Skip to main content
Log in

A systematic review of the quality of genetic association studies in human sepsis

  • Systematic Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

Epidemiological studies demonstrate that inherited factors play a major role in the development and prognosis of sepsis. However, genetic association studies in sepsis have produced contradictory evidence of an effect from individual polymorphisms. Major methodological flaws have been reported in a number of genetic association studies in non-septic populations, relating to problems with experimental design, statistical analysis, study size, power and replication. We hypothesised that genetic association studies investigating sepsis suffer from similar problems, and that this explains the lack of consistent evidence for an effect from polymorphisms.

Design

A systematic review was conducted of published genetic association studies in sepsis from 1996–2005 using a newly devised scoring system for study quality and rigour. A Bayesian statistical analysis was also carried out to assess the false-positive report probability of identified studies.

Measurements and results

Study quality was assessed using a 10-point scoring system designed from published reporting guidelines. The majority of studies were of low to intermediate quality, with deficiencies in control group selection, genetic assay technique, study blinding, statistical interpretation, study replication, study size and power. Bayesian analysis indicated that many of the studies reporting a positive association between a genetic polymorphism and sepsis were likely to represent false-positive associations.

Conclusions

The quality and size of genetic association studies in septic patients needs to improve if advances in identifying genetic effects in sepsis are to occur. Investigators should, as a minimum, follow recommended guidelines when designing studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IL:

Interleukin

IL-1RN:

Interleukin-1 receptor antagonist

TNF:

Tumour necrosis factor

Interferon:

Interferon gamma

Factor VL:

Factor V Lieden

PAI:

Plasminogen activator inhibitor

LBP:

Lipopolysaccharide binding protein

BPIP:

Bactericidal/permeability increasing protein

CD:

Cluster of differentiation

TLR:

Toll like receptor

MBL:

Mannose binding lectin

FcGamma:

Immunoglobulin gamma

HSP:

Heat shock protein

ACE:

Angiotensin converting enzyme

References

  1. Sorensen TI, Nielsen GG, Andersen PK, Teasdale TW (1988) Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 318:727–732

    Article  PubMed  CAS  Google Scholar 

  2. Lin MT, Albertson TE (2004) Genomic polymorphisms in sepsis. Crit Care Med 32:569–579

    Article  PubMed  CAS  Google Scholar 

  3. Brookes AJ (1999) The essence of SNPs. Gene 234:177–186

    Article  PubMed  CAS  Google Scholar 

  4. Tracey KJ, Warren HS (2004) Human genetics: an inflammatory issue. Nature 429:35–37

    Article  PubMed  CAS  Google Scholar 

  5. Anonymous (1999) Freely associating. Nat Genet 22:1–2

    Article  CAS  Google Scholar 

  6. Bogardus ST Jr, Concato J, Feinstein AR (1999) Clinical epidemiological quality in molecular genetic research: the need for methodological standards. JAMA 281:1919–1926

    Article  PubMed  Google Scholar 

  7. Romero R, Kuivaniemi H, Tromp G, Olson J (2002) The design, execution, and interpretation of genetic association studies to decipher complex diseases. Am J Obstet Gynecol 187:1299–1312

    Article  PubMed  Google Scholar 

  8. Cooper DN, Nussbaum RL, Krawczak M (2002) Proposed guidelines for papers describing DNA polymorphism-disease associations. Hum Genet 110:207–208

    Article  PubMed  CAS  Google Scholar 

  9. Gallagher PM, Lowe G, Fitzgerald T, Bella A, Greene CM, McElvaney NG, O'Neill SJ (2003) Association of IL-10 polymorphism with severity of illness in community acquired pneumonia. Thorax 58:154–156

    Article  PubMed  CAS  Google Scholar 

  10. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101:1644–1655

    PubMed  CAS  Google Scholar 

  11. Gordon D, Levenstien MA, Finch SJ, Ott J (2003) Errors and linkage disequilibrium interact multiplicatively when computing sample sizes for genetic case-control association studies. Pac Symp Biocomput 490–501

    CAS  Google Scholar 

  12. Gordon D, Finch SJ, Nothnagel M, Ott J (2002) Power and sample size calculations for case-control genetic association tests when errors are present: application to single nucleotide polymorphisms. Hum Hered 54:22–33

    Article  PubMed  Google Scholar 

  13. Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96:434–442

    Article  PubMed  Google Scholar 

  14. Sasieni PD (1997) From genotypes to genes: doubling the sample size. Biometrics 53:1253–1261

    Article  PubMed  CAS  Google Scholar 

  15. Weitkamp JH, Stuber F, Bartmann P (2000) Pilot study assessing TNF gene polymorphism as a prognostic marker for disease progression in neonates with sepsis. Infection 28:92–96

    Article  PubMed  CAS  Google Scholar 

  16. Hubacek JA, Stuber F, Frohlich D, Book M, Wetegrove S, Ritter M, Rothe G, Schmitz G (2001) Gene variants of the bactericidal/permeability increasing protein and lipopolysaccharide binding protein in sepsis patients: gender-specific genetic predisposition to sepsis. Crit Care Med 29:557–561

    Article  PubMed  CAS  Google Scholar 

  17. Saleh M, Vaillancourt JP, Graham RK, Huyck M, Srinivasula SM, Alnemri ES, Steinberg MH, Nolan V, Baldwin CT, Hotchkiss RS, Buchman TG, Zehnbauer BA, Hayden MR, Farrer LA, Roy S, Nicholson DW (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429:75–79

    Article  PubMed  CAS  Google Scholar 

  18. Flach R, Majetschak M, Heukamp T, Jennissen V, Flohe S, Borgermann J, Obertacke U, Schade FU (1999) Relation of ex vivo stimulated blood cytokine synthesis to post-traumatic sepsis. Cytokine 11:173–178

    Article  PubMed  CAS  Google Scholar 

  19. Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA (2000) A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 68:6398–6401

    Article  PubMed  CAS  Google Scholar 

  20. Fang XM, Schroder S, Hoeft A, Stuber F (1999) Comparison of two polymorphisms of the interleukin-1 gene family: interleukin-1 receptor antagonist polymorphism contributes to susceptibility to severe sepsis. Crit Care Med 27:1330–1334

    Article  PubMed  CAS  Google Scholar 

  21. Read RC, Camp NJ, di Giovine FS, Borrow R, Kaczmarski EB, Chaudhary AG, Fox AJ, Duff GW (2000) An interleukin-1 genotype is associated with fatal outcome of meningococcal disease. J Infect Dis 182:1557–1560

    Article  PubMed  CAS  Google Scholar 

  22. Westendorp RG, Langermans JA, Huizinga TW, Elouali AH, Verweij CL, Boomsma DI, Vandenbroucke JP (1997) Genetic influence on cytokine production and fatal meningococcal disease. Lancet 349:170–173

    Article  PubMed  CAS  Google Scholar 

  23. Agnese DM, Calvano JE, Hahm SJ, Coyle SM, Corbett SA, Calvano SE, Lowry SF (2002) Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis 186:1522–1525

    Article  PubMed  CAS  Google Scholar 

  24. Stuber F (1996) -308 Tumour necrosis factor (TNF) polymorphism is not associated with survival in severe sepsis and is unrelated to lipopolysaccharide inducibility of the human TNF promoter. J Inflamm 46:42–50

    CAS  Google Scholar 

  25. Mira JP, Cariou A, Grall F, Delclaux C, Losser MR, Heshmati F, Cheval C, Monchi M, Teboul JL, Riche F, Leleu G, Arbibe L, Mignon A, Delpech M, Dhainaut JF (1999) Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA 282:561–568

    Article  PubMed  CAS  Google Scholar 

  26. Lorenz E, Mira JP, Frees KL, Schwartz DA (2002) Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162:1028–1032

    Article  PubMed  CAS  Google Scholar 

  27. Gibot S, Cariou A, Drouet L, Rossignol M, Ripoll L (2002) Association between a genomic polymorphism within the CD14 locus and septic shock susceptibility and mortality rate. Crit Care Med 30:969–973

    Article  PubMed  CAS  Google Scholar 

  28. O'Keefe GE, Hybki DL, Munford RS (2002) The G->A single nucleotide polymorphism at the -308 position in the tumor necrosis factor-alpha promoter increases the risk for severe sepsis after trauma. J Trauma 52:817–825

    Article  PubMed  Google Scholar 

  29. Barber RC, O'Keefe GE (2003) Characterization of a single nucleotide polymorphism in the lipopolysaccharide binding protein and its association with sepsis. Am J Respir Crit Care Med 167:1316–1320

    Article  PubMed  Google Scholar 

  30. Hubacek JA, Stuber F, Frohlich D, Book M, Wetegrove S, Rothe G, Schmitz G (2000) The common functional C (-159) T polymorphism within the promoter region of the lipopolysaccharide receptor CD14 is not associated with sepsis development or mortality. Genes Immun 1:405–407

    Article  PubMed  CAS  Google Scholar 

  31. Westendorp RG, Hottenga JJ, Slagboom PE (1999) Variation in plasminogen-activator-inhibitor-1 gene and risk of meningococcal septic shock. Lancet 354:561–563

    Article  PubMed  CAS  Google Scholar 

  32. Kremer Hovinga JA, Franco RF, Zago MA, Ten Cate H, Westendorp RG, Reitsma PH (2004) A functional single nucleotide polymorphism in the thrombin-activatable fibrinolysis inhibitor (TAFI) gene associates with outcome of meningococcal disease. J Thromb Haemost 2:54–57

    Article  Google Scholar 

  33. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG (2001) Replication validity of genetic association studies. Nat Genet 29:306–309

    Article  PubMed  CAS  Google Scholar 

  34. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61

    Article  PubMed  CAS  Google Scholar 

  35. Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2:91–99

    Article  PubMed  CAS  Google Scholar 

  36. Buckland PR (2001) Genetic association studies of alcoholism-problems with the candidate gene approach. Alcohol Alcohol 36:99–103

    PubMed  CAS  Google Scholar 

  37. Gordon AC, Lagan AL, Aganna E, Cheung L, Peters CJ, McDermott MF, Millo JL, Welsh KI, Holloway P, Hitman GA, Piper RD, Garrard CS, Hinds CJ (2004) TNF and TNFR polymorphisms in severe sepsis and septic shock: a prospective multicentre study. Genes Immun 5:631–640

    Article  PubMed  CAS  Google Scholar 

  38. Peters DL, Barber RC, Flood EM, Garner HR, O'Keefe GE (2003) Methodologic quality and genotyping reproducibility in studies of tumor necrosis factor -308 G->A single nucleotide polymorphism and bacterial sepsis: implications for studies of complex traits. Crit Care Med 31:1691–1696

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Victor Baudouin.

Additional information

This article is discussed in the editorial available at: http://dx.doi.org/10.1007/s00134-006-0328-x

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, M.F., Baudouin, S.V. A systematic review of the quality of genetic association studies in human sepsis. Intensive Care Med 32, 1706–1712 (2006). https://doi.org/10.1007/s00134-006-0327-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-006-0327-y

Keywords

Navigation