Skip to main content

Advertisement

Log in

Motor-related brain abnormalities in HIV-infected patients: a multimodal MRI study

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

It is generally believed that HIV infection could cause HIV-associated neurocognitive disorders (HAND) across a broad range of functional domains. Some of the most common findings are deficits in motor control. However, to date no neuroimaging studies have evaluated basic motor control in HIV-infected patients using a multimodal approach.

Methods

In this study, we utilized high-resolution structural imaging and task-state functional magnetic resonance imaging (fMRI) to assess brain structure and motor function in a homogeneous cohort of HIV-infected patients.

Results

We found that HIV-infected patients had significantly reduced gray matter (GM) volume in cortical regions, which are involved in motor control, including the bilateral posterior insula cortex, premotor cortex, and supramarginal gyrus. Increased activation in bilateral posterior insula cortices was also demonstrated by patients during hand movement tasks compared with healthy controls. More importantly, the reduced GM in bilateral posterior insula cortices was spatially coincident with abnormal brain activation in HIV-infected patients. In addition, the results of partial correlation analysis indicated that GM reduction in bilateral posterior insula cortices and premotor cortices was significantly correlated with immune system deterioration.

Conclusion

This study is the first to demonstrate spatially coincident GM reduction and abnormal activation during motor performance in HIV-infected patients. Although it remains unknown whether the brain deficits can be recovered, our findings may yield new insights into neurologic injury underlying motor dysfunction in HAND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, Mankowski JL, Brown A, Volsky DJ, McArthur JC (2016) HIV-associated neurocognitive disorder pathogenesis and prospects for treatment. Nat Rev Neurol 12(4):234–248. https://doi.org/10.1038/nrneurol.2016.27

    Article  PubMed  PubMed Central  Google Scholar 

  2. McArthur JC, Steiner J, Sacktor N, Nath A (2010) Human immunodeficiency virus-associated neurocognitive disorders: mind the gap. Ann Neurol 67(6):699–714. https://doi.org/10.1002/ana.22053

    CAS  PubMed  Google Scholar 

  3. Gannon P, Khan MZ, Kolson DL (2011) Current understanding of HIV-associated neurocognitive disorders pathogenesis. Curr Opin Neurol 24(3):275. https://doi.org/10.1097/WCO.0b013e32834695fb

    Article  PubMed  PubMed Central  Google Scholar 

  4. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, LeBlanc S, Corkran SH, Duarte NA, Clifford DB, Woods SP (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17(1):3–16. https://doi.org/10.1007/s13365-010-0006-1

    Article  CAS  PubMed  Google Scholar 

  5. Woods SP, Moore DJ, Weber E, Grant I (2009) Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev 19(2):152–168. https://doi.org/10.1007/s11065-009-9102-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Joska JA, Gouse H, Paul RH, Stein DJ, Flisher AJ (2010) Does highly active antiretroviral therapy improve neurocognitive function? A systematic review. J Neurovirol 16(2):101–114. https://doi.org/10.3109/13550281003682513

    Article  CAS  PubMed  Google Scholar 

  7. Robertson K, Liner J, Heaton R (2009) Neuropsychological assessment of HIV-infected populations in international settings. Neuropsychol Rev 19(2):232–249. https://doi.org/10.1007/s11065-009-9096-z

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cysique LA, Brew BJ (2009) Neuropsychological functioning and antiretroviral treatment in HIV/AIDS: a review. Neuropsychol Rev 19(2):169–185. https://doi.org/10.1007/s11065-009-9092-3

    Article  PubMed  Google Scholar 

  9. Wilson TW, Heinrichs-Graham E, Robertson KR, Sandkovsky U, O’Neill J, Knott NL, Fox HS, Swindells S (2013) Functional brain abnormalities during finger-tapping in HIV-infected older adults: a magnetoencephalography study. J NeuroImmune Pharmacol 8(4):965–974. https://doi.org/10.1007/s11481-013-9477-1

    Article  PubMed  Google Scholar 

  10. Robertson KR, Parsons TD, Sidtis JJ, Hanlon Inman T, Robertson WT, Hall CD, Price RW (2006) Timed gait test: normative data for the assessment of the AIDS dementia complex. J Clin Exp Neuropsychol 28(7):1053–1064. https://doi.org/10.1080/13803390500205684

    Article  PubMed  Google Scholar 

  11. Bernard C, Dilharreguy B, Allard M, Amieva H, Bonnet F, Dauchy F, Greib C, Dehail P, Catheline G, group ACAcs (2013) Muscular weakness in individuals with HIV associated with a disorganization of the cortico-spinal tract: a multi-modal MRI investigation. PLoS One 8(7):e66810. https://doi.org/10.1371/journal.pone.0066810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sullivan EV, Rosenbloom MJ, Rohlfing T, Kemper CA, Deresinski S, Pfefferbaum A (2011) Pontocerebellar contribution to postural instability and psychomotor slowing in HIV infection without dementia. Brain imaging and behav 5(1):12–24. https://doi.org/10.1007/s11682-010-9107-y

    Article  Google Scholar 

  13. Valcour V, Watters MR, Williams AE, Sacktor N, McMurtray A, Shikuma C (2008) Aging exacerbates extrapyramidal motor signs in the era of highly active antiretroviral therapy. J Neurovirol 14(5):362–367. https://doi.org/10.1080/13550280802216494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Janssen RS, Cornblath DR, Epstein LG, Foa RP (1991) Nomenclature and research case definitions for neurologic manifestations of human immunodeficiency virus-type 1 (HIV-1) infection. Neurology 105(6):778–785. https://doi.org/10.1212/WNL.41.6.778

    Google Scholar 

  15. Antinori A, Arendt G, Becker J, Brew B, Byrd D, Cherner M, Clifford D, Cinque P, Epstein L, Goodkin K (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Antinori A, Arendt G, Grant I, Letendre S, Chair M-MJA, Eggers C, Brew B, Brouillette M-J, Bernal-Cano F, Carvalhal A, Christo PP, Cinque P, Cysique L, Ellis R, Everall I, Gasnault J, Husstedt I, Korten V, Machala L, Obermann M, Ouakinin S, Podzamczer D, Portegies P, Rackstraw S, Rourke S, Sherr L, Streinu-Cercel A, Winston A, Wojna V, Yazdanpannah Y, Arbess G, Baril J-G, Begovac J, Bergin C, Bonfanti P, Bonora S, Brinkman K, Canestri A, Cholewińska-Szymańska G, Chowers M, Cooney J, Corti M, Doherty C, Elbirt D, Esser S, Florence E, Force G, Gill J, Goffard J-C, Harrer T, Li P, de Kerckhove LV, Knecht G, Matsushita S, Matulionyte R, McConkey S, Mouglignier A, Oka S, Penalva A, Riesenberg K, Sambatakou H, Tozzi V, Vassallo M, Wetterberg P, Drapato AW (2013) Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: a consensus report of the mind exchange program. Clin Infect Dis 56(7):1004–1017. https://doi.org/10.1093/cid/cis975

    Article  Google Scholar 

  17. Wilson TW, Heinrichs Graham E, Becker KM, Aloi J, Robertson KR, Sandkovsky U, White ML, O'Neill J, Knott NL, Fox HS (2015) Multimodal neuroimaging evidence of alterations in cortical structure and function in HIV-infected older adults. Hum Brain Mapp 36(3):897–910

    Article  PubMed  Google Scholar 

  18. Thompson PM, Dutton RA, Hayashi KM, Toga AW, Lopez OL, Aizenstein HJ, Becker JT (2005) Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline. Proc Natl Acad Sci 102(43):15647–15652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hines LJ, Miller EN, Hinkin CH, Alger JR, Barker P, Goodkin K, Martin EM, Maruca V, Ragin A, Sacktor N (2016) Cortical brain atrophy and intra-individual variability in neuropsychological test performance in HIV disease. Brain imaging and behav 10(3):640–651. https://doi.org/10.1007/s11682-015-9441-1

    Article  Google Scholar 

  20. Towgood KJ, Pitkanen M, Kulasegaram R, Fradera A, Kumar A, Soni S, Sibtain NA, Reed L, Bradbeer C, Barker GJ (2012) Mapping the brain in younger and older asymptomatic HIV-1 men: frontal volume changes in the absence of other cortical or diffusion tensor abnormalities. Cortex 48(2):230–241

    Article  PubMed  Google Scholar 

  21. Cohen RA, Harezlak J, Schifitto G, Hana G, Clark U, Gongvatana A, Paul R, Taylor M, Thompson P, Alger J (2010) Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol 16(1):25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Becker JT, Sanders J, Madsen SK, Ragin A, Kingsley L, Maruca V, Cohen B, Goodkin K, Martin E, Miller EN, Sacktor N, Alger JR, Barker PB, Saharan P, Carmichael OT, Thompson PM, Multicenter ACS (2011) Subcortical brain atrophy persists even in HAART-regulated HIV disease. Brain imaging and behav 5(2):77–85. https://doi.org/10.1007/s11682-011-9113-8

    Article  Google Scholar 

  23. Kallianpur KJ, Shikuma C, Kirk GR, Shiramizu B, Valcour V, Chow D, Souza S, Nakamoto B, Sailasuta N (2013) Peripheral blood HIV DNA is associated with atrophy of cerebellar and subcortical gray matter. Neurology 80(19):1792–1799

    Article  PubMed  PubMed Central  Google Scholar 

  24. Elsheikh BH, Maher WE, Kissel JT (2010) Cerebellar atrophy associated with human immunodeficiency virus infection. Arch Neurol 67(5):634–635. https://doi.org/10.1001/archneurol.2010.28

    Article  PubMed  Google Scholar 

  25. Klunder AD, Chiang M-C, Dutton RA, Lee SE, Toga AW, Lopez OL, Aizenstein HJ, Becker JT, Thompson PM (2008) Mapping cerebellar degeneration in HIV/AIDS. Neuroreport 19(17):1655. https://doi.org/10.1097/WNR.0b013e328311d374

    Article  PubMed  PubMed Central  Google Scholar 

  26. von Giesen H-J, Antke C, Hefter H, Wenserski F, Seitz RJ, Arendt G (2000) Potential time course of human immunodeficiency virus type 1–associated minor motor deficits: electrophysiologic and positron emission tomography findings. Arch Neurol 57(11):1601–1607. https://doi.org/10.1001/archneur.57.11.1601

    Google Scholar 

  27. Thompson PM, Jahanshad N (2015) Novel neuroimaging methods to understand how HIV affects the brain. Curr HIV/AIDS Rep 12(2):289–298. https://doi.org/10.1007/s11904-015-0268-6

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cardenas V, Meyerhoff D, Studholme C, Kornak J, Rothlind J, Lampiris H, Neuhaus J, Grant R, Chao L, Truran D (2009) Evidence for ongoing brain injury in human immunodeficiency virus–positive patients treated with antiretroviral therapy. J Neurovirol 15(4):324–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gongvatana A, Schweinsburg BC, Taylor MJ, Theilmann RJ, Letendre SL, Alhassoon OM, Jacobus J, Woods SP, Jernigan TL, Ellis RJ (2009) White matter tract injury and cognitive impairment in human immunodeficiency virus–infected individuals. J Neurovirol 15(2):187–195

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tozzi V, Balestra P, Bellagamba R, Corpolongo A, Salvatori MF, Visco-Comandini U, Vlassi C, Giulianelli M, Galgani S, Antinori A (2007) Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. JAIDS J Acquir Immune Defic Syndr 45(2):174–182

    Article  PubMed  Google Scholar 

  31. Kuper M, Rabe K, Esser S, Gizewski ER, Husstedt IW, Maschke M, Obermann M (2011) Structural gray and white matter changes in patients with HIV. J Neurol 258(6):1066–1075. https://doi.org/10.1007/s00415-010-5883-y

    Article  PubMed  Google Scholar 

  32. Greene JD, Sommerville RB, Nystrom LE, Darley JM, Cohen JD (2001) An fMRI investigation of emotional engagement in moral judgment. Science 293(5537):2105–2108

    Article  CAS  PubMed  Google Scholar 

  33. Barbey AK, Koenigs M, Grafman J (2013) Dorsolateral prefrontal contributions to human working memory. Cortex 49(5):1195–1205

    Article  PubMed  Google Scholar 

  34. Becker JT, Maruca V, Kingsley LA, Sanders JM, Alger JR, Barker PB, Goodkin K, Martin E, Miller EN, Ragin A (2012) Factors affecting brain structure in men with HIV disease in the post-HAART era. Neuroradiology 54(2):113–121

    Article  PubMed  Google Scholar 

  35. Kallianpur KJ, Kirk GR, Sailasuta N, Valcour V, Shiramizu B, Nakamoto BK, Shikuma C (2012) Regional cortical thinning associated with detectable levels of HIV DNA. Cereb Cortex 22(9):2065–2075. https://doi.org/10.1093/cercor/bhr285

    Article  PubMed  Google Scholar 

  36. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192. https://doi.org/10.1146/annurev.neuro.27.070203.144230

    Article  CAS  PubMed  Google Scholar 

  37. Rushworth MF, Ellison A, Walsh V (2001) Complementary localization and lateralization of orienting and motor attention. Nat Neurosci 4(6):656–661

    Article  CAS  PubMed  Google Scholar 

  38. Rice NJ, Tunik E, Grafton ST (2006) The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation. J Neurosci 26(31):8176–8182. https://doi.org/10.1523/JNEUROSCI.1641-06.2006

    Article  CAS  PubMed  Google Scholar 

  39. Hoshi E, Tanji J (2006) Differential involvement of neurons in the dorsal and ventral premotor cortex during processing of visual signals for action planning. J Neurophysiol 95(6):3596–3616. https://doi.org/10.1152/jn.01126.2005

    Article  PubMed  Google Scholar 

  40. Schubotz RI, von Cramon DY (2002) Predicting perceptual events activates corresponding motor schemes in lateral premotor cortex: an fMRI study. NeuroImage 15(4):787–796

    Article  PubMed  Google Scholar 

  41. Rizzolatti G, Fogassi L, Gallese V (2002) Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol 12(2):149–154

    Article  CAS  PubMed  Google Scholar 

  42. Pascal S, Resnick L, Barker WW, Loewenstein D, Yoshii F, Chang J-Y, Boothe T, Sheldon J, Duara R (1991) Metabolic asymmetries in asymptomatic HIV-1 seropositive subjects: relationship to disease onset and MRI findings. J Nucl Med 32(9):1725–1729

    CAS  PubMed  Google Scholar 

  43. Wilson T W, Proskovec AL, Heinrichs-Graham E (2017) Aberrant neuronal dynamics during working memory operations in the aging HIV-infected brain. Sci Rep 7:41568. https://doi.org/10.1038/srep41568

  44. Becker KM, Heinrichs-Graham E, Fox HS, Robertson KR, Sandkovsky U, O’Neill J, Swindells S, Wilson TW (2013) Decreased MEG beta oscillations in HIV-infected older adults during the resting state. J Neurovirol 19(6):586–594. https://doi.org/10.1007/s13365-013-0220-8

    Article  PubMed  PubMed Central  Google Scholar 

  45. De Benedictis A, Duffau H, Paradiso B, Grandi E, Balbi S, Granieri E, Colarusso E, Chioffi F, Marras CE, Sarubbo S (2014) Anatomo-functional study of the temporo-parieto-occipital region: dissection, tractographic and brain mapping evidence from a neurosurgical perspective. J Anat 225(2):132–151. https://doi.org/10.1111/joa.12204

    Article  PubMed  PubMed Central  Google Scholar 

  46. Iacoboni M, Dapretto M (2006) The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci 7(12):942–951. https://doi.org/10.1038/nrn2024

    Article  CAS  PubMed  Google Scholar 

  47. Gerardin E, Sirigu A, Lehéricy S, Poline J-B, Gaymard B, Marsault C, Agid Y, Le Bihan D (2000) Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 10(11):1093–1104

    Article  CAS  PubMed  Google Scholar 

  48. Molnar-Szakacs I, Kaplan J, Greenfield PM, Iacoboni M (2006) Observing complex action sequences: the role of the fronto-parietal mirror neuron system. NeuroImage 33(3):923–935. https://doi.org/10.1016/j.neuroimage.2006.07.035

    Article  PubMed  Google Scholar 

  49. Hartwigsen G, Bestmann S, Ward NS, Woerbel S, Mastroeni C, Granert O, Siebner HR (2012) Left dorsal premotor cortex and supramarginal gyrus complement each other during rapid action reprogramming. J Neurosci 32(46):16162–16171. https://doi.org/10.1523/JNEUROSCI.1010-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund H-J, Rizzolatti G (2004) Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron 42(2):323–334. https://doi.org/10.1016/S0896-6273(04)00181-3

    Article  CAS  PubMed  Google Scholar 

  51. Fink GR, Frackowiak RS, Pietrzyk U, Passingham RE (1997) Multiple nonprimary motor areas in the human cortex. J Neurophysiol 77(4):2164–2174

    CAS  PubMed  Google Scholar 

  52. Kurth F, Eickhoff SB, Schleicher A, Hoemke L, Zilles K, Amunts K (2010) Cytoarchitecture and probabilistic maps of the human posterior insular cortex. Cereb Cortex 20(6):1448–1461. https://doi.org/10.1093/cercor/bhp208

    Article  PubMed  Google Scholar 

  53. Nanetti L, Cerliani L, Gazzola V, Renken R, Keysers C (2009) Group analyses of connectivity-based cortical parcellation using repeated k-means clustering. NeuroImage 47(4):1666–1677. https://doi.org/10.1016/j.neuroimage.2009.06.014

    Article  PubMed  Google Scholar 

  54. Mutschler I, Wieckhorst B, Kowalevski S, Derix J, Wentlandt J, Schulze-Bonhage A, Ball T (2009) Functional organization of the human anterior insular cortex. Neurosci Lett 457(2):66–70. https://doi.org/10.1016/j.neulet.2009.03.101

    Article  CAS  PubMed  Google Scholar 

  55. Deen B, Pitskel NB, Pelphrey KA (2011) Three systems of insular functional connectivity identified with cluster analysis. Cereb Cortex 21(7):1498–1506

    Article  PubMed  Google Scholar 

  56. Pritchard TC, Macaluso DA, Eslinger PJ (1999) Taste perception in patients with insular cortex lesions. Behav Neurosci 113(4):663

    Article  CAS  PubMed  Google Scholar 

  57. Chang LJ, Smith A, Dufwenberg M, Sanfey AG (2011) Triangulating the neural, psychological, and economic bases of guilt aversion. Neuron 70(3):560–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eckert MA, Menon V, Walczak A, Ahlstrom J, Denslow S, Horwitz A, Dubno JR (2009) At the heart of the ventral attention system: the right anterior insula. Hum Brain Mapp 30(8):2530–2541. https://doi.org/10.1002/hbm.20688

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM, Rose RM, Cohen JD (2004) Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303(5661):1162–1167. https://doi.org/10.1126/science.1093065

    Article  CAS  PubMed  Google Scholar 

  60. Chang LJ, Yarkoni T, Khaw MW, Sanfey AG (2012) Decoding the role of the insula in human cognition: functional parcellation and large-scale reverse inference. Cerebral cortex 23(3):739–749. https://doi.org/10.1093/cercor/bhs065

  61. Heyes MP, Ellis RJ, Ryan L, Childers ME, Grant I, Wolfson T, Archibald S, Jernigan TL (2001) Elevated cerebrospinal fluid quinolinic acid levels are associated with region-specific cerebral volume loss in HIV infection. Brain 124(5):1033–1042. https://doi.org/10.1093/brain/124.5.1033

    Article  CAS  PubMed  Google Scholar 

  62. Chang L, Speck O, Miller EN, Braun J, Jovicich J, Koch C, Itti L, Ernst T (2001) Neural correlates of attention and working memory deficits in HIV patients. Neurology 57(6):1001–1007

    Article  CAS  PubMed  Google Scholar 

  63. Chang L, Yakupov R, Nakama H, Stokes B, Ernst T (2008) Antiretroviral treatment is associated with increased attentional load-dependent brain activation in HIV patients. J NeuroImmune Pharmacol 3(2):95–104

    Article  CAS  PubMed  Google Scholar 

  64. Ernst T, Chang L, Jovicich J, Ames N, Arnold S (2002) Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology 59(9):1343–1349

    Article  CAS  PubMed  Google Scholar 

  65. Ernst T, Yakupov R, Nakama H, Crocket G, Cole M, Watters M, Ricardo-Dukelow ML, Chang L (2009) Declined neural efficiency in cognitively stable human immunodeficiency virus patients. Ann Neurol 65(3):316–325

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ances B, Sisti D, Vaida F, Liang C, Leontiev O, Perthen J, Buxton R, Benson D, Smith D, Little S (2009) Resting cerebral blood flow: a potential biomarker of the effects of HIV in the brain. Neurology 73(9):702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ances B, Vaida F, Ellis R, Buxton R (2011) Test–retest stability of calibrated BOLD-fMRI in HIV− and HIV+ subjects. NeuroImage 54(3):2156–2162

    Article  PubMed  Google Scholar 

  68. Ances BM, Vaida F, Yeh MJ, Liang CL, Buxton RB, Letendre S, McCutchan JA, Ellis RJ (2010) HIV infection and aging independently affect brain function as measured by functional magnetic resonance imaging. J Infect Dis 201(3):336–340

    Article  PubMed  PubMed Central  Google Scholar 

  69. Carey LM, Abbott DF, Egan GF, Bernhardt J, Donnan GA (2005) Motor impairment and recovery in the upper limb after stroke behavioral and neuroanatomical correlates. Stroke 36(3):625–629. https://doi.org/10.1161/01.STR.0000155720.47711.83

    Article  PubMed  Google Scholar 

  70. Loubinoux I, Dechaumont-Palacin S, Castel-Lacanal E, De Boissezon X, Marque P, Pariente J, Albucher J-F, Berry I, Chollet F (2007) Prognostic value of FMRI in recovery of hand function in subcortical stroke patients. Cereb Cortex 17(12):2980–2987. https://doi.org/10.1093/cercor/bhm023

    Article  PubMed  Google Scholar 

  71. Casanova R, Srikanth R, Baer A, Laurienti PJ, Burdette JH, Hayasaka S, Flowers L, Wood F, Maldjian JA (2007) Biological parametric mapping: a statistical toolbox for multimodality brain image analysis. NeuroImage 34(1):137–143. https://doi.org/10.1016/j.neuroimage.2006.09.011

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Li.

Ethics declarations

Funding

This study was funded by the Beijing Municipal Administration of Hospitals Incubating Program (PX2016036), the Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding (No. ZYLX201511), the National Nature Science Foundation of China (81571634), the National Science Foundation of China (Grant numbers: 81371537, 91432301), the Major State Basic Research Development Program of China (973 Program) (Grant number: 2013CB733803), and the Fundamental Research Funds for the Central Universities of China (WK2070000033).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the research ethics committee of the Beijing Youan Hospital, Capital Medical University, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Online Resources. 1

Activation maps showing significant clusters of activation in response to hand movement task in each group. Functional responses were similar in HC group (a) and HIV-infected patients group (b), including a “classical” motor network (M1, S1, CMA, ipsilateral cerebellum), putamen, pallidum, thalamus and SMG. Thresholded at a cluster-wise significance level of P < 0.05, corrected using Monte Carlo methods for multiple comparisons. M1, primary motor cortex; S1, primary somatosensory cortex; CMA, cingulate motor area; SMG, supramarginal gyrus; HC, healthy controls; L, left hemisphere; R, right hemisphere (GIF 214 kb)

High Resolution (TIFF 17349 kb)

Online Resources. 2

Group analysis results of activation in HC group: Thresholded at a cluster-wise significance level of P < 0.05, corrected using Monte Carlo methods for multiple comparisons. Abbreviation: BA, Brodmann area; M1, primary motor cortex; SMA, supplementary motor area; S1, somatosensory area; SMG, supramarginal gyrus; L, left; R, right (DOCX 16 kb)

Online Resources. 3

Group analysis results of activation in HIV-infected patients group: Thresholded at a cluster-wise significance level of P < 0.05, corrected using Monte Carlo methods for multiple comparisons. Abbreviation: BA, Brodmann area; M1, primary motor cortex; SMA, supplementary motor area; S1, somatosensory area; SMG, supramarginal gyrus; L, left; R, right (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Li, R., Wang, X. et al. Motor-related brain abnormalities in HIV-infected patients: a multimodal MRI study. Neuroradiology 59, 1133–1142 (2017). https://doi.org/10.1007/s00234-017-1912-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-017-1912-1

Keywords

Navigation