Skip to main content

Advertisement

Log in

Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Telomere length decreases with age and is associated with osteoblast senescence. In 2,150 unselected women, leukocyte telomere length was significantly correlated with bone mineral density. Clinical osteoporosis was associated with shorter telomeres, suggesting that telomere length can be used as a marker of bone aging.

Introduction

The length of telomeres in proliferative cells diminishes with age. Telomere shortening and telomerase activity have been linked to in vitro osteoblast senescence and to increased secretion of pro-inflammatory cytokines. We explored whether bone mineral density correlates with telomere length in leukocytes.

Materials and methods

The relationship between leukocyte telomere length, bone mineral density (BMD) and osteoporosis (as defined by the World Health Organization) was examined in a cohort of 2,150 women from a population-based twin cohort aged 18–79.

Results

After adjusting for age, body mass index, menopausal status, smoking, hormone replacement therapy status, telomere length was positively correlated with BMD of the spine (p < 0.005), forearm (p < 0.013), but not the femoral neck (p < 0.06). Longer telomeres were associated with reduced the risk of clinical OP at two or more sites (odds ratio = 0.594 95% CI 0.42–0.84 p < 0.003) and in women over the age of 50, clinical osteoporosis was associated with 117 bp shorter telomere length (p < 0.02) equivalent to 5.2 years of telomeric aging.

Conclusions

Shortened leukocyte telomere length is independently associated with a decrease in BMD and the presence of osteoporosis in women. Our data provide evidence that leukocyte telomere length could be a marker of biological aging of bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194(2 Suppl):S3–S11

    Article  PubMed  CAS  Google Scholar 

  2. Rodan GA, Raisz LG, Bilezikian JP (1996) Pathophysiology of osteoporosis. In: Bilezikian JP, Raisz LG, Rodan LG (eds) Principles of bone biology, 1st edn. Academic Press, San Diego, pp 979–990

    Google Scholar 

  3. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041):1254–1259

    PubMed  CAS  Google Scholar 

  4. Manolagas SC, Jilka RL (1995) Mechanisms of disease: bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 332:305–311

    Article  PubMed  CAS  Google Scholar 

  5. Inoue K, Ohgushi H, Yoshikawa T, Okumura M, Sempuku T, Tamani S, Dohi Y (1997) The effect of aging on bone formation in porous hydroxyapatite: Biochemical and histological analysis. J Bone Miner Res 12:989–994

    Article  PubMed  CAS  Google Scholar 

  6. Garcia-Moreno C, Catalan MP, Ortiz A, Alvarez L, De la Piedra C (2004) Modulation of survival in osteoblasts from postmenopausal women. Bone 35(1):170–177

    Article  PubMed  CAS  Google Scholar 

  7. Blackburn EH (2000) Telomere states and cell fates. Nature 408:53–56

    Article  PubMed  CAS  Google Scholar 

  8. Browner WS, Kahn AJ, Ziv E, Reiner AP, Oshima J, Cawthon RM, Hsueh WC, Cummings SR (2004) The genetics of human longevity. Am J Med 117(11):851–860

    Article  PubMed  CAS  Google Scholar 

  9. Saretzki G, Von Zglinicki T (2002) Replicative ageing, telomeres, and oxidative stress. Ann NY Acad Sci 959:24–29

    Article  PubMed  CAS  Google Scholar 

  10. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD (2005) Obesity and cigarette smoking are associated with short telomeres in women. The Lancet 366:662–664

    Article  CAS  Google Scholar 

  11. Benetos A, Okuda K, Lajemi M, Kimura M, Thomas F, Skurnick J, Labat C, Bean K, Aviv A (2001) Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 37:381–385

    CAS  Google Scholar 

  12. Slagboom PE, Droog S, Boomsma DI (1994) Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet 55:876–882

    PubMed  CAS  Google Scholar 

  13. Pietschmann P, Grisar J, Thien R, Willheim M, Kerschan-Schindl K, Preisinger E, Peterlik M (2001) Immune phenotype and intracellular cytokine production of peripheral blood mononuclear cells from postmenopausal patients with osteoporotic fractures. Exp Gerontol 36(10):1749–1759

    Article  PubMed  CAS  Google Scholar 

  14. Takayanagi H, Sato K, Takaoka A, Taniguchi T (2005) Interplay between interferon and other cytokine systems in bone metabolism. Immunol Rev 208:181–193

    Article  PubMed  CAS  Google Scholar 

  15. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, Pacifici R (2000) Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 106(10):1229–1237

    Article  PubMed  CAS  Google Scholar 

  16. Kimble RB, Bain S, Pacifici R (1997) The functional block of TNF but not of IL-6 prevents bone loss in ovariectomized mice. J Bone Miner Res 12(6):935–941

    Article  PubMed  CAS  Google Scholar 

  17. Beyne-Rauzy O, Recher C, Dastugue N, et al (2004) Tumor necrosis factor alpha induces senescence and chromosomal instability in human leukemic cells. Oncogene 23(45):7507–7516

    Article  PubMed  CAS  Google Scholar 

  18. Benetos A, Gardner JP, Zureik M, Labat C, Xiaobin L, Adamopoulos C, Temmar M, Bean KE, Aviv A (2004) Short telomeres are associated with increased carotid artery atherosclerosis in hypertensive subjects. Hypertension 43:182–185

    Article  PubMed  CAS  Google Scholar 

  19. Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH (2001) Telomere shortening in atherosclerosis. The Lancet 358:472–473

    Article  CAS  Google Scholar 

  20. Brouilette S, Singh RK,Thompson JR, Goodall AH, Samani NJ (2003) White cell telomere length and risk of premature myocardial infarction. Arterioscler Throm Vasc Biol 23:842–846

    Article  CAS  Google Scholar 

  21. Erdmann J, Kogler C, Diel I, Ziegler R, Pfeilschifter J (1999) Age-associated changes in the stimulatory effect of transforming growth factor beta on human osteogenic colony formation. Mech Ageing Dev 1 110(1–2):73–85

    Article  CAS  Google Scholar 

  22. Yudoh K, Matsuno H, Nakazawa F, Katayama R, Kimura T (2001) Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. J Bone Miner Res 16(8):1453–1464

    Article  PubMed  CAS  Google Scholar 

  23. Ginaldi L, Di Benedetto MC, De Martinis M (2005) Osteoporosis, inflammation and ageing. Immun Ageing 4(2):14

    Article  Google Scholar 

  24. Hunter DJ, de Lange M, Andrew T, Snieder H, MacGregor AJ, Spector TD (2001) Genetic variation in bone mineral density and calcaneal ultrasound: a study of the influence of menopause using female twins. Osteoporos Int 12(5):406–411

    Article  PubMed  CAS  Google Scholar 

  25. World Health Organization (1994)Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129

    Google Scholar 

  26. Etherington J, Harris PA, Nandra D, Hart DJ, Wolman RL, Doyle DV, Spector TD (1996) The effect of weight-bearing exercise on bone mineral density: a study of female ex-elite athletes and the general population. J Bone Miner Res 11(9):1333–1338

    Article  PubMed  CAS  Google Scholar 

  27. Pratt DA, Daniloff Y, Duncan A, Robins SP (1992) Automated analysis of the pyridinium crosslinks of collagen in tissue and urine using solid-phase extraction and reversed-phase high-performance liquid chromatography. Anal Biochem 207(1):168–175

    Article  PubMed  CAS  Google Scholar 

  28. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454

    Article  PubMed  CAS  Google Scholar 

  29. Bekaert S, Van Pottelbergh I, De Meyer T, Zmierczak H, Kaufman JM, Van Oostveldt P, Goemaere S (2005) Telomere length versus hormonal and bone mineral status in healthy elderly men. Mech Ageing Dev 126(10):1115–1122

    Article  PubMed  CAS  Google Scholar 

  30. Aviv A, Valdes AM, Spector TD (2006) Human telomere biology: pitfalls of moving from the laboratory to epidemiology. Int J Epidemiol Oct Epub ahead of print

  31. Kveiborg M, Kassem M, Langdahl B, Eriksen EF, Clark BF, Rattan SI (1999) Telomere shortening during aging of human osteoblasts in vitro and leukocytes in vivo: lack of excessive telomere loss in osteoporotic patients. Mech Ageing Dev 106(3):261–271

    Article  PubMed  CAS  Google Scholar 

  32. Schnabl B, Purbeck CA, Choi YH, Hagedorn CH, Brenner D (2003) Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology 37(3):653–664

    Article  PubMed  CAS  Google Scholar 

  33. Sivas F, Barca N, Onder M, Ozoran K (2006) The relation between joint erosion and generalized osteoporosis and disease activity in patients with rheumatoid arthritis. Rheumatol Int 26(10):896–899

    Article  PubMed  Google Scholar 

  34. Maggio D, Barabani M, Pierandrei M, Polidori MC, Catani M, Mecocci P, Senin U, Pacifici R, Cherubini A (2003) Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab 88(4):1523–1527

    Article  PubMed  CAS  Google Scholar 

  35. Effros RB (2004) Replicative senescence of CD8 T cells: effect on human ageing. Exp Gerontol 39(4):517–524

    Article  PubMed  CAS  Google Scholar 

  36. Butler MG, Tilburt J, DeVries A, Muralidhar B, Aue G, Hedges L, Atkinson J, Schwartz H (1998) Comparison of chromosome telomere integrity in multiple tissues from subjects at different ages. Cancer Genet Cytogenet 105:138–144

    Article  PubMed  CAS  Google Scholar 

  37. Friedrich U, Griese E, Schwab M, Fritz P, Thon K, Klotz U (2000) Telomere length in different tissues of elderly patients. Mech Ageing Dev 119(3):89–99

    Article  PubMed  CAS  Google Scholar 

  38. Andrew T, Hart DJ, Snieder H, de LM, Spector TD, MacGregor AJ (2001) Are twins and singletons comparable? A study of disease-related and lifestyle characteristics in adult women. Twin Res 4:464–477

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the following sources: the Wellcome Trust (AMV and TDS), National Institutes of Health grants AG021593 and AG020132 (AA, JPG, MK, XL), the Healthcare Foundation of New Jersey (AA, JPG, MK, XL), ECCEO/Amgen fellowship (JBR), Canadian Institutes for Health Research (JBR) and GenomEUtwin (JBR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Spector.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdes, A.M., Richards, J.B., Gardner, J.P. et al. Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis. Osteoporos Int 18, 1203–1210 (2007). https://doi.org/10.1007/s00198-007-0357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0357-5

Keywords

Navigation