Skip to main content
Log in

Absolute myocardial flow quantification with 82Rb PET/CT: comparison of different software packages and methods

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

In clinical cardiac 82Rb PET, globally impaired coronary flow reserve (CFR) is a relevant marker for predicting short-term cardiovascular events. However, there are limited data on the impact of different software and methods for estimation of myocardial blood flow (MBF) and CFR. Our objective was to compare quantitative results obtained from previously validated software tools.

Methods

We retrospectively analyzed cardiac 82Rb PET/CT data from 25 subjects (group 1, 62 ± 11 years) with low-to-intermediate probability of coronary artery disease (CAD) and 26 patients (group 2, 57 ± 10 years; P = 0.07) with known CAD. Resting and vasodilator-stress MBF and CFR were derived using three software applications: (1) Corridor4DM (4DM) based on factor analysis (FA) and kinetic modeling, (2) 4DM based on region-of-interest (ROI) and kinetic modeling, (3) MunichHeart (MH), which uses a simplified ROI-based retention model approach, and (4) FlowQuant (FQ) based on ROI and compartmental modeling with constant distribution volume.

Results

Resting and stress MBF values (in milliliters per minute per gram) derived using the different methods were significantly different: using 4DM-FA, 4DM-ROI, FQ, and MH resting MBF values were 1.47 ± 0.59, 1.16 ± 0.51, 0.91 ± 0.39, and 0.90 ± 0.44, respectively (P < 0.001), and stress MBF values were 3.05 ± 1.66, 2.26 ± 1.01, 1.90 ± 0.82, and 1.83 ± 0.81, respectively (P < 0.001). However, there were no statistically significant differences among the CFR values (2.15 ± 1.08, 2.05 ± 0.83, 2.23 ± 0.89, and 2.21 ± 0.90, respectively; P = 0.17). Regional MBF and CFR according to vascular territories showed similar results. Linear correlation coefficient for global CFR varied between 0.71 (MH vs. 4DM-ROI) and 0.90 (FQ vs. 4DM-ROI). Using a cut-off value of 2.0 for abnormal CFR, the agreement among the software programs ranged between 76 % (MH vs. FQ) and 90 % (FQ vs. 4DM-ROI). Interobserver agreement was in general excellent with all software packages.

Conclusion

Quantitative assessment of resting and stress MBF with 82Rb PET is dependent on the software and methods used, whereas CFR appears to be more comparable. Follow-up and treatment assessment should be done with the same software and method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Machac J. Cardiac positron emission tomography imaging. Elsevier; 2005. p. 17–36.

  2. Bengel FM, Higuchi T, Javadi MS, Lautamäki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54:1–15.

    Article  PubMed  Google Scholar 

  3. Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation. 2007;115:1464–80.

    Article  PubMed  Google Scholar 

  4. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol. 2006;13:24–33.

    Article  PubMed  Google Scholar 

  5. Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol. 2007;49:1052–8.

    Article  PubMed  CAS  Google Scholar 

  6. Lertsburapa K, Ahlberg AW, Bateman TM, Katten D, Volker L, Cullom SJ, et al. Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J Nucl Cardiol. 2008;15:745–53.

    PubMed  Google Scholar 

  7. Yoshinaga K, Chow BJW, Williams K, Chen L, deKemp RA, Garrard L, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol. 2006;48:1029–39.

    Article  PubMed  Google Scholar 

  8. Flotats A, Bravo PE, Fukushima K, Chaudhry MA, Merrill J, Bengel FM. 82Rb PET myocardial perfusion imaging is superior to 99mTc-labelled agent SPECT in patients with known or suspected coronary artery disease. Eur J Nucl Med Mol Imaging. 2012;39:1233–9.

    Article  PubMed  Google Scholar 

  9. Holly TA, Abbott BG, Al-Mallah M, Calnon DA, Cohen MC, DiFilippo FP, et al. Single photon-emission computed tomography. J Nucl Cardiol. 2010;17:941–73.

    Article  PubMed  Google Scholar 

  10. Bengel FM. Leaving relativity behind: quantitative clinical perfusion imaging. J Am Coll Cardiol. 2011;58:749.

    Article  PubMed  Google Scholar 

  11. Herrero P, Markham J, Shelton ME, Bergmann SR. Implementation and evaluation of a two-compartment model for quantification of myocardial perfusion with rubidium-82 and positron emission tomography. Circ Res. 1992;70:496–507.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med. 1996;37:1701–12.

    PubMed  CAS  Google Scholar 

  13. El Fakhri G, Sitek A, Guérin B, Kijewski MF, Di Carli MF, Moore SC. Quantitative dynamic cardiac 82Rb PET using generalized factor and compartment analyses. J Nucl Med. 2005;46:1264–71.

    PubMed  Google Scholar 

  14. El Fakhri G, Kardan A, Sitek A, Dorbala S, Abi-Hatem N, Lahoud Y, et al. Reproducibility and accuracy of quantitative myocardial blood flow assessment with 82Rb PET: comparison with 13N-ammonia PET. J Nucl Med. 2009;50:1062–71.

    Article  PubMed  Google Scholar 

  15. Lautamäki R, George RT, Kitagawa K, Higuchi T, Merrill J, Voicu C, et al. Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: validation in a canine model of coronary artery stenosis. Eur J Nucl Med Mol Imaging. 2009;36:576–86.

    Article  PubMed  Google Scholar 

  16. Lortie M, Beanlands RSB, Yoshinaga K, Klein R, DaSilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging. 2007;34:1765–74.

    Article  PubMed  Google Scholar 

  17. Fukushima K, Javadi MS, Higuchi T, Lautamäki R, Merrill J, Nekolla SG, et al. Prediction of short-term cardiovascular events using quantification of global myocardial flow reserve in patients referred for clinical 82Rb PET perfusion imaging. J Nucl Med. 2011;52:726–32.

    Article  PubMed  Google Scholar 

  18. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography: added value of coronary flow reserve. J Am Coll Cardiol. 2009;54:150–6.

    Article  PubMed  Google Scholar 

  19. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124:2215–24.

    Article  PubMed  Google Scholar 

  20. Tio RA, Dabeshlim A, Siebelink HMJ, De Sutter J, Hillege HL, Zeebregts CJ, et al. Comparison between the prognostic value of left ventricular function and myocardial perfusion reserve in patients with ischemic heart disease. J Nucl Med. 2009;50:214–9.

    Article  PubMed  Google Scholar 

  21. Ziadi MC, deKemp RA, Williams KA, Guo A, Chow BJW, Renaud JM, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58:740–8.

    Article  PubMed  Google Scholar 

  22. Fiechter M, Gebhard C, Ghadri JR, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Myocardial perfusion imaging with 13N-ammonia PET is a strong predictor for outcome. Int J Cardiol. 2013;167:1023–6.

    Article  PubMed  Google Scholar 

  23. Slomka PJ, Alexanderson E, Jácome R, Jiménez M, Romero E, Meave A, et al. Comparison of clinical tools for measurements of regional stress and rest myocardial blood flow assessed with 13N-ammonia PET/CT. J Nucl Med. 2012;53:171–81.

    Article  PubMed  CAS  Google Scholar 

  24. Rajaram M, Tahari AK, Lee AH, Lodge MA, Tsui B, Nekolla S, et al. Cardiac PET/CT misregistration causes significant changes in estimated myocardial blood flow. J Nucl Med. 2013;54:50–4.

    Article  PubMed  Google Scholar 

  25. Nekolla SG, Miethaner C, Nguyen N, Ziegler SI, Schwaiger M. Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography. Eur J Nucl Med Mol Imaging. 1998;25:1313–21.

    Article  CAS  Google Scholar 

  26. Klein R, Renaud JM, Ziadi MC, Thorn SL, Adler A, Beanlands RS, et al. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 PET and a highly automated analysis program. J Nucl Cardiol. 2010;17:600–16.

    Article  PubMed  Google Scholar 

  27. Sitek A, Gullberg GT, Huesman RH. Correction for ambiguous solutions in factor analysis using a penalized least squares objective. IEEE Trans Med Imaging. 2002;21:216–25.

    Article  PubMed  Google Scholar 

  28. Lee B, Moody J, Sitek A, Murthy V, Di Carli M, Corbett J, et al. Effects of filtering on Rb-82 myocardial blood flow estimates. J Nucl Med. 2013;54 Suppl 2:1659.

    Google Scholar 

  29. Moody JB, Lee BC, Ficaro EF. Error estimation for dynamic PET myocardial blood flow. J Nucl Med. 2012;53 Suppl 1:323.

    Google Scholar 

  30. Klein R, Beanlands RS, deKemp RA. Quantification of myocardial blood flow and flow reserve: technical aspects. J Nucl Cardiol. 2010;17:555–70.

    Article  PubMed  Google Scholar 

  31. Klein R, Beanlands RS, Wassenaar RW, Thorn SL, Lamoureux M, DaSilva JN, et al. Kinetic model-based factor analysis of dynamic sequences for 82-rubidium cardiac positron emission tomography. Med Phys. 2010;37:3995–4010.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A.K.T. was supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number T32EB006351.

Conflicts of interest

R.K. and R.deK. acknowledge receiving revenue shares from the sale of FlowQuant. E.F. acknowledges receiving revenue shares from the sale of Corridor4DM. B.L. acknowledges receiving financial support from INVIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel K. Tahari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahari, A.K., Lee, A., Rajaram, M. et al. Absolute myocardial flow quantification with 82Rb PET/CT: comparison of different software packages and methods. Eur J Nucl Med Mol Imaging 41, 126–135 (2014). https://doi.org/10.1007/s00259-013-2537-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2537-1

Keywords

Navigation