Skip to main content

Advertisement

Log in

Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

[11C]PIB and [18F]FDDNP are PET tracers for in vivo detection of the neuropathology underlying Alzheimer’s disease (AD). [18F]FDG is a glucose analogue and its uptake reflects metabolic activity. The purpose of this study was to examine longitudinal changes in these tracers in patients with AD or mild cognitive impairment (MCI) and in healthy controls.

Methods

Longitudinal, paired, dynamic [11C]PIB and [18F]FDDNP (90 min each) and static [18F]FDG (15 min) PET scans were obtained in 11 controls, 12 MCI patients and 8 AD patients. The mean interval between baseline and follow-up was 2.5 years (range 2.0–4.0 years). Parametric [11C]PIB and [18F]FDDNP images of binding potential (BPND) and [18F]FDG standardized uptake value ratio (SUVr) images were generated.

Results

A significant increase in global cortical [11C]PIB BPND was found in MCI patients, but no changes were observed in AD patients or controls. Subsequent regional analysis revealed that this increase in [11C]PIB BPND in MCI patients was most prominent in the lateral temporal lobe (p < 0.05). For [18F]FDDNP, no changes in global BPND were found. [18F]FDG uptake was reduced at follow-up in the AD group only, especially in frontal, parietal and lateral temporal lobes (all p < 0.01). Changes in global [11C]PIB binding (ρ = −0.42, p < 0.05) and posterior cingulate [18F]FDG uptake (ρ = 0.54, p < 0.01) were correlated with changes in Mini-Mental-State Examination score over time across groups, whilst changes in [18F]FDDNP binding (ρ = −0.18, p = 0.35) were not.

Conclusion

[11C]PIB and [18F]FDG track molecular changes in different stages of AD. We found increased amyloid load in MCI patients and progressive metabolic impairment in AD patients. [18F]FDDNP seems to be less useful for examining disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cummings JL. Alzheimer's disease. N Engl J Med. 2004;351:56–67.

    Article  PubMed  CAS  Google Scholar 

  2. Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Cappellen van Walsum AM, et al. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain. 2009;132:213–24.

    Article  PubMed  CAS  Google Scholar 

  3. Silverman DHS, Small GW, Chang CY, Lu CS, de Aburto MAK, Chen W, et al. Positron emission tomography in evaluation of dementia. JAMA. 2001;286:2120–7.

    Article  PubMed  CAS  Google Scholar 

  4. Klunk WE, Engler H, Nordberg A, Wang Y, Blomquist G, Holt DP, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306–19.

    Article  PubMed  CAS  Google Scholar 

  5. Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, et al. PET of brain amyloid and Tau in mild cognitive impairment. N Engl J Med. 2006;355:2652–63.

    Article  PubMed  CAS  Google Scholar 

  6. Tolboom N, Yaqub M, van der Flier WM, Boellaard R, Luurtsema G, Windhorst AD, et al. Detection of Alzheimer pathology in vivo using both 11C-PIB and 18F-FDDNP PET. J Nucl Med. 2009;50:191–7.

    Article  PubMed  Google Scholar 

  7. Tolboom N, Flier WM, Boverhoff J, Yaqub M, Wattjes M, Raijmakers PG, et al. Molecular imaging in the diagnosis of Alzheimer's disease: visual interpretation of [11C]PIB and [18F]FDDNP PET images. J Neurol Neurosurg Psychiatry. 2010;81:882–4.

    Article  PubMed  Google Scholar 

  8. Ng S, Villemagne VL, Berlangieri S, Lee ST, Cherk M, Gong SJ, et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer's disease. J Nucl Med. 2007;48:547–52.

    Article  PubMed  CAS  Google Scholar 

  9. Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging. 2008;29:1456–65.

    Article  PubMed  CAS  Google Scholar 

  10. Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Nagren K, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology. 2009;73:754–60.

    Article  PubMed  CAS  Google Scholar 

  11. Villemagne VL, Pike K, Chetelat G, Ellis KA, Mulligan R, Bourgeat P, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69:181–92.

    Article  PubMed  CAS  Google Scholar 

  12. Koivunen J, Scheinin M, Virta JR, Aalto S, Vahlberg T, Nagren K, et al. Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study. Neurology. 2011;76:1085–90.

    Article  PubMed  CAS  Google Scholar 

  13. Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain. 2006;129:2856–66.

    Article  PubMed  Google Scholar 

  14. Kadir A, Almkvist O, Forsberg A, Wall A, Engler H, Långström B, et al. Dynamic changes in PET amyloid and FDG imaging at different stages of Alzheimer's disease. Neurobiol Aging 2012;33:198.e1–14.

    Article  Google Scholar 

  15. Scheinin NM, Aalto S, Koikkalainen J, Lotjonen J, Karrasch M, Kemppainen N, et al. Follow-up of [11C]PIB uptake and brain volume in patients with Alzheimer disease and controls. Neurology. 2009;73:1186–92.

    Article  PubMed  CAS  Google Scholar 

  16. Jack Jr CR, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, et al. The Alzheimer's disease neuroimaging initiative. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain. 2009;132:1355–65.

    Article  PubMed  Google Scholar 

  17. Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, et al. 11C-PiB PET assessment of change in fibrillar amyloid-[beta] load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 2010;9:363–72.

    Article  PubMed  CAS  Google Scholar 

  18. Shin J, Lee SY, Kim SH, Kim YB, Cho SJ. Multitracer PET imaging of amyloid plaques and neurofibrillary tangles in Alzheimer's disease. Neuroimage. 2008;43:236–44.

    Article  PubMed  Google Scholar 

  19. Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, et al. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer's disease. J Neurosci. 2001;21:RC189.

    PubMed  CAS  Google Scholar 

  20. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology. 1984;34:939–44.

    PubMed  CAS  Google Scholar 

  21. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–8.

    Article  PubMed  CAS  Google Scholar 

  22. Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. J Nucl Med. 1997;38:1614–23.

    PubMed  CAS  Google Scholar 

  23. Wilson AA, Garcia A, Chestaskova A, Kung HF, Houle SA. A rapid one-step radiosynthesis of the beta-amyloid imaging radiotracer N-methyl-[C-11]2-(′4-methylaminophenyl)-6-hydroxybenzothiazole ([C-11]-6-OH-BTA-1). J Labelled Comp Radiopharm. 2004;47:679–82.

    Article  CAS  Google Scholar 

  24. Klok RP, Klein PJ, van Berckel BNM, Tolboom N, Lammertsma AA, Windhorst AD. Synthesis of 2-(1,1-dicyanopropen-2-yl)-6-(2-[18F]-fluoroethyl)-methylamino-naphthalene ([18F]FDDNP). Appl Radiat Isot. 2008;66:203–7.

    Article  PubMed  CAS  Google Scholar 

  25. Svarer C, Madsen K, Hasselbalch SG, Pinborg LH, Haugbol S, Frokjaer VG, et al. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. Neuroimage. 2005;24:969–79.

    Article  PubMed  Google Scholar 

  26. Wu Y, Carson R. Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab. 2002;22:1440–52.

    Article  PubMed  Google Scholar 

  27. Yaqub M, Tolboom N, Boellaard R, van Berckel BNM, van Tilburg EW, Luurtsema G, et al. Simplified parametric methods for [11C]PIB studies. Neuroimage. 2008;42:76–86.

    Article  PubMed  Google Scholar 

  28. Yaqub M, Tolboom N, van Berckel BNM, Scheltens P, Lammertsma AA, Boellaard R. Simplified parametric methods for [18F]FDDNP studies. Neuroimage. 2010;49:433–41.

    Article  PubMed  Google Scholar 

  29. Yamaguchi H, Hirai S, Morimatsu M, Shoji M, Nakazato Y. Diffuse type of senile plaques in the cerebellum of Alzheimer-type dementia demonstrated by beta protein immunostain. Acta Neuropathol. 1989;77:314–9.

    Article  PubMed  CAS  Google Scholar 

  30. Jack Jr CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9:119–28.

    Article  PubMed  CAS  Google Scholar 

  31. Hardy JA, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;197:353–6.

    Article  Google Scholar 

  32. Hyman BT, Marzloff K, Arriagada PV. The lack of accumulation of senile plaques or amyloid burden in Alzheimer's disease suggests a dynamic balance between amyloid deposition and resolution. J Neuropathol Exp Neurol. 1993;52:594–600.

    Article  PubMed  CAS  Google Scholar 

  33. Christie RH, Bacskai BJ, Zipfel WR, Williams RM, Kajdasz ST, Webb WW, et al. Growth arrest of individual senile plaques in a model of Alzheimer's disease observed by in vivo multiphoton microscopy. J Neurosci. 2001;21:858–64.

    PubMed  CAS  Google Scholar 

  34. Bouwman FH, van der Flier WM, Schoonenboom NSM, van Elk EJ, Kok A, Rijmen F, et al. Longitudinal changes of CSF biomarkers in memory clinic patients. Neurology. 2007;69:1006–11.

    Article  PubMed  CAS  Google Scholar 

  35. Thompson PW, Ye L, Morgenstern JL, Sue L, Beach TG, Judd DJ, et al. Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer's disease pathologies. J Neurochem. 2009;109:623–30.

    Article  PubMed  CAS  Google Scholar 

  36. Tolboom N, van der Flier WM, Yaqub M, Boellaard R, Verwey NA, Blankenstein MA, et al. Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding. J Nucl Med. 2009;50:1464–70.

    Article  PubMed  CAS  Google Scholar 

  37. Tolboom N, Flier WM, Yaqub M, Koene T, Boellaard R, Windhorst AD, et al. Differential association of [11C]PIB and [18F]FDDNP binding with cognitive impairment. Neurology. 2009;73:2079–85.

    Article  PubMed  CAS  Google Scholar 

  38. Alexander GE, Chen K, Pietrini P, Rapoport SI, Reiman EM. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer's disease treatment studies. Am J Psychiatry. 2002;159:738–45.

    Article  PubMed  Google Scholar 

  39. Forster S, Grimmer T, Miederer I, Henriksen G, Yousefi BH, Graner P, et al. Regional expansion of hypometabolism in Alzheimer's disease follows amyloid deposition with temporal delay. Biol Psychiatry 2011. doi:10.1016/j.biopsych.2011.04.023

  40. van der Vlies AE, Koedam ELGE, Pijnenburg YAL, Twisk JWR, Scheltens P, van der Flier WM. Most rapid cognitive decline in APOE E4 negative Alzheimer's disease with early onset. Psychol Med. 2009;39:1907–11.

    Article  PubMed  Google Scholar 

  41. Verhage F. Intelligentie en leeftijd: onderzoek bij Nederlanders van twaalf tot zevenenzeventig jaar [Intelligence and age: study with Dutch people aged 12 to 77]. Assen: Van Gorcum; 1964.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Internationale Stichting Alzheimer Onderzoek (ISAO, grant 05512) and the American Health Assistance Foundation (AHAF, grant A2005-026).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rik Ossenkoppele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ossenkoppele, R., Tolboom, N., Foster-Dingley, J.C. et al. Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET. Eur J Nucl Med Mol Imaging 39, 990–1000 (2012). https://doi.org/10.1007/s00259-012-2102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2102-3

Keywords

Navigation