Skip to main content

Advertisement

Log in

Accurate quantitation of circulating cell-free mitochondrial DNA in plasma by droplet digital PCR

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To establish a method for accurate quantitation of circulating cell-free mitochondrial DNA (ccf-mtDNA) in plasma by droplet digital PCR (ddPCR), we designed a ddPCR method to determine the copy number of ccf-mtDNA by amplifying mitochondrial ND1 (MT-ND1). To evaluate the sensitivity and specificity of the method, a recombinant pMD18-T plasmid containing MT-ND1 sequences and mtDNA-deleted (ρ0) HeLa cells were used, respectively. Subsequently, different plasma samples were prepared for ddPCR to evaluate the feasibility of detecting plasma ccf-mtDNA. In the results, the ddPCR method showed high sensitivity and specificity. When the DNA was extracted from plasma prior to ddPCR, the ccf-mtDNA copy number was higher than that measured without extraction. This difference was not due to a PCR inhibitor, such as EDTA-Na2, an anti-coagulant in plasma, because standard EDTA-Na2 concentration (5 mM) did not significantly inhibit ddPCR reactions. The difference might be attributable to plasma exosomal mtDNA, which was 4.21 ± 0.38 copies/μL of plasma, accounting for ∼19% of plasma ccf-mtDNA. Therefore, ddPCR can quickly and reliably detect ccf-mtDNA from plasma with a prior DNA extraction step, providing for a more accurate detection of ccf-mtDNA. The direct use of plasma as a template in ddPCR is suitable for the detection of exogenous cell-free nucleic acids within plasma, but not of nucleic acids that have a vesicle-associated form, such as exosomal mtDNA.

Designs of the present work. *: Module 1, #: Module 2, &: Module 3

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ccfDNA:

Circulating cell-free DNA

ccf-mtDNA:

Circulating cell-free mitochondrial DNA

ddPCR:

Droplet digital PCR

mtDNA:

Mitochondrial DNA

MT-ND1 :

Mitochondrial ND1 gene

NIPT:

Noninvasive prenatal testing

References

  1. Mandel P, Metais P. C R Seances Soc Biol Fil. 1948;142(3–4):241–3. Les acides nucleiques du plasma sanguin chez l’homme.

    CAS  Google Scholar 

  2. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37(3):646–50.

    CAS  Google Scholar 

  3. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24(6):766–9.

    Article  CAS  Google Scholar 

  4. Yu M. Circulating cell-free mitochondrial DNA as a novel cancer biomarker: opportunities and challenges. Mitochondrial DNA. 2012;23(5):329–32.

    Article  CAS  Google Scholar 

  5. Huang CY, Chen YM, Wu CH, Tsai CM, Lee YC, Perng RP, et al. Circulating free mitochondrial DNA concentration and its association with erlotinib treatment in patients with adenocarcinoma of the lung. Oncol Lett. 2014;7(6):2180–4.

    CAS  Google Scholar 

  6. Ellinger J, Muller DC, Muller SC, Hauser S, Heukamp LC, von Ruecker A, et al. Circulating mitochondrial DNA in serum: a universal diagnostic biomarker for patients with urological malignancies. Urol Oncol. 2012;30(4):509–15.

    Article  CAS  Google Scholar 

  7. Fernandes J, Michel V, Camorlinga-Ponce M, Gomez A, Maldonado C, De Reuse H, et al. Circulating mitochondrial DNA level, a noninvasive biomarker for the early detection of gastric cancer. Cancer Epidemiol Biomarkers Prev. 2014;23(11):2430–8.

    Article  CAS  Google Scholar 

  8. McIlroy DJ, Bigland M, White AE, Hardy BM, Lott N, Smith DW, et al. Cell necrosis-independent sustained mitochondrial and nuclear DNA release following trauma surgery. J Trauma Acute Care Surg. 2015;78(2):282.

    Article  CAS  Google Scholar 

  9. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–7.

    Article  CAS  Google Scholar 

  10. Lee HK, Song JH, Shin CS, Park DJ, Park KS, Lee KU, et al. Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract. 1998;42(3):161–7.

    Article  CAS  Google Scholar 

  11. Nakahira K, Kyung SY, Rogers AJ, Gazourian L, Youn S, Massaro AF, et al. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med. 2013;10(12):e1001577. discussion e.

    Article  Google Scholar 

  12. Devonshire AS, Whale AS, Gutteridge A, Jones G, Cowen S, Foy CA, et al. Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification. Anal Bioanal Chem. 2014;406(26):6499–512.

    Article  CAS  Google Scholar 

  13. Ajaz S, Czajka A, Malik A. Accurate measurement of circulating mitochondrial DNA content from human blood samples using real-time quantitative PCR. Methods Mol Biol. 2015;1264:117–31.

    Article  CAS  Google Scholar 

  14. Manoj P. Droplet digital PCR technology promises new applications and research areas. Mitochondrial DNA. 2014.

  15. Hudecova I. Digital PCR, analysis of circulating nucleic acids. Clin Biochem. 2015.

  16. Rebolledo-Jaramillo B, Su MS, Stoler N, McElhoe JA, Dickins B, Blankenberg D, et al. Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A. 2014;111(43):15474–9.

    Article  CAS  Google Scholar 

  17. Taylor SD, Ericson NG, Burton JN, Prolla TA, Silber JR, Shendure J, et al. Targeted enrichment and high-resolution digital profiling of mitochondrial DNA deletions in human brain. Aging Cell. 2014;13(1):29–38.

    Article  CAS  Google Scholar 

  18. Podlesniy P, Figueiro-Silva J, Llado A, Antonell A, Sanchez-Valle R, Alcolea D, et al. Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Ann Neurol. 2013;74(5):655–68.

    Article  CAS  Google Scholar 

  19. Sedlak RH, Cook L, Cheng A, Magaret A, Jerome KR. Clinical utility of droplet digital PCR for human cytomegalovirus. J Clin Microbiol. 2014;52(8):2844–8.

    Article  Google Scholar 

  20. Dingle TC, Sedlak RH, Cook L, Jerome KR. Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin Chem. 2013;59(11):1670–2.

    Article  CAS  Google Scholar 

  21. Chiu RW, Chan LY, Lam NY, Tsui NB, Ng EK, Rainer TH, et al. Quantitative analysis of circulating mitochondrial DNA in plasma. Clin Chem. 2003;49(5):719–26.

    Article  CAS  Google Scholar 

  22. Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985;101(3):942–8.

    Article  CAS  Google Scholar 

  23. Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.

    CAS  Google Scholar 

  24. Keller S, Sanderson MP, Stoeck A, Altevogt P. Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006;107(2):102–8.

    Article  CAS  Google Scholar 

  25. Loyer X, Vion AC, Tedgui A, Boulanger CM. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res. 2014;114(2):345–53.

    Article  CAS  Google Scholar 

  26. Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm. 2010;117(1):1–4.

    Article  CAS  Google Scholar 

  27. Guescini M, Guidolin D, Vallorani L, Casadei L, Gioacchini AM, Tibollo P, et al. C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Exp Cell Res. 2010;316(12):1977–84.

    Article  CAS  Google Scholar 

  28. Helmig S, Fruhbeis C, Kramer-Albers EM, Simon P, Tug S. Release of bulk cell free DNA during physical exercise occurs independent of extracellular vesicles. Eur J Appl Physiol. 2015;115(11):2271–80.

    Article  CAS  Google Scholar 

  29. Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4:27031.

    Article  Google Scholar 

  30. Beck J, Bierau S, Balzer S, Andag R, Kanzow P, Schmitz J, et al. Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury. Clin Chem. 2013;59(12):1732–41.

    Article  CAS  Google Scholar 

  31. Pinti M, Cevenini E, Nasi M, De Biasi S, Salvioli S, Monti D, et al. Circulating mitochondrial DNA increases with age and is a familiar trait: Implications for “inflamm-aging”. Eur J Immunol. 2014;44(5):1552–62.

    Article  CAS  Google Scholar 

  32. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659–65.

    CAS  Google Scholar 

  33. Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013;4(2):34.

    Article  CAS  Google Scholar 

  34. Sahoo S, Losordo DW. Exosomes and cardiac repair after myocardial infarction. Circ Res. 2014;114(2):333–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key Basic Research Program of China (2013CB531200), the National Nature Science Fund of China (81271918), and Specialized Research Fund for the Doctoral Program of Higher Education (20133321110001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Lyu.

Ethics declarations

We state that all blood samples were collected from the individual participants, who were informed and voluntarily participated in this research work.

Conflict of interest

All authors declare that they have no conflicts of interest to this work.

Additional information

Wei Ye and Xiaojun Tang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, W., Tang, X., Liu, C. et al. Accurate quantitation of circulating cell-free mitochondrial DNA in plasma by droplet digital PCR. Anal Bioanal Chem 409, 2727–2735 (2017). https://doi.org/10.1007/s00216-017-0217-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0217-x

Keywords

Navigation