Skip to main content
Log in

The role of epoxide hydrolases in health and disease

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Epoxide hydrolases (EH) are ubiquitously expressed in all living organisms and in almost all organs and tissues. They are mainly subdivided into microsomal and soluble EH and catalyze the hydration of epoxides, three-membered-cyclic ethers, to their corresponding dihydrodiols. Owning to the high chemical reactivity of xenobiotic epoxides, microsomal EH is considered protective enzyme against mutagenic and carcinogenic initiation. Nevertheless, several endogenously produced epoxides of fatty acids function as important regulatory mediators. By mediating the formation of cytotoxic dihydrodiol fatty acids on the expense of cytoprotective epoxides of fatty acids, soluble EH is considered to have cytotoxic activity. Indeed, the attenuation of microsomal EH, achieved by chemical inhibitors or preexists due to specific genetic polymorphisms, is linked to the aggravation of the toxicity of xenobiotics, as well as the risk of cancer and inflammatory diseases, whereas soluble EH inhibition has been emerged as a promising intervention against several diseases, most importantly cardiovascular, lung and metabolic diseases. However, there is reportedly a significant overlap in substrate selectivity between microsomal and soluble EH. In addition, microsomal and soluble EH were found to have the same catalytic triad and identical molecular mechanism. Consequently, the physiological functions of microsomal and soluble EH are also overlapped. Thus, studying the biological effects of microsomal or soluble EH alterations needs to include the effects on both the metabolism of reactive metabolites, as well as epoxides of fatty acids. This review focuses on the multifaceted role of EH in the metabolism of xenobiotic and endogenous epoxides and the impact of EH modulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Rahman SZ, Ammenheuser MM, Omiecinski CJ, Wickliffe JK, Rosenblatt JI, Ward JB Jr (2005) Variability in human sensitivity to 1,3-butadiene: influence of polymorphisms in the 5′-flanking region of the microsomal epoxide hydrolase gene (EPHX1). Toxicol Sci 85(1):624–631. doi:10.1093/toxsci/kfi115

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aboutabl ME, Zordoky BN, Hammock BD, El-Kadi AO (2011) Inhibition of soluble epoxide hydrolase confers cardioprotection and prevents cardiac cytochrome P450 induction by benzo(a)pyrene. J Cardiovasc Pharmacol 57(3):273–281. doi:10.1097/FJC.0b013e3182055baf00005344-201103000-00001

    PubMed  CAS  Google Scholar 

  • Arand M, Cronin A, Oesch F, Mowbray SL, Jones TA (2003) The telltale structures of epoxide hydrolases. Drug Metab Rev 35(4):365–383. doi:10.1081/DMR-120026498

    PubMed  CAS  Google Scholar 

  • Argiriadi MA, Morisseau C, Hammock BD, Christianson DW (1999) Detoxification of environmental mutagens and carcinogens: structure, mechanism, and evolution of liver epoxide hydrolase. Proc Natl Acad Sci USA 96(19):10637–10642

    PubMed  CAS  PubMed Central  Google Scholar 

  • Armstrong RN (1987) Enzyme-catalyzed detoxication reactions: mechanisms and stereochemistry. CRC Crit Rev Biochem 22(1):39–88

    PubMed  CAS  Google Scholar 

  • Armstrong RN (1999) Kinetic and chemical mechanism of epoxide hydrolase. Drug Metab Rev 31(1):71–86. doi:10.1081/DMR-100101908

    PubMed  CAS  Google Scholar 

  • Bauer AK, Faiola B, Abernethy DJ et al (2003) Male mice deficient in microsomal epoxide hydrolase are not susceptible to benzene-induced toxicity. Toxicol Sci 72(2):201–209. doi:10.1093/toxsci/kfg024

    PubMed  CAS  Google Scholar 

  • Benhamou S, Reinikainen M, Bouchardy C, Dayer P, Hirvonen A (1998) Association between lung cancer and microsomal epoxide hydrolase genotypes. Cancer Res 58(23):5291–5293

    PubMed  CAS  Google Scholar 

  • Bhaskar LV, Thangaraj K, Patel M et al (2013) EPHX1 Gene Polymorphisms in Alcohol Dependence and their Distribution among the Indian Populations. Am J Drug Alcohol Abuse 39(1):16–22. doi:10.3109/00952990.2011.643991

    PubMed  CAS  Google Scholar 

  • Borhan B, Jones AD, Pinot F, Grant DF, Kurth MJ, Hammock BD (1995) Mechanism of soluble epoxide hydrolase. Formation of an alpha-hydroxy ester-enzyme intermediate through Asp-333. J Biol Chem 270(45):26923–26930

    PubMed  CAS  Google Scholar 

  • Burdon KP, Lehtinen AB, Langefeld CD et al (2008) Genetic analysis of the soluble epoxide hydrolase gene, EPHX2, in subclinical cardiovascular disease in the Diabetes Heart Study. Diab Vasc Dis Res 5(2):128–134. doi:10.3132/dvdr.2008.021

    PubMed  Google Scholar 

  • Campbell WB (2000) New role for epoxyeicosatrienoic acids as anti-inflammatory mediators. Trends Pharmacol Sci 21(4):125–127. doi:10.1016/S0165-6147(00)01472-3

    PubMed  CAS  Google Scholar 

  • Cannady EA, Dyer CA, Christian PJ, Sipes IG, Hoyer PB (2002) Expression and activity of microsomal epoxide hydrolase in follicles isolated from mouse ovaries. Toxicol Sci 68(1):24–31

    PubMed  CAS  Google Scholar 

  • Capdevila JH, Falck JR, Harris RC (2000) Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase. J Lipid Res 41(2):163–181

    PubMed  CAS  Google Scholar 

  • Carlson GP (1998) Metabolism of styrene oxide to styrene glycol by mouse liver and lung. J Toxicol Environ Health A 53(1):19–27. doi:10.1080/009841098159448

    PubMed  CAS  Google Scholar 

  • Chaudhary KR, Abukhashim M, Hwang SH, Hammock BD, Seubert JM (2010) Inhibition of soluble epoxide hydrolase by trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid is protective against ischemia-reperfusion injury. J Cardiovasc Pharmacol 55(1):67–73. doi:10.1097/FJC.0b013e3181c37d69

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen X, Wang S, Wu N, Yang CS (2004) Leukotriene A4 hydrolase as a target for cancer prevention and therapy. Curr Cancer Drug Targets 4(3):267–283

    PubMed  CAS  Google Scholar 

  • Cho MK, Kim SG (1998) Differential induction of rat hepatic microsomal epoxide hydrolase and rGSTA2 by diazines: the role of cytochrome P450 2E1-mediated metabolic activation. Chem Biol Interact 116(3):229–245. doi:10.1016/S0009-2797(98)00093-3

    PubMed  CAS  Google Scholar 

  • Cho WS, Han BS, Nam KT et al (2008) Carcinogenicity study of 3-monochloropropane-1,2-diol in Sprague-Dawley rats. Food Chem Toxicol 46(9):3172–3177. doi:10.1016/j.fct.2008.07

    PubMed  CAS  Google Scholar 

  • Conolly RB, Szabo S, Jaeger RJ (1979) Vinylidene fluoride: acute hepatotoxicity in rats pretreated with PCB or phenobarbital. Proc Soc Exp Biol Med 162(1):163–169

    PubMed  CAS  Google Scholar 

  • Costa C, Costa S, Silva S et al (2012) DNA damage and susceptibility assessment in industrial workers exposed to styrene. J Toxicol Environ Health A 75(13–15):735–746. doi:10.1080/15287394.2012.688488

    PubMed  CAS  Google Scholar 

  • Cronin A, Decker M, Arand M (2011) Mammalian soluble epoxide hydrolase is identical to liver hepoxilin hydrolase. J Lipid Res 52(4):712–719. doi:10.1194/jlr.M009639

    PubMed  CAS  PubMed Central  Google Scholar 

  • Davis BB, Liu JY, Tancredi DJ et al (2011) The anti-inflammatory effects of soluble epoxide hydrolase inhibitors are independent of leukocyte recruitment. Biochem Biophys Res Commun 410(3):494–500. doi:10.1016/j.bbrc.2011.06.008

    PubMed  CAS  PubMed Central  Google Scholar 

  • de Assis S, Ambrosone CB, Wustrack S, Krishnan S, Freudenheim JL, Shields PG (2002) Microsomal epoxide hydrolase variants are not associated with risk of breast cancer. Cancer Epidemiol Biomarkers Prev 11(12):1697–1698

    PubMed  Google Scholar 

  • De Berardinis V, Moulis C, Maurice M et al (2000) Human microsomal epoxide hydrolase is the target of germander-induced autoantibodies on the surface of human hepatocytes. Mol Pharmacol 58(3):542–551

    PubMed  Google Scholar 

  • de Jong DJ, van der Logt EM, van Schaik A, Roelofs HM, Peters WH, Naber TH (2003) Genetic polymorphisms in biotransformation enzymes in Crohn’s disease: association with microsomal epoxide hydrolase. Gut 52(4):547–551

    PubMed  PubMed Central  Google Scholar 

  • de Medina P, Paillasse MR, Segala G, Poirot M, Silvente-Poirot S (2010) Identification and pharmacological characterization of cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS ligands. Proc Natl Acad Sci USA 107(30):13520–13525. doi:10.1073/pnas.1002922107

    PubMed  PubMed Central  Google Scholar 

  • Decker M, Arand M, Cronin A (2009) Mammalian epoxide hydrolases in xenobiotic metabolism and signalling. Arch Toxicol 83(4):297–318. doi:10.1007/s00204-009-0416-0

    PubMed  CAS  Google Scholar 

  • Decker M, Adamska M, Cronin A et al (2012) EH3 (ABHD9): the first member of a new epoxide hydrolase family with high activity for fatty acid epoxides. J Lipid Res 53(10):2038–2045. doi:10.1194/jlr.M024448

    PubMed  CAS  PubMed Central  Google Scholar 

  • Disse B, Siekmann L, Breuer H (1980) Biosynthesis of 16 alpha, 17 alpha-epoxy-4-androsten-3-one in rat liver microsomes. Acta Endocrinol (Copenh) 95(1):58–66

    CAS  Google Scholar 

  • Draper AJ, Hammock BD (1999) Inhibition of soluble and microsomal epoxide hydrolase by zinc and other metals. Toxicol Sci 52(1):26–32

    PubMed  CAS  Google Scholar 

  • Draper AJ, Hammock BD (2000) Identification of CYP2C9 as a human liver microsomal linoleic acid epoxygenase. Arch Biochem Biophys 376(1):199–205. doi:10.1006/abbi.2000.1705

    PubMed  CAS  Google Scholar 

  • Duale N, Bjellaas T, Alexander J et al (2009) Biomarkers of human exposure to acrylamide and relation to polymorphisms in metabolizing genes. Toxicol Sci 108(1):90–99. doi:10.1093/toxsci/kfn269

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dura P, Bregitha CV, Te Morsche RH et al (2012) EPHX1 polymorphisms do not modify esophageal carcinoma susceptibility in Dutch Caucasians. Oncol Rep 27(6):1710–1716. doi:10.3892/or.2012.1734

    PubMed  CAS  Google Scholar 

  • Eldrup AB, Soleymanzadeh F, Taylor SJ et al (2009) Structure-based optimization of arylamides as inhibitors of soluble epoxide hydrolase. J Med Chem 52(19):5880–5895. doi:10.1021/jm9005302

    PubMed  CAS  Google Scholar 

  • El-Sherbeni AA, El-Kadi AO (2014) Characterization of Arachidonic Acid Metabolism by Rat Cytochrome P450 Enzymes: the Involvement of CYP1As. Drug Metab Dispos 42(9):1498–1507. doi:10.1124/dmd.114.057836

    PubMed  CAS  Google Scholar 

  • Enayetallah AE, French RA, Barber M, Grant DF (2006) Cell-specific subcellular localization of soluble epoxide hydrolase in human tissues. J Histochem Cytochem 54(3):329–335. doi:10.1369/jhc.5A6808.2005

    PubMed  CAS  Google Scholar 

  • Eugster HP, Sengstag C, Hinnen A, Meyer UA, Wurgler FE (1991) Heterologous expression of human microsomal epoxide hydrolase in Saccharomyces cerevisiae. Study of the valpromide-carbamazepine epoxide interaction. Biochem Pharmacol 42(7):1367–1372

    PubMed  CAS  Google Scholar 

  • Feil VJ, Hedde RD, Zaylskie RG, Zachrison CH (1970) Dieldrin- 14 C metabolism in sheep. Identification of trans-6,7-dihydroxydihydroaldrin and 9-(syn-epoxy) hydroxy-1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4,5,6,7,8,8 -octahydro-1,4-endo-5,8-exo-dimethanonaphthalene. J Agric Food Chem 18(1):120–124

    PubMed  CAS  Google Scholar 

  • Fornage M, Boerwinkle E, Doris PA, Jacobs D, Liu K, Wong ND (2004) Polymorphism of the soluble epoxide hydrolase is associated with coronary artery calcification in African-American subjects: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Circulation 109(3):335–339. doi:10.1161/01.CIR.0000109487.46725.02

    PubMed  CAS  Google Scholar 

  • Fretland AJ, Omiecinski CJ (2000) Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact 129(1–2):41–59. doi:10.1016/S0009-2797(00)00197-6

    PubMed  CAS  Google Scholar 

  • Friedberg T, Becker R, Oesch F, Glatt H (1994a) Studies on the importance of microsomal epoxide hydrolase in the detoxification of arene oxides using the heterologous expression of the enzyme in mammalian cells. Carcinogenesis 15(2):171–175

    PubMed  CAS  Google Scholar 

  • Friedberg T, Lollmann B, Becker R, Holler R, Oesch F (1994b) The microsomal epoxide hydrolase has a single membrane signal anchor sequence which is dispensable for the catalytic activity of this protein. Biochem J 303(Pt 3):967–972

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gaedigk A, Spielberg SP, Grant DM (1994) Characterization of the microsomal epoxide hydrolase gene in patients with anticonvulsant adverse drug reactions. Pharmacogenetics 4(3):142–153

    PubMed  CAS  Google Scholar 

  • Gebhardt GS, Peters WH, Hillermann R et al (2004) Maternal and fetal single nucleotide polymorphisms in the epoxide hydrolase and glutathione S-transferase P1 genes are not associated with pre-eclampsia in the Coloured population of the Western Cape South Africa. J Obstet Gynaecol 24(8):866–872. doi:10.1080/01443610400018841

    PubMed  CAS  Google Scholar 

  • Ghattas MH, Amer MA (2012) Possible role of microsomal epoxide hydrolase gene polymorphism as a risk factor for developing insulin resistance and type 2 diabetes mellitus. Endocrine 42(3):577–583. doi:10.1007/s12020-012-9656-5

    PubMed  CAS  Google Scholar 

  • Ghoshal U, Kumar S, Jaiswal V, Tripathi S, Mittal B, Ghoshal UC (2013) Association of microsomal epoxide hydrolase exon 3 Tyr113His and exon 4 His139Arg polymorphisms with gastric cancer in India. Indian J Gastroenterol. doi:10.1007/s12664-013-0332-3

    Google Scholar 

  • Gill SS, Hammock BD (1980) Distribution and properties of a mammalian soluble epoxide hydrase. Biochem Pharmacol 29(3):389–395. doi:10.1016/0006-2952(80)90518-3

    PubMed  CAS  Google Scholar 

  • Gill SS, Ota K, Ruebner B, Hammock BD (1983) Microsomal and cytosolic epoxide hydrolases in rhesus monkey liver, and in normal and neoplastic human liver. Life Sci 32(23):2693–2700

    PubMed  CAS  Google Scholar 

  • Glatt H, Wameling C, Elsberg S et al (1993) Genotoxicity characteristics of reverse diol-epoxides of chrysene. Carcinogenesis 14(1):11–19

    PubMed  CAS  Google Scholar 

  • Gomez GA, Morisseau C, Hammock BD, Christianson DW (2004) Structure of human epoxide hydrolase reveals mechanistic inferences on bifunctional catalysis in epoxide and phosphate ester hydrolysis. Biochemistry 43(16):4716–4723. doi:10.1021/bi036189j

    PubMed  CAS  Google Scholar 

  • Grant DF, Storms DH, Hammock BD (1993) Molecular cloning and expression of murine liver soluble epoxide hydrolase. J Biol Chem 268(23):17628–17633

    PubMed  CAS  Google Scholar 

  • Guengerich FP, Johnson WW, Ueng YF, Yamazaki H, Shimada T (1996) Involvement of cytochrome P450, glutathione S-transferase, and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer. Environ Health Perspect 104(Suppl 3):557–562

    PubMed  CAS  PubMed Central  Google Scholar 

  • Guengerich FP, Johnson WW, Shimada T, Ueng YF, Yamazaki H, Langouet S (1998) Activation and detoxication of aflatoxin B1. Mutat Res 402(1–2):121–128. doi:10.1016/S0027-5107(97)00289-3

    PubMed  CAS  Google Scholar 

  • Hall M, Parker DK, Hewer AJ, Phillips DH, Grover PL (1988) Further metabolism of diol-epoxides of chrysene and dibenz[a, c]anthracene to DNA binding species as evidenced by 32P-postlabelling analysis. Carcinogenesis 9(5):865–868

    PubMed  CAS  Google Scholar 

  • Hammock BD, Grant DF, Storms DH (1997) Epoxide hydrolases, vol 3. Elsevier Science Ltd, Oxford

    Google Scholar 

  • Hartsfield JK Jr, Holmes LB, Morel JG (1995) Phenytoin embryopathy: effect of epoxide hydrolase inhibitor on phenytoin exposure in utero in C57BL/6 J mice. Biochem Mol Med 56(2):131–143. doi:10.1006/bmme.1995.1068

    PubMed  CAS  Google Scholar 

  • Hartsfield JK Jr, Sutcliffe MJ, Everett ET, Hassett C, Omiecinski CJ, Saari JA (1998) Assignment1 of microsomal epoxide hydrolase (EPHX1) to human chromosome 1q42.1 by in situ hybridization. Cytogenet Cell Genet 83(1-2):44–45

    PubMed  CAS  Google Scholar 

  • Hassett C, Aicher L, Sidhu JS, Omiecinski CJ (1994a) Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet 3(3):421–428

    PubMed  CAS  Google Scholar 

  • Hassett C, Robinson KB, Beck NB, Omiecinski CJ (1994b) The human microsomal epoxide hydrolase gene (EPHX1): complete nucleotide sequence and structural characterization. Genomics 23(2):433–442. doi:10.1006/geno.1994.1520

    PubMed  CAS  Google Scholar 

  • Hattori N, Fujiwara H, Maeda M, Fujii S, Ueda M (2000) Epoxide hydrolase affects estrogen production in the human ovary. Endocrinology 141(9):3353–3365

    PubMed  CAS  Google Scholar 

  • Heflich RH, Thornton-Manning JR, Kinouchi T, Beland FA (1990) Mutagenicity of oxidized microsomal metabolites of 1-nitropyrene in Chinese hamster ovary cells. Mutagenesis 5(2):151–157

    PubMed  CAS  Google Scholar 

  • Herrero ME, Arand M, Hengstler JG, Oesch F (1997) Recombinant expression of human microsomal epoxide hydrolase protects V79 Chinese hamster cells from styrene oxide- but not from ethylene oxide-induced DNA strand breaks. Environ Mol Mutagen 30(4):429–439. doi:10.1002/(SICI)1098-2280(1997)30:4<429:AID-EM8>3.0.CO;2-D

    PubMed  CAS  Google Scholar 

  • Holder G, Yagi H, Dansette P et al (1974) Effects of inducers and epoxide hydrase on the metabolism of benzo(a)pyrene by liver microsomes and a reconstituted system: analysis by high pressure liquid chromatography. Proc Natl Acad Sci USA 71(11):4356–4360

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holler R, Arand M, Mecky A, Oesch F, Friedberg T (1997) The membrane anchor of microsomal epoxide hydrolase from human, rat, and rabbit displays an unexpected membrane topology. Biochem Biophys Res Commun 236(3):754–759. doi:10.1006/bbrc.1997.7044

    PubMed  CAS  Google Scholar 

  • Huang YF, Chiang SY, Liou SH et al (2012) The modifying effect of CYP2E1, GST, and mEH genotypes on the formation of hemoglobin adducts of acrylamide and glycidamide in workers exposed to acrylamide. Toxicol Lett 215(2):92–99. doi:10.1016/j.toxlet.2012.10.003

    PubMed  CAS  Google Scholar 

  • Ihsan R, Chattopadhyay I, Phukan R et al (2010) Role of epoxide hydrolase 1 gene polymorphisms in esophageal cancer in a high-risk area in India. J Gastroenterol Hepatol 25(8):1456–1462. doi:10.1111/j.1440-1746.2010.06354.x

    PubMed  CAS  Google Scholar 

  • Imig JD (2012) Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev 92(1):101–130. doi:10.1152/physrev.00021.2011

    PubMed  CAS  PubMed Central  Google Scholar 

  • Inceoglu B, Jinks SL, Schmelzer KR, Waite T, Kim IH, Hammock BD (2006) Inhibition of soluble epoxide hydrolase reduces LPS-induced thermal hyperalgesia and mechanical allodynia in a rat model of inflammatory pain. Life Sci 79(24):2311–2319. doi:10.1016/j.lfs.2006.07.031

    PubMed  CAS  PubMed Central  Google Scholar 

  • Inceoglu B, Jinks SL, Ulu A et al (2008) Soluble epoxide hydrolase and epoxyeicosatrienoic acids modulate two distinct analgesic pathways. Proc Natl Acad Sci USA 105(48):18901–18906. doi:10.1073/pnas.0809765105

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ioannides C (2002) Enzyme systems that metabolise drugs and other xenobiotics. Wiley, Chichester

    Google Scholar 

  • Jain M, Tilak AR, Upadhyay R, Kumar A, Mittal B (2008) Microsomal epoxide hydrolase (EPHX1), slow (exon 3, 113His) and fast (exon 4, 139Arg) alleles confer susceptibility to squamous cell esophageal cancer. Toxicol Appl Pharmacol 230(2):247–251. doi:10.1016/j.taap.2008.02.023

    PubMed  CAS  Google Scholar 

  • Kamal MA, Elsaadany ZA, Fouad NB et al (2012) Genetic polymorphism of microsomal epoxide hydrolase enzyme gene in preeclamptic females. Am J Med Sci 343(4):291–294. doi:10.1097/MAJ.0b013e31822be635

    PubMed  Google Scholar 

  • Kerr BM, Levy RH (1989) Inhibition of epoxide hydrolase by anticonvulsants and risk of teratogenicity. Lancet 1(8638):8610–8611

    Google Scholar 

  • Kerr BM, Rettie AE, Eddy AC et al (1989) Inhibition of human liver microsomal epoxide hydrolase by valproate and valpromide: in vitro/in vivo correlation. Clin Pharmacol Ther 46(1):82–93

    PubMed  CAS  Google Scholar 

  • Khedhaier A, Hassen E, Bouaouina N, Gabbouj S, Ahmed SB, Chouchane L (2008) Implication of xenobiotic metabolizing enzyme gene (CYP2E1, CYP2C19, CYP2D6, mEH and NAT2) polymorphisms in breast carcinoma. BMC Cancer 8:109. doi:10.1186/1471-2407-8-109

    PubMed  PubMed Central  Google Scholar 

  • Kodama M, Ioki Y, Nagata C (1980) Dose-dependent effect of trichloropropene oxide on benzo[a]pyrene carcinogenesis. J Cancer Res Clin Oncol 98(1):105–107

    PubMed  CAS  Google Scholar 

  • Koerner IP, Jacks R, DeBarber AE et al (2007) Polymorphisms in the human soluble epoxide hydrolase gene EPHX2 linked to neuronal survival after ischemic injury. J Neurosci 27(17):4642–4649. doi:10.1523/JNEUROSCI.0056-07.2007

    PubMed  CAS  Google Scholar 

  • Korhonen S, Romppanen EL, Hiltunen M et al (2003) Two exonic single nucleotide polymorphisms in the microsomal epoxide hydrolase gene are associated with polycystic ovary syndrome. Fertil Steril 79(6):1353–1357. doi:10.1016/S0015-0282(03)00385-6

    PubMed  Google Scholar 

  • Laasanen J, Romppanen EL, Hiltunen M et al (2002) Two exonic single nucleotide polymorphisms in the microsomal epoxide hydrolase gene are jointly associated with preeclampsia. Eur J Hum Genet 10(9):569–573. doi:10.1038/sj.ejhg.5200849

    PubMed  CAS  Google Scholar 

  • Lacourciere GM, Vakharia VN, Tan CP et al (1993) Interaction of hepatic microsomal epoxide hydrolase derived from a recombinant baculovirus expression system with an azarene oxide and an aziridine substrate analogue. Biochemistry 32(10):2610–2616

    PubMed  CAS  Google Scholar 

  • Lakhdar R, Denden S, Mouhamed MH et al (2011) Correlation of EPHX1, GSTP1, GSTM1, and GSTT1 genetic polymorphisms with antioxidative stress markers in chronic obstructive pulmonary disease. Exp Lung Res 37(4):195–204. doi:10.3109/01902148.2010.535093

    PubMed  CAS  Google Scholar 

  • Lancaster JM, Brownlee HA, Bell DA et al (1996) Microsomal epoxide hydrolase polymorphism as a risk factor for ovarian cancer. Mol Carcinog 17(3):160–162. doi:10.1002/(SICI)1098-2744(199611)17:3<160:AID-MC8>3.0.CO;2-J

    PubMed  CAS  Google Scholar 

  • Lee CR, North KE, Bray MS et al (2006) Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. Hum Mol Genet 15(10):1640–1649. doi:10.1093/hmg/ddl085

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee CR, Pretorius M, Schuck RN et al (2011) Genetic variation in soluble epoxide hydrolase (EPHX2) is associated with forearm vasodilator responses in humans. Hypertension 57(1):116–122. doi:10.1161/HYPERTENSIONAHA.110.161695

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li H, Fu WP, Hong ZH (2013) Microsomal epoxide hydrolase gene polymorphisms and risk of chronic obstructive pulmonary disease: a comprehensive meta-analysis. Oncol Lett 5(3):1022–1030. doi:10.3892/ol.2012.1099

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lin YC, Wu DC, Lee JM et al (2006) The association between microsomal epoxide hydrolase genotypes and esophageal squamous-cell-carcinoma in Taiwan: interaction between areca chewing and smoking. Cancer Lett 237(2):281–288. doi:10.1016/j.canlet.2005.06.010

    PubMed  CAS  Google Scholar 

  • Liu M, Sun A, Shin EJ et al (2006) Expression of microsomal epoxide hydrolase is elevated in Alzheimer’s hippocampus and induced by exogenous beta-amyloid and trimethyl-tin. Eur J Neurosci 23(8):2027–2034. doi:10.1111/j.1460-9568.2006.04724.x

    PubMed  Google Scholar 

  • Liu M, Hunter R, Nguyen XV, Kim HC, Bing G (2008) Microsomal epoxide hydrolase deletion enhances tyrosine hydroxylase phosphorylation in mice after MPTP treatment. J Neurosci Res 86(12):2792–2801. doi:10.1002/jnr.21725

    PubMed  CAS  Google Scholar 

  • Liu F, Yuan D, Wei Y et al (2012) Systematic review and meta-analysis of the relationship between EPHX1 polymorphisms and colorectal cancer risk. PLoS One 7(8):e43821. doi:10.1371/journal.pone.0043821

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu H, Li HY, Chen HJ, Huang YJ, Zhang S, Wang J (2013) EPHX1 A139G polymorphism and lung cancer risk: a meta-analysis. Tumour Biol 34(1):155–163. doi:10.1007/s13277-012-0523-z

    PubMed  Google Scholar 

  • Malvoisin E, Roberfroid M (1982) Hepatic microsomal metabolism of 1,3-butadiene. Xenobiotica; the fate of foreign compounds in biological systems 12(2):137–144

  • McHale CM, Zhang L, Smith MT (2012) Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment. Carcinogenesis 33(2):240–252. doi:10.1093/carcin/bgr297

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meijer J, DePierre JW (1988) Cytosolic epoxide hydrolase. Chem Biol Interact 64(3):207–249

    PubMed  CAS  Google Scholar 

  • Meijer JW, Binnie CD, Debets RM, van Parys JA, de Beer-Pawlikowski NK (1984) Possible hazard of valpromide-carbamazepine combination therapy in epilepsy. Lancet 1(8380):8802

    Google Scholar 

  • Mendrala AL, Langvardt PW, Nitschke KD, Quast JF, Nolan RJ (1993) In vitro kinetics of styrene and styrene oxide metabolism in rat, mouse, and human. Arch Toxicol 67(1):18–27

    PubMed  CAS  Google Scholar 

  • Mitchell LA, Moran JH, Grant DF (2002) Linoleic acid, cis-epoxyoctadecenoic acids, and dihydroxyoctadecadienoic acids are toxic to Sf-21 cells in the absence of albumin. Toxicol Lett 126(3):187–196. doi:10.1016/S0378-4274(01)00463-5

    PubMed  CAS  Google Scholar 

  • Mittal RD, Srivastava DL (2007) Cytochrome P4501A1 and microsomal epoxide hydrolase gene polymorphisms: gene-environment interaction and risk of prostate cancer. DNA Cell Biol 26(11):791–798. doi:10.1089/dna.2007.0630

    PubMed  CAS  Google Scholar 

  • Miyata M, Kudo G, Lee YH et al (1999) Targeted disruption of the microsomal epoxide hydrolase gene. Microsomal epoxide hydrolase is required for the carcinogenic activity of 7,12-dimethylbenz[a]anthracene. J Biol Chem 274(34):23963–23968

    PubMed  CAS  Google Scholar 

  • Moran JH, Weise R, Schnellmann RG, Freeman JP, Grant DF (1997) Cytotoxicity of linoleic acid diols to renal proximal tubular cells. Toxicol Appl Pharmacol 146(1):53–59. doi:10.1006/taap.1997.8197

    PubMed  CAS  Google Scholar 

  • Morisseau C (2013) Role of epoxide hydrolases in lipid metabolism. Biochimie 95(1):91–95. doi:10.1016/j.biochi.2012.06.011

    PubMed  CAS  PubMed Central  Google Scholar 

  • Morisseau C, Hammock BD (2005) Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol 45:311–333. doi:10.1146/annurev.pharmtox.45.120403.095920

    PubMed  CAS  Google Scholar 

  • Morisseau C, Hammock BD (2013) Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol 53:37–58. doi:10.1146/annurev-pharmtox-011112-140244

    PubMed  CAS  PubMed Central  Google Scholar 

  • Morisseau C, Du G, Newman JW, Hammock BD (1998) Mechanism of mammalian soluble epoxide hydrolase inhibition by chalcone oxide derivatives. Arch Biochem Biophys 356(2):214–228. doi:10.1006/abbi.1998.0756

    PubMed  CAS  Google Scholar 

  • Morisseau C, Goodrow MH, Dowdy D et al (1999) Potent urea and carbamate inhibitors of soluble epoxide hydrolases. Proc Natl Acad Sci USA 96(16):8849–8854

    PubMed  CAS  PubMed Central  Google Scholar 

  • Morisseau C, Newman JW, Dowdy DL, Goodrow MH, Hammock BD (2001) Inhibition of microsomal epoxide hydrolases by ureas, amides, and amines. Chem Res Toxicol 14(4):409–415. doi:10.1021/tx0001732

    PubMed  CAS  Google Scholar 

  • Morisseau C, Newman JW, Wheelock CE et al (2008) Development of metabolically stable inhibitors of mammalian microsomal epoxide hydrolase. Chem Res Toxicol 21(4):951–957. doi:10.1021/tx700446u

    PubMed  CAS  Google Scholar 

  • Munter T, Cottrell L, Golding BT, Watson WP (2003) Detoxication pathways involving glutathione and epoxide hydrolase in the in vitro metabolism of chloroprene. Chem Res Toxicol 16(10):1287–1297. doi:10.1021/tx034107m

    PubMed  CAS  Google Scholar 

  • Nebert DW, Dalton TP (2006) The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 6(12):947–960. doi:10.1038/nrc2015

    PubMed  CAS  Google Scholar 

  • Nelson JW, Subrahmanyan RM, Summers SA, Xiao X, Alkayed NJ (2013) Soluble epoxide hydrolase dimerization is required for hydrolase activity. J Biol Chem 288(11):7697–7703. doi:10.1074/jbc.M112.429258M112.429258

    PubMed  CAS  PubMed Central  Google Scholar 

  • Newman JW, Morisseau C, Harris TR, Hammock BD (2003) The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc Natl Acad Sci USA 100(4):1558–1563. doi:10.1073/pnas.04377241000437724100

    PubMed  CAS  PubMed Central  Google Scholar 

  • Newman JW, Morisseau C, Hammock BD (2005) Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 44(1):1–51. doi:10.1016/j.plipres.2004.10.001

    PubMed  CAS  Google Scholar 

  • Nock NL, Liu X, Cicek MS et al (2006) Polymorphisms in polycyclic aromatic hydrocarbon metabolism and conjugation genes, interactions with smoking and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 15(4):756–761. doi:10.1158/1055-9965.EPI-05-0826

    PubMed  CAS  Google Scholar 

  • Nock NL, Tang D, Rundle A et al (2007) Associations between smoking, polymorphisms in polycyclic aromatic hydrocarbon (PAH) metabolism and conjugation genes and PAH-DNA adducts in prostate tumors differ by race. Cancer Epidemiol Biomarkers Prev 16(6):1236–1245. doi:10.1158/1055-9965.EPI-06-0736

    PubMed  CAS  PubMed Central  Google Scholar 

  • Norwood S, Liao J, Hammock BD, Yang GY (2010) Epoxyeicosatrienoic acids and soluble epoxide hydrolase: potential therapeutic targets for inflammation and its induced carcinogenesis. Am J Transl Res 2(4):447–457

    PubMed  CAS  PubMed Central  Google Scholar 

  • Oesch F, Raphael D, Schwind H, Glatt HR (1977) Species differences in activating and inactivating enzymes related to the control of mutagenic metabolites. Arch Toxicol 39(1–2):97–108

    PubMed  CAS  Google Scholar 

  • Oesch F, Herrero ME, Hengstler JG, Lohmann M, Arand M (2000) Metabolic detoxification: implications for thresholds. Toxicol Pathol 28(3):382–387

    PubMed  CAS  Google Scholar 

  • Oesch F, Hengstler JG, Arand M (2004) Detoxication strategy of epoxide hydrolase-the basis for a novel threshold for definable genotoxic carcinogens. Nonlinearity Biol Toxicol Med 2(1):21–26. doi:10.1080/15401420490426963

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ozawa T, Nishikimi M, Sugiyama S, Taki F, Hayakawa M, Shionoya H (1988) Cytotoxic activity of leukotoxin, a neutrophil-derived fatty acid epoxide, on cultured human cells. Biochem Int 16(2):369–373

    PubMed  CAS  Google Scholar 

  • Pace-Asciak CR, Lee WS (1989) Purification of hepoxilin epoxide hydrolase from rat liver. J Biol Chem 264(16):9310–9313

    PubMed  CAS  Google Scholar 

  • Pacifici GM, Rane A (1983) Epoxide hydrolase in human fetal liver. Pharmacology 26(5):241–248

    PubMed  CAS  Google Scholar 

  • Pang W, Li N, Ai D, Niu XL, Guan YF, Zhu Y (2011) Activation of peroxisome proliferator-activated receptor-gamma downregulates soluble epoxide hydrolase in cardiomyocytes. Clin Exp Pharmacol Physiol 38(6):358–364. doi:10.1111/j.1440-1681.2011.05492.x

    PubMed  CAS  Google Scholar 

  • Papadopoulos D, Jornvall H, Rydstrom J, DePierre JW (1994) Purification and initial characterization of microsomal epoxide hydrolase from the human adrenal gland. Biochim Biophys Acta 1206(2):253–262

    PubMed  CAS  Google Scholar 

  • Pinarbasi E, Percin FE, Yilmaz M, Akgun E, Cetin M, Cetin A (2007) Association of microsomal epoxide hydrolase gene polymorphism and pre-eclampsia in Turkish women. J Obstet Gynaecol Res 33(1):32–37. doi:10.1111/j.1447-0756.2007.00473.x

    PubMed  CAS  Google Scholar 

  • Pinot F, Grant DF, Spearow JL, Parker AG, Hammock BD (1995) Differential regulation of soluble epoxide hydrolase by clofibrate and sexual hormones in the liver and kidneys of mice. Biochem Pharmacol 50(4):501–508. doi:10.1016/0006-2952(95)00167-X

    PubMed  CAS  Google Scholar 

  • Pisani F, Haj-Yehia A, Fazio A et al (1993) Carbamazepine-valnoctamide interaction in epileptic patients: in vitro/in vivo correlation. Epilepsia 34(5):954–959

    PubMed  CAS  Google Scholar 

  • Podolin PL, Bolognese BJ, Foley JF et al (2013) In vitro and in vivo characterization of a novel soluble epoxide hydrolase inhibitor. Prostaglandins Other Lipid Mediat 104–105:25–31. doi:10.1016/j.prostaglandins.2013.02.001

    PubMed  Google Scholar 

  • Porter TD, Beck TW, Kasper CB (1986) Complementary DNA and amino acid sequence of rat liver microsomal, xenobiotic epoxide hydrolase. Arch Biochem Biophys 248(1):121–129. doi:10.1016/0003-9861(86)90408-X

    PubMed  CAS  Google Scholar 

  • Przybyla-Zawislak BD, Srivastava PK, Vazquez-Matias J et al (2003) Polymorphisms in human soluble epoxide hydrolase. Mol Pharmacol 64(2):482–490. doi:10.1124/mol.64.2.482

    PubMed  CAS  Google Scholar 

  • Raijmakers MT, de Galan-Roosen TE, Schilders GW, Merkus JM, Steegers EA, Peters WH (2004) The Tyr113His polymorphism in exon 3 of the microsomal epoxide hydrolase gene is a risk factor for perinatal mortality. Acta Obstet Gynecol Scand 83(11):1056–1060. doi:10.1111/j.0001-6349.2004.00455.x

    PubMed  Google Scholar 

  • Rambeck B, Salke-Treumann A, May T, Boenigk HE (1990) Valproic acid-induced carbamazepine-10,11-epoxide toxicity in children and adolescents. Eur Neurol 30(2):79–83

    PubMed  CAS  Google Scholar 

  • Ramirez D, Lammer EJ, Iovannisci DM, Laurent C, Finnell RH, Shaw GM (2007) Maternal smoking during early pregnancy, GSTP1 and EPHX1 variants, and risk of isolated orofacial clefts. Cleft Palate Craniofac J 44(4):366–373. doi:10.1597/06-011.1

    PubMed  Google Scholar 

  • Rao NL, Riley JP, Banie H et al (2010) Leukotriene A(4) hydrolase inhibition attenuates allergic airway inflammation and hyperresponsiveness. Am J Respir Crit Care Med 181(9):899–907. doi:10.1164/rccm.200807-1158OC

    PubMed  CAS  Google Scholar 

  • Roman RJ (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82(1):131–185. doi:10.1152/physrev.00021.2001

    PubMed  CAS  Google Scholar 

  • Rossi AM, Migliore L, Lascialfari D et al (1983a) Genotoxicity, metabolism and blood kinetics of epichlorohydrin in mice. Mutat Res 118(3):213–226. doi:10.1016/0165-1218(83)90144-1

    PubMed  CAS  Google Scholar 

  • Rossi AM, Migliore L, Loprieno N, Romano M, Salmona M (1983b) Evaluation of epichlorohydrin (ECH) genotoxicity. Microsomal epoxide hydrolase-dependent deactivation of ECH mutagenicity in Schizosaccharomyces pombe in vitro. Mutat Res 109(1):41–52. doi:10.1016/0027-5107(83)90093-3

    PubMed  CAS  Google Scholar 

  • Samokhvalov V, Alsaleh N, El-Sikhry HE et al (2013) Epoxyeicosatrienoic acids protect cardiac cells during starvation by modulating an autophagic response. Cell Death Dis 4:e885. doi:10.1038/cddis.2013.418

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sandberg M, Hassett C, Adman ET, Meijer J, Omiecinski CJ (2000) Identification and functional characterization of human soluble epoxide hydrolase genetic polymorphisms. J Biol Chem 275(37):28873–28881. doi:10.1074/jbc.M001153200

    PubMed  CAS  Google Scholar 

  • Sarmanova J, Susova S, Gut I et al (2004) Breast cancer: role of polymorphisms in biotransformation enzymes. Eur J Hum Genet 12(10):848–854. doi:10.1038/sj.ejhg.5201249

    PubMed  CAS  Google Scholar 

  • Schladt L, Hartmann R, Timms C et al (1987) Concomitant induction of cytosolic but not microsomal epoxide hydrolase with peroxisomal beta-oxidation by various hypolipidemic compounds. Biochem Pharmacol 36(3):345–351

    PubMed  CAS  Google Scholar 

  • Schmelzer KR, Inceoglu B, Kubala L et al (2006) Enhancement of antinociception by coadministration of nonsteroidal anti-inflammatory drugs and soluble epoxide hydrolase inhibitors. Proc Natl Acad Sci USA 103(37):13646–13651. doi:10.1073/pnas.0605908103

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shen HC, Hammock BD (2012) Discovery of inhibitors of soluble epoxide hydrolase: a target with multiple potential therapeutic indications. J Med Chem 55(5):1789–1808. doi:10.1021/jm201468j

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shou M, Gonzalez FJ, Gelboin HV (1996) Stereoselective epoxidation and hydration at the K-region of polycyclic aromatic hydrocarbons by cDNA-expressed cytochromes P450 1A1, 1A2, and epoxide hydrolase. Biochemistry 35(49):15807–15813. doi:10.1021/bi962042z

    PubMed  CAS  Google Scholar 

  • Sims P, Grover PL, Swaisland A, Pal K, Hewer A (1974) Metabolic activation of benzo(a)pyrene proceeds by a diol-epoxide. Nature 252(5481):326–328

    PubMed  CAS  Google Scholar 

  • Sinal CJ, Miyata M, Tohkin M, Nagata K, Bend JR, Gonzalez FJ (2000) Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. J Biol Chem 275(51):40504–40510. doi:10.1074/jbc.M008106200

    PubMed  CAS  Google Scholar 

  • Sivonova MK, Dobrota D, Matakova T et al (2012) Microsomal epoxide hydrolase polymorphisms, cigarette smoking and prostate cancer risk in the Slovak population. Neoplasma 59(1):79–84

    PubMed  CAS  Google Scholar 

  • Slim R, Hammock BD, Toborek M et al (2001) The role of methyl-linoleic acid epoxide and diol metabolites in the amplified toxicity of linoleic acid and polychlorinated biphenyls to vascular endothelial cells. Toxicol Appl Pharmacol 171(3):184–193. doi:10.1006/taap.2001.9131

    PubMed  CAS  Google Scholar 

  • Smith KR, Pinkerton KE, Watanabe T, Pedersen TL, Ma SJ, Hammock BD (2005) Attenuation of tobacco smoke-induced lung inflammation by treatment with a soluble epoxide hydrolase inhibitor. Proc Natl Acad Sci USA 102(6):2186–2191. doi:10.1073/pnas.0409591102

    PubMed  CAS  PubMed Central  Google Scholar 

  • Snider NT, Kornilov AM, Kent UM, Hollenberg PF (2007) Anandamide metabolism by human liver and kidney microsomal cytochrome p450 enzymes to form hydroxyeicosatetraenoic and epoxyeicosatrienoic acid ethanolamides. J Pharmacol Exp Ther 321(2):590–597. doi:10.1124/jpet.107.119321

    PubMed  CAS  Google Scholar 

  • Snyder R, Chepiga T, Yang CS, Thomas H, Platt K, Oesch F (1993) Benzene metabolism by reconstituted cytochromes P450 2B1 and 2E1 and its modulation by cytochrome b5, microsomal epoxide hydrolase, and glutathione transferases: evidence for an important role of microsomal epoxide hydrolase in the formation of hydroquinone. Toxicol Appl Pharmacol 122(2):172–181. doi:10.1006/taap.1993.1185

    PubMed  CAS  Google Scholar 

  • Sonzogni L, Silvestri L, De Silvestri A et al (2002) Polymorphisms of microsomal epoxide hydrolase gene and severity of HCV-related liver disease. Hepatology 36(1):195–201. doi:10.1053/jhep.2002.33898

    PubMed  CAS  Google Scholar 

  • Spurdle AB, Purdie DM, Webb PM, Chen X, Green A, Chenevix-Trench G (2001) The microsomal epoxide hydrolase Tyr113His polymorphism: association with risk of ovarian cancer. Mol Carcinog 30(1):71–78. doi:10.1002/1098-2744(200101)30:1<71:AID-MC1015>3.0.CO;2-9

    PubMed  CAS  Google Scholar 

  • Spurdle AB, Chang JH, Byrnes GB et al (2007) A systematic approach to analysing gene-gene interactions: polymorphisms at the microsomal epoxide hydrolase EPHX and glutathione S-transferase GSTM1, GSTT1, and GSTP1 loci and breast cancer risk. Cancer Epidemiol Biomarkers Prev 16(4):769–774. doi:10.1158/1055-9965.EPI-06-0776

    PubMed  CAS  Google Scholar 

  • Strickler SM, Dansky LV, Miller MA, Seni MH, Andermann E, Spielberg SP (1985) Genetic predisposition to phenytoin-induced birth defects. Lancet 2(8458):746–749

    PubMed  CAS  Google Scholar 

  • Sumner SJ, Fennell TR (1994) Review of the metabolic fate of styrene. Crit Rev Toxicol 24(Suppl):S11–S33. doi:10.3109/10408449409020138

    PubMed  CAS  Google Scholar 

  • Taura Ki K, Yamada H, Naito E, Ariyoshi N, Mori Ma MA, Oguri K (2002) Activation of microsomal epoxide hydrolase by interaction with cytochromes P450: kinetic analysis of the association and substrate-specific activation of epoxide hydrolase function. Arch Biochem Biophys 402(2):275–280. doi:10.1016/S0003-9861(02)00079-6S0003-9861(02)00079-6

    PubMed  Google Scholar 

  • Terashvili M, Tseng LF, Wu HE et al (2008) Antinociception produced by 14,15-epoxyeicosatrienoic acid is mediated by the activation of beta-endorphin and met-enkephalin in the rat ventrolateral periaqueductal gray. J Pharmacol Exp Ther 326(2):614–622. doi:10.1124/jpet.108.136739

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thomas EW, McKelvy JF, Sharon N (1969) Specific and irreversible inhibition of lysozyme by 2′,3′-epoxypropyl beta-glycosides of N-acetyl-D-glucosamine oligomers. Nature 222(5192):485–486

    PubMed  CAS  Google Scholar 

  • Thomas H, Schladt L, Knehr M, Oesch F (1989) Effect of diabetes and starvation on the activity of rat liver epoxide hydrolases, glutathione S-transferases and peroxisomal beta-oxidation. Biochem Pharmacol 38(23):4291–4297

    PubMed  CAS  Google Scholar 

  • Thomas H, Schladt L, Doehmer J, Knehr M, Oesch F (1990) Rat and human liver cytosolic epoxide hydrolases: evidence for multiple forms at level of protein and mRNA. Environ Health Perspect 88:49–55

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thunnissen MM, Nordlund P, Haeggstrom JZ (2001) Crystal structure of human leukotriene A(4) hydrolase, a bifunctional enzyme in inflammation. Nat Struct Biol 8(2):131–135. doi:10.1038/84117

    PubMed  CAS  Google Scholar 

  • Toivonen S, Romppanen EL, Hiltunen M et al (2004) Low-activity haplotype of the microsomal epoxide hydrolase gene is protective against placental abruption. J Soc Gynecol Investig 11(8):540–544. doi:10.1016/j.jsgi.2004.06.008

    PubMed  CAS  Google Scholar 

  • Tumer TB, Sahin G, Arinc E (2012) Association between polymorphisms of EPHX1 and XRCC1 genes and the risk of childhood acute lymphoblastic leukemia. Arch Toxicol 86(3):431–439. doi:10.1007/s00204-011-0760-8

    PubMed  CAS  Google Scholar 

  • Vibhuti A, Arif E, Deepak D, Singh B, Qadar Pasha MA (2007) Genetic polymorphisms of GSTP1 and mEPHX correlate with oxidative stress markers and lung function in COPD. Biochem Biophys Res Commun 359(1):136–142. doi:10.1016/j.bbrc.2007.05.076

    PubMed  CAS  Google Scholar 

  • Vogel-Bindel U, Bentley P, Oesch F (1982) Endogenous role of microsomal epoxide hydrolase. Ontogenesis, induction inhibition, tissue distribution, immunological behaviour and purification of microsomal epoxide hydrolase with 16 alpha, 17 alpha-epoxyandrostene-3-one as substrate. Eur J Biochem/FEBS 126(2):425–431

    CAS  Google Scholar 

  • von Dippe P, Zhu QS, Levy D (2003) Cell surface expression and bile acid transport function of one topological form of m-epoxide hydrolase. Biochem Biophys Res Commun 309(4):804–809. doi:10.1016/j.bbrc.2003.08.074

    Google Scholar 

  • Wang LD, Zheng S, Liu B, Zhou JX, Li YJ, Li JX (2003) CYP1A1, GSTs and mEH polymorphisms and susceptibility to esophageal carcinoma: study of population from a high- incidence area in north China. World J Gastroenterol 9(7):1394–1397

    PubMed  CAS  Google Scholar 

  • Wang Z, Tang L, Sun G et al (2006) Etiological study of esophageal squamous cell carcinoma in an endemic region: a population-based case control study in Huaian. China. BMC Cancer 6:287. doi:10.1186/1471-2407-6-287

    Google Scholar 

  • Wang L, Yang J, Guo L et al (2012) Use of a soluble epoxide hydrolase inhibitor in smoke-induced chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 46(5):614–622. doi:10.1165/rcmb.2011-0359OC2011-0359OC

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ward EM, Fajen JM, Ruder AM, Rinsky RA, Halperin WE, Fessler-Flesch CA (1996) Mortality study of workers employed in 1,3-butadiene production units identified from a large chemical workers cohort. Toxicology 113(1–3):157–168

    PubMed  CAS  Google Scholar 

  • Watabe T, Komatsu T, Isobe M, Tsubaki A (1983) Mouse liver microsomal cholesterol epoxide hydrolase: a specific inhibition of its activity by 5,6 alpha-Imino-5 alpha-cholestan-3 alpha-OL. Chem Biol Interact 44(1–2):143–154

    PubMed  CAS  Google Scholar 

  • Wickliffe JK, Ammenheuser MM, Salazar JJ et al (2003) A model of sensitivity: 1,3-butadiene increases mutant frequencies and genomic damage in mice lacking a functional microsomal epoxide hydrolase gene. Environ Mol Mutagen 42(2):106–110. doi:10.1002/em.10181

    PubMed  CAS  Google Scholar 

  • Wildhaber BE, Yang H, Tazuke Y, Teitelbaum DH (2003) Gene alteration of intestinal intraepithelial lymphocytes with administration of total parenteral nutrition. J Pediatr Surg 38(6):840–843. doi:10.1016/S0022-3468(03)00107-6

    PubMed  Google Scholar 

  • Wray J, Bishop-Bailey D (2008) Epoxygenases and peroxisome proliferator-activated receptors in mammalian vascular biology. Exp Physiol 93(1):148–154. doi:10.1113/expphysiol.2007.038612

    PubMed  CAS  Google Scholar 

  • Sudhahar V, Shaw S, Imig JD (2010) Epoxyeicosatrienoic acid analogs and vascular function. Curr Med Chem 17(12):1181–1190

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zakim D, Vessey DA (1985) Biochemical pharmacology and toxicology. Wiley, New York

    Google Scholar 

  • Zeldin DC, Kobayashi J, Falck JR et al (1993) Regio- and enantiofacial selectivity of epoxyeicosatrienoic acid hydration by cytosolic epoxide hydrolase. J Biol Chem 268(9):6402–6407

    PubMed  CAS  Google Scholar 

  • Zeldin DC, Moomaw CR, Jesse N et al (1996) Biochemical characterization of the human liver cytochrome P450 arachidonic acid epoxygenase pathway. Arch Biochem Biophys 330(1):87–96. doi:10.1006/abbi.1996.0229

    PubMed  CAS  Google Scholar 

  • Zhang JH, Jin X, Li Y et al (2003) Epoxide hydrolase Tyr113His polymorphism is not associated with susceptibility to esophageal squamous cell carcinoma in population of North China. World J Gastroenterol 9(12):2654–2657

    PubMed  CAS  Google Scholar 

  • Zhang D, Xie X, Chen Y, Hammock BD, Kong W, Zhu Y (2012) Homocysteine upregulates soluble epoxide hydrolase in vascular endothelium in vitro and in vivo. Circ Res 110(6):808–817. doi:10.1161/CIRCRESAHA.111.259325

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zheng J, Cho M, Jones AD, Hammock BD (1997) Evidence of quinone metabolites of naphthalene covalently bound to sulfur nucleophiles of proteins of murine Clara cells after exposure to naphthalene. Chem Res Toxicol 10(9):1008–1014. doi:10.1021/tx970061j

    PubMed  CAS  Google Scholar 

  • Zhong JH, Xiang BD, Ma L, You XM, Li LQ, Xie GS (2013) Meta-analysis of microsomal epoxide hydrolase gene polymorphism and risk of hepatocellular carcinoma. PLoS ONE 8(2):e57064. doi:10.1371/journal.pone.0057064

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu Q, von Dippe P, Xing W, Levy D (1999) Membrane topology and cell surface targeting of microsomal epoxide hydrolase. Evidence for multiple topological orientations. J Biol Chem 274(39):27898–27904

    PubMed  CAS  Google Scholar 

  • Zou J, Hallberg BM, Bergfors T et al (2000) Structure of Aspergillus niger epoxide hydrolase at 1.8 A resolution: implications for the structure and function of the mammalian microsomal class of epoxide hydrolases. Structure 8(2):111–122. doi:10.1016/S0969-2126(00)00087-3

    PubMed  CAS  Google Scholar 

  • Zusterzeel PL, Peters WH, Visser W, Hermsen KJ, Roelofs HM, Steegers EA (2001) A polymorphism in the gene for microsomal epoxide hydrolase is associated with preeclampsia. J Med Genet 38(4):234–237

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Canadian Institutes of Health Research (CIHR) [Grant MOP 106665]. AAE is the recipient of Egyptian Government Scholarship and Alberta Innovates-Health Solutions studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman O. S. El-Kadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sherbeni, A.A., El-Kadi, A.O.S. The role of epoxide hydrolases in health and disease. Arch Toxicol 88, 2013–2032 (2014). https://doi.org/10.1007/s00204-014-1371-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1371-y

Keywords

Navigation