Skip to main content

Advertisement

Log in

Pediatric brain MRI part 1: basic techniques

  • Minisymposium: MR techniques in pediatric radiology
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Pediatric neuroimaging is a complex and specialized field that uses magnetic resonance (MR) imaging as the workhorse for diagnosis. Standard MR techniques used in adult neuroimaging are suboptimal for imaging in pediatrics because there are significant differences in the child’s developing brain. These differences include size, myelination and sulcation. MR protocols need to be tailored to the specific indication and reviewed by the supervising radiologist in real time, and the specialized needs of this population require careful consideration of issues such as scan timing, sequence order, sedation, anesthesia and gadolinium administration. In part 1 of this review, we focus on basic protocol development and anatomical characterization. We provide multiple imaging examples optimized for evaluation of supratentorial and infratentorial brain, midline structures, head and neck, and intracranial vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. American Academy of Pediatrics, American Academy of Pediatric Dentistry, Coté CJ et al (2006) Guidelines for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures: an update. Pediatrics 118:2587–2602

    Article  Google Scholar 

  2. Vincent JL, Shehabi Y, Walsh TS et al (2016) Comfort and patient-centred care without excessive sedation: the eCASH concept. Intensive Care Med 42:962–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Campbell K, Torres L, Stayer S (2014) Anesthesia and sedation outside the operating room. Anesthesiol Clin 32:25–43

    Article  PubMed  Google Scholar 

  4. Ward CG, Loepke AW (2012) Anesthetics and sedatives: toxic or protective for the developing brain? Pharmacol Res 65:271–274

    Article  CAS  PubMed  Google Scholar 

  5. Backeljauw B, Holland SK, Altaye M et al (2015) Cognition and brain structure following early childhood surgery with anesthesia. Pediatrics 136:e1–e12

    Article  PubMed  PubMed Central  Google Scholar 

  6. Paley MN, Hart AR, Lait M et al (2012) An MR-compatible neonatal incubator. Br J Radiol 85:952–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blüml S, Friedlich P, Erberich S et al (2004) MR imaging of newborns by using an MR-compatible incubator with integrated radiofrequency coils: initial experience. Radiology 231:594–601

    Article  PubMed  Google Scholar 

  8. Whitby EH, Griffiths PD, Lonneker-Lammers T et al (2004) Ultrafast magnetic resonance imaging of the neonate in a magnetic resonance-compatible incubator with a built-in coil. Pediatrics 113:e150–e152

    Article  PubMed  Google Scholar 

  9. Keil B, Alagappan V, Mareyam A et al (2011) Size-optimized 32-channel brain arrays for 3 T pediatric imaging. Magn Reson Med 66:1777–1787

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D (2016) Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents — current status. Neuroradiology 58:433–441

  11. Ramalho J, Castillo M, AlObaidy M et al (2015) High signal intensity in globus pallidus and dentate nucleus on unenhanced T1-weighted MR images: evaluation of two linear gadolinium-based contrast agents. Radiology 276:836–844

    Article  PubMed  Google Scholar 

  12. Miller JH, Hu HH, Pokorney A et al (2015) MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations. Pediatrics 136:e1637–e1640

    Article  PubMed  Google Scholar 

  13. Bhargava R, Hahn G, Hirsch W et al (2013) Contrast-enhanced magnetic resonance imaging in pediatric patients: review and recommendations for current practice. Magn Reson Insights 6:95–111

    Article  PubMed  PubMed Central  Google Scholar 

  14. Glutig K, Bhargava R, Hahn G et al (2016) Safety of gadobutrol in more than 1,000 pediatric patients: subanalysis of the GARDIAN study, a global multicenter prospective non-interventional study. Pediatr Radiol 46:1317–1323

    Article  PubMed  PubMed Central  Google Scholar 

  15. Barkovich AJ, Raybaud CR (2015) Pediatric neuroimaging. Wolters Kluwer, Alphen aan den Rijn, the Netherlands

    Google Scholar 

  16. Hanna RM, Marsh SE, Swistun D et al (2011) Distinguishing 3 classes of corpus callosal abnormalities in consanguineous families. Neurology 76:373–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kurokawa H, Fujisawa I, Nakano Y et al (1998) Posterior lobe of the pituitary gland: correlation between signal intensity on T1-weighted MR images and vasopressin concentration. Radiology 207:79–83

    Article  CAS  PubMed  Google Scholar 

  18. Barkovich AJ, Guerrini R, Kuzniecky RI et al (2012) A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135:1348–1369

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai-Lan Ho.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, ML., Campeau, N.G., Ngo, T.D. et al. Pediatric brain MRI part 1: basic techniques. Pediatr Radiol 47, 534–543 (2017). https://doi.org/10.1007/s00247-016-3776-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-016-3776-7

Keywords

Navigation