Skip to main content

Advertisement

Log in

Proliferation status defines functional properties of endothelial cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Homeostasis of solid tissue is characterized by a low proliferative activity of differentiated cells while special conditions like tissue damage induce regeneration and proliferation. For some cell types it has been shown that various tissue-specific functions are missing in the proliferating state, raising the possibility that their proliferation is not compatible with a fully differentiated state. While endothelial cells are important players in regenerating tissue as well as in the vascularization of tumors, the impact of proliferation on their features remains elusive. To examine cell features in dependence of proliferation, we established human endothelial cell lines in which proliferation is tightly controlled by a doxycycline-dependent, synthetic regulatory unit. We observed that uptake of macromolecules and establishment of cell–cell contacts was more pronounced in the growth-arrested state. Tube-like structures were formed in vitro in both proliferating and non-proliferating conditions. However, functional vessel formation upon transplantation into immune-compromised mice was restricted to the proliferative state. Kaposi’s sarcoma-associated herpes virus (KSHV) infection resulted in reduced expression of endothelial markers. Upon transplantation of infected cells, drastic differences were observed: proliferation arrested cells acquired a high migratory activity while the proliferating counterparts established a tumor-like phenotype, similar to Kaposi Sarcoma lesions. The study gives evidence that proliferation governs endothelial functions. This suggests that several endothelial functions are differentially expressed during angiogenesis. Moreover, since proliferation defines the functional properties of cells upon infection with KSHV, this process crucially affects the fate of virus-infected cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Michiels C (2003) Endothelial cell functions. J Cell Physiol 196(3):430–443. doi:10.1002/jcp.10333

    Article  CAS  PubMed  Google Scholar 

  2. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100(2):158–173. doi:10.1161/01.RES.0000255691.76142.4a

    Article  CAS  PubMed  Google Scholar 

  3. Ojala PM, Schulz TF (2014) Manipulation of endothelial cells by KSHV: implications for angiogenesis and aberrant vascular differentiation. Semin Cancer Biol. doi:10.1016/j.semcancer.2014.01.008

    PubMed  Google Scholar 

  4. Cheng F, Pekkonen P, Laurinavicius S, Sugiyama N, Henderson S, Gunther T, Rantanen V, Kaivanto E, Aavikko M, Sarek G, Hautaniemi S, Biberfeld P, Aaltonen L, Grundhoff A, Boshoff C, Alitalo K, Lehti K, Ojala PM (2011) KSHV-initiated notch activation leads to membrane-type-1 matrix metalloproteinase-dependent lymphatic endothelial-to-mesenchymal transition. Cell Host Microbe 10(6):577–590. doi:10.1016/j.chom.2011.10.011

    Article  CAS  PubMed  Google Scholar 

  5. Gasperini P, Espigol-Frigole G, McCormick PJ, Salvucci O, Maric D, Uldrick TS, Polizzotto MN, Yarchoan R, Tosato G (2012) Kaposi sarcoma herpesvirus promotes endothelial-to-mesenchymal transition through Notch-dependent signaling. Cancer Res 72(5):1157–1169. doi:10.1158/0008-5472.CAN-11-3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fontijn R, Hop C, Brinkman HJ, Slater R, Westerveld A, van Mourik JA, Pannekoek H (1995) Maintenance of vascular endothelial cell-specific properties after immortalization with an amphotrophic replication-deficient retrovirus containing human papilloma virus 16 E6/E7 DNA. Exp Cell Res 216(1):199–207. doi:10.1006/excr.1995.1025

    Article  CAS  PubMed  Google Scholar 

  7. An FQ, Folarin HM, Compitello N, Roth J, Gerson SL, McCrae KR, Fakhari FD, Dittmer DP, Renne R (2006) Long-term-infected telomerase-immortalized endothelial cells: a model for Kaposi’s sarcoma-associated herpesvirus latency in vitro and in vivo. J Virol 80(10):4833–4846. doi:10.1128/JVI.80.10.4833-4846.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rood PM, Calafat J, von dem Borne AE, Gerritsen WR, van der Schoot CE (2000) Immortalisation of human bone marrow endothelial cells: characterisation of new cell lines. Eur J Clin Invest 30(7):618–629

    Article  CAS  PubMed  Google Scholar 

  9. Chang MW, Grillari J, Mayrhofer C, Fortschegger K, Allmaier G, Marzban G, Katinger H, Voglauer R (2005) Comparison of early passage, senescent and hTERT immortalized endothelial cells. Exp Cell Res 309(1):121–136. doi:10.1016/j.yexcr.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  10. Yang J, Nagavarapu U, Relloma K, Sjaastad MD, Moss WC, Passaniti A, Herron GS (2001) Telomerized human microvasculature is functional in vivo. Nat Biotechnol 19(3):219–224

    Article  CAS  PubMed  Google Scholar 

  11. Bouis D, Hospers GA, Meijer C, Molema G, Mulder NH (2001) Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis 4(2):91–102

    Article  CAS  PubMed  Google Scholar 

  12. Klochendler A, Weinberg-Corem N, Moran M, Swisa A, Pochet N, Savova V, Vikesa J, Van de Peer Y, Brandeis M, Regev A, Nielsen FC, Dor Y, Eden A (2012) A transgenic mouse marking live replicating cells reveals in vivo transcriptional program of proliferation. Dev Cell 23(4):681–690. doi:10.1016/j.devcel.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  13. Gingold H, Tehler D, Christoffersen NR, Nielsen MM, Asmar F, Kooistra SM, Christophersen NS, Christensen LL, Borre M, Sorensen KD, Andersen LD, Andersen CL, Hulleman E, Wurdinger T, Ralfkiaer E, Helin K, Gronbaek K, Orntoft T, Waszak SM, Dahan O, Pedersen JS, Lund AH, Pilpel Y (2014) A dual program for translation regulation in cellular proliferation and differentiation. Cell 158(6):1281–1292. doi:10.1016/j.cell.2014.08.011

    Article  CAS  PubMed  Google Scholar 

  14. May T, Butueva M, Bantner S, Markusic D, Seppen J, MacLeod RA, Weich H, Hauser H, Wirth D (2010) Synthetic gene regulation circuits for control of cell expansion. Tissue Eng Part A 16(2):441–452. doi:10.1089/ten.TEA.2009.0184

    Article  CAS  PubMed  Google Scholar 

  15. May T, Hauser H, Wirth D (2004) Transcriptional control of SV40 T-antigen expression allows a complete reversion of immortalization. Nucleic Acids Res 32(18):5529–5538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vieira J, O’Hearn PM (2004) Use of the red fluorescent protein as a marker of Kaposi’s sarcoma-associated herpesvirus lytic gene expression. Virology 325(2):225–240. doi:10.1016/j.virol.2004.03.049

    Article  CAS  PubMed  Google Scholar 

  17. Ponce ML (2009) Tube formation: an in vitro matrigel angiogenesis assay. Methods Mol Biol (Clifton, NJ) 467:183–188. doi:10.1007/978-1-59745-241-0_10

    Article  CAS  Google Scholar 

  18. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34(2):374–378

    CAS  PubMed  Google Scholar 

  19. Laib AM, Bartol A, Alajati A, Korff T, Weber H, Augustin HG (2009) Spheroid-based human endothelial cell microvessel formation in vivo. Nat Protoc 4(8):1202–1215. doi:10.1038/nprot.2009.96

    Article  CAS  PubMed  Google Scholar 

  20. Ho M, Yang E, Matcuk G, Deng D, Sampas N, Tsalenko A, Tabibiazar R, Zhang Y, Chen M, Talbi S, Ho YD, Wang J, Tsao PS, Ben-Dor A, Yakhini Z, Bruhn L, Quertermous T (2003) Identification of endothelial cell genes by combined database mining and microarray analysis. Physiol Genom 13(3):249–262. doi:10.1152/physiolgenomics.00186.2002

    Article  CAS  Google Scholar 

  21. Bhasin M, Yuan L, Keskin DB, Otu HH, Libermann TA, Oettgen P (2010) Bioinformatic identification and characterization of human endothelial cell-restricted genes. BMC Genom 11:342. doi:10.1186/1471-2164-11-342

    Article  Google Scholar 

  22. Moncada S (1993) The l-arginine: nitric oxide pathway, cellular transduction and immunological roles. Adv Second Messenger Phosphoprot Res 28:97–99

    CAS  Google Scholar 

  23. Ciufo DM, Cannon JS, Poole LJ, Wu FY, Murray P, Ambinder RF, Hayward GS (2001) Spindle cell conversion by Kaposi’s sarcoma-associated herpesvirus: formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J Virol 75(12):5614–5626. doi:10.1128/JVI.75.12.5614-5626.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Medici D, Kalluri R (2012) Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol 22(5–6):379–384. doi:10.1016/j.semcancer.2012.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Potenta S, Zeisberg E, Kalluri R (2008) The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer 99(9):1375–1379. doi:10.1038/sj.bjc.6604662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gessain A, Duprez R (2005) Spindle cells and their role in Kaposi’s sarcoma. Int J Biochem Cell Biol 37(12):2457–2465. doi:10.1016/j.biocel.2005.01.018

    Article  CAS  PubMed  Google Scholar 

  27. Mansouri M, Douglas J, Rose PP, Gouveia K, Thomas G, Means RE, Moses AV, Fruh K (2006) Kaposi sarcoma herpesvirus K5 removes CD31/PECAM from endothelial cells. Blood 108(6):1932–1940. doi:10.1182/blood-2005-11-4404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DiMaio TA, Gutierrez KD, Lagunoff M (2011) Latent KSHV infection of endothelial cells induces integrin beta3 to activate angiogenic phenotypes. PLoS Pathog 7(12):e1002424. doi:10.1371/journal.ppat.1002424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lipps C, May T, Hauser H, Wirth D (2013) Eternity and functionality—rational access to physiologically relevant cell lines. Biol Chem 394(12):1637–1648. doi:10.1515/hsz-2013-0158

    Article  CAS  PubMed  Google Scholar 

  30. D’Uva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y, Carvalho S, Weisinger K, Bassat E, Rajchman D, Yifa O, Lysenko M, Konfino T, Hegesh J, Brenner O, Neeman M, Yarden Y, Leor J, Sarig R, Harvey RP, Tzahor E (2015) ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol 17(5):627–638. doi:10.1038/ncb3149

    Article  PubMed  Google Scholar 

  31. Zhang Y, Li TS, Lee ST, Wawrowsky KA, Cheng K, Galang G, Malliaras K, Abraham MR, Wang C, Marban E (2010) Dedifferentiation and proliferation of mammalian cardiomyocytes. PLoS One 5(9):e12559. doi:10.1371/journal.pone.0012559

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bonventre JV (2003) Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol 14(Suppl 1):S55–S61

    Article  PubMed  Google Scholar 

  33. Koopal S, Furuhjelm JH, Jarviluoma A, Jaamaa S, Pyakurel P, Pussinen C, Wirzenius M, Biberfeld P, Alitalo K, Laiho M, Ojala PM (2007) Viral oncogene-induced DNA damage response is activated in Kaposi sarcoma tumorigenesis. PLoS Pathog 3(9):1348–1360. doi:10.1371/journal.ppat.0030140

    Article  CAS  PubMed  Google Scholar 

  34. Lagunoff M, Bechtel J, Venetsanakos E, Roy AM, Abbey N, Herndier B, McMahon M, Ganem D (2002) De novo infection and serial transmission of Kaposi’s sarcoma-associated herpesvirus in cultured endothelial cells. J Virol 76(5):2440–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), the SFB900 (Sonderforschungsbereich 900, chronic infection) and WI2648/3-1. We thank the Federal Ministry for Education and Research (BMBF) for support by funding the EBio project ImmunoQuant, FKZ0316170F. M. Butueva, C. Lipps and T. Dubich wish to acknowledge the support by the HZI GradSchool and the PhD program Regenerative Sciences within the Hannover Biomedical Research School (HBRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Wirth.

Ethics declarations

Conflict of interest

Tobias May, Hansjörg Hauser and Dagmar Wirth have filed a patent concerning the technology for establishment of conditionally immortalized cell lines.

Additional information

C. Lipps, M. Badar and M. Butueva equally contributed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipps, C., Badar, M., Butueva, M. et al. Proliferation status defines functional properties of endothelial cells. Cell. Mol. Life Sci. 74, 1319–1333 (2017). https://doi.org/10.1007/s00018-016-2417-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2417-5

Keywords

Navigation