinke A, Kubala L, Berglund L, Schrepfer S, Deuse T, Haddad M, Risius T, Klemm H, Reichenspurner HC, Meinertz T, Heitzer T (2006) Heparins increase endothelial nitric oxide bioavailability by liberating vessel-immobilized myeloperoxidase. Circulation 113:1871–1878

    PubMed  CAS  Google Scholar 

  150. Rao NV, Argyle B, Xu X, Reynolds PR, Walenga JM, Prechel M, Prestwich GD, MacArthur RB, Walters BB, Hoidal JR, Kennedy TP (2010) Low anticoagulant heparin targets multiple sites of inflammation, suppresses heparin—induced thrombocytopenia, and inhibits interaction of RAGE with its ligands. Am J Physiol Cell Physiol 299:C97–C110

    PubMed  CAS  Google Scholar 

  151. Davis AE III (2005) The pathophysiology of hereditary angioedema. Clin Immunol 114:3–9

    PubMed  CAS  Google Scholar 

  152. Kaplan AP (2010) Enzymatic pathways in the pathogenesis of hereditary angioedema: the role of C1 inhibitor therapy. J Allergy Clin Immunol 126:918–925

    PubMed  CAS  Google Scholar 

  153. Antoniu SA (2011) Therapeutic approaches in hereditary angioedema. Clin Rev Allergy Immunol doi:10.1007/s12016-011-8254-2

  154. Petersen SV, Thiel S, Jensen L, Vorup-Jensen T, Koch C, Jensenius JC (2000) Control of the classical and the MBL pathway of complement activation. Mol Immunol 37:803–811

    PubMed  CAS  Google Scholar 

  155. Matsushita M, Thiel S, Jensenius JC, Terai I, Fujita T (2000) Proteolytic activities of two types of mannose-binding lectin-associated serine protease. J Immunol 165:2637–2642

    PubMed  CAS  Google Scholar 

  156. Jiang H, Wagner E, Zhang H, Frank MM (2001) Complement 1 inhibitor is a regulator of the alternative complement pathway. J Exp Med 194:1609–1616

    PubMed  CAS  Google Scholar 

  157. Jansen PM, Eisele B, de Jang I, Chang A, Delvos U, Taylor FB Jr, Hack CE (1998) Effect of C1 inhibitor on inflammatory and physiologic response patterns in primates suffering from lethal septic shock. J Immunol 160:475–484

    PubMed  CAS  Google Scholar 

  158. Levi M, Lowenberg E, Meijers JC (2010) Recombinant anticoagulant factors for adjunctive treatment of sepsis. Semin Thromb Hemost 36:550–557

    PubMed  CAS  Google Scholar 

  159. Levi M, van der Tom P (2008) The role of natural anticoagulants in the pathogenesis and management of systemic activation of coagulation and inflammation in critically ill patients. Semin Thromb Hemost 34:459–468

    PubMed  CAS  Google Scholar 

  160. Crowther MA, Marshall JC (2001) Continuing challenges of sepsis research. JAMA 286:1894–1896

    PubMed  CAS  Google Scholar 

  161. Hagiwara S, Iwasaka H, Matsumoto S, Hasegawa A, Yasuda N, Noguchi T (2010) In vivo and in vitro effects of the anticoagulant, thrombomodulin, on the inflammatory response in rodent models. Shock 33:282–288

    PubMed  CAS  Google Scholar 

  162. Saito H, Maruyama I, Shimazaki S, Yamamoto Y, Aikawa N, Ohno R, Hirayama A, Matsuda T, Asakura H, Nakashima M, Aoki N (2007) Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J Thromb Haemost 5:31–41

    PubMed  CAS  Google Scholar 

  163. Warren BL, Eid A, Singer P, Pillay SS, Carl P, Novak I, Chalupa P, Atherstone A, Penzes I, Kubler A, Knaub S, Keinecke HO, Heinrichs H, Schindel F, Juers M, Bone RC, Opal SM (2001) Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 286:1869–1878

    PubMed  CAS  Google Scholar 

  164. Levi M, Schouten M, van der Tom P (2008) Sepsis, coagulation, and antithrombin: old lessons and new insights. Semin Thromb Hemost 34:742–746

    PubMed  CAS  Google Scholar 

  165. Opal SM (2000) Therapeutic rationale for antithrombin III in sepsis. Crit Care Med 28:S34–S37

    PubMed  CAS  Google Scholar 

  166. Kienast J, Juers M, Wiedermann CJ, Hoffmann JN, Ostermann H, Strauss R, Keinecke HO, Warren BL, Opal SM (2006) Treatment effects of high-dose antithrombin without concomitant heparin in patients with severe sepsis with or without disseminated intravascular coagulation. J Thromb Haemost 4:90–97

    PubMed  CAS  Google Scholar 

  167. Sarangi PP, Lee HW, Kim M (2010) Activated protein C action in inflammation. Br J Haematol 148:817–833

    PubMed  CAS  Google Scholar 

  168. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, Fisher CJ Jr (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709

    PubMed  CAS  Google Scholar 

  169. Levi M, Levy M, Williams MD, Douglas I, Artigas A, Antonelli M, Wyncoll D, Janes J, Booth FV, Wang D, Sundin DP, Macias WL (2007) Prophylactic heparin in patients with severe sepsis treated with drotrecogin alfa (activated). Am J Respir Crit Care Med 176:483–490

    PubMed  CAS  Google Scholar 

  170. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, Taylor FB, Esmon NL, Lupu F, Esmon CT (2009) Extracellular histones are major mediators of death in sepsis. Nat Med 15:1318–1321

    PubMed  CAS  Google Scholar 

  171. Goring K, Huang Y, Mowat C, Leger C, Lim TH, Zaheer R, Mok D, Tibbles LA, Zygun D, Winston BW (2009) Mechanisms of human complement factor B induction in sepsis and inhibition by activated protein C. Am J Physiol Cell Physiol 296:C1140–C1150

    PubMed  CAS  Google Scholar 

  172. Mosnier LO, Yang XV, Griffin JH (2007) Activated protein C mutant with minimal anticoagulant activity, normal cytoprotective activity, and preservation of thrombin activable fibrinolysis inhibitor-dependent cytoprotective functions. J Biol Chem 282:33022–33033

    PubMed  CAS  Google Scholar 

  173. Mosnier LO, Gale AJ, Yegneswaran S, Griffin JH (2004) Activated protein C variants with normal cytoprotective but reduced anticoagulant activity. Blood 104:1740–1744

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. McClellan for editorial assistance. This work was supported by U.S. National Institutes of Health grants AI68730, AI30040 and GM62134 (to J.D.L.), and GM29507, GM61656 (to P.A.W.). K.O. is recipient of a Natural Sciences and Engineering Research Council of Canada postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Lambris.

Additional information

This article is published as part of the Special Issue on Coagulation & Inflammation [34:1]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oikonomopoulou, K., Ricklin, D., Ward, P.A. et al. Interactions between coagulation and complement—their role in inflammation. Semin Immunopathol 34, 151–165 (2012). https://doi.org/10.1007/s00281-011-0280-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-011-0280-x

Keywords

Navigation