Skip to main content

Advertisement

Log in

Emerging roles of immunoproteasomes beyond MHC class I antigen processing

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The proteasome is a multi-catalytic protein complex whose primary function is the degradation of abnormal or foreign proteins. Upon exposure of cells to interferons (IFNs), the β1i/LMP2, β2i/MECL-1, and β5i/LMP7 subunits are induced and incorporated into newly synthesized immunoproteasomes (IP), which are thought to function solely as critical players in the optimization of the CD8+ T-cell response. However, the observation that IP are present in several non-immune tissues under normal conditions and/or following pathological events militates against the view that its role is limited to MHC class I presentation. In support of this concept, the recent use of genetic models deficient for β1i/LMP2, β2i/MECL-1, or β5i/LMP7 has uncovered unanticipated functions for IP in innate immunity and non-immune processes. Herein, we review recent data in an attempt to clarify the role of IP beyond MHC class I epitope presentation with emphasis on its involvement in the regulation of protein homeostasis, cell proliferation, and cytokine gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ALIS:

Aggresome-like induced structures

BM:

Bone marrow

CVB3:

Coxsackievirus B3

DALIS:

Dendritic aggresome-like induced structures

DC:

Dendritic cells

DSS:

Dextran sulfate sodium

EAE:

Experimental autoimmune encephalitis

EBV:

Epstein–Barr virus

IP:

Immunoproteasome

JASL:

Japanese auto-inflammatory syndrome with lipodystrophy

LCMV:

Lymphochoriomeningitis virus

LMP:

Low-molecular-weight polypeptide

LPS:

Lipopolysaccharide

MEF:

Mouse embryo fibroblasts

NO:

Nitric oxide

NNS:

Nakajo-Nishimura syndrome

PA28:

Proteasome activator 28

PAMP:

Pathogen-associated molecular patterns

PBMC:

Peripheral blood mononuclear cells

POMP:

Proteasome maturation protein

RA:

Rheumatoid arthritis

ROS:

Reactive oxygen species

SP:

Standard proteasome

TAP:

Transporter associated with antigen processing

TLR:

Toll-like receptor

References

  1. Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    Article  PubMed  CAS  Google Scholar 

  2. Baumeister W, Walz J, Zuhl F, Seemüller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92(3):367–380

    Article  PubMed  CAS  Google Scholar 

  3. Groll M, Bochtler M, Brandstetter H, Clausen T, Huber R (2005) Molecular machines for protein degradation. Chembiochem 6(2):222–256

    Article  PubMed  CAS  Google Scholar 

  4. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  PubMed  CAS  Google Scholar 

  5. Weissman AM (2001) Themes and variations on ubiquitylation. Natl Rev Mol Cell Biol 2(3):169–178

    Article  CAS  Google Scholar 

  6. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428

    PubMed  CAS  Google Scholar 

  7. Kloetzel PM (2004) The proteasome and MHC class I antigen processing. Biochim Biophys Acta 1695(1–3):225–233

    Article  PubMed  CAS  Google Scholar 

  8. Niedermann G, Butz S, Ihlenfeldt HG, Grimm R, Lucchiari M, Hoschutzky H, Jung G, Maier B, Eichmann K (1995) Contribution of proteasome-mediated proteolysis to the hierarchy of epitopes presented by major histocompatibility complex class I molecules. Immunity 2(3):289–299

    Article  PubMed  CAS  Google Scholar 

  9. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78(5):761–771

    Article  PubMed  CAS  Google Scholar 

  10. Monaco JJ (1992) A molecular model of MHC class-I-restricted antigen processing. Immunol Today 13(5):173–179

    Article  PubMed  CAS  Google Scholar 

  11. Brown MG, Driscoll J, Monaco JJ (1991) Structural and serological similarity of MHC-linked LMP and proteasome (multicatalytic proteinase) complexes. Nature 353(6342):355–357

    Article  PubMed  CAS  Google Scholar 

  12. Monaco JJ, McDevitt HO (1982) Identification of a fourth class of proteins linked to the murine major histocompatibility complex. Proc Natl Acad Sci USA 79(9):3001–3005

    Article  PubMed  CAS  Google Scholar 

  13. Martinez CK, Monaco JJ (1991) Homology of proteasome subunits to a major histocompatibility complex-linked LMP gene. Nature 353(6345):664–667

    Article  PubMed  CAS  Google Scholar 

  14. Ortiz-Navarrete V, Seelig A, Gernold M, Frentzel S, Kloetzel PM, Hämmerling GJ (1991) Subunit of the ‘20S’ proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex. Nature 353(6345):662–664

    Article  PubMed  CAS  Google Scholar 

  15. Yang Y, Waters JB, Früh K, Peterson PA (1992) Proteasomes are regulated by interferon gamma: implications for antigen processing. Proc Natl Acad Sci USA 89(11):4928–4932

    Article  PubMed  CAS  Google Scholar 

  16. Monaco JJ, McDevitt HO (1984) H-2-linked low-molecular weight polypeptide antigens assemble into an unusual macromolecular complex. Nature 309(5971):797–799

    Article  PubMed  CAS  Google Scholar 

  17. Monaco JJ, McDevitt HO (1986) The LMP antigens: a stable MHC-controlled multisubunit protein complex. Hum Immunol 15(4):416–426

    Article  PubMed  CAS  Google Scholar 

  18. Cho S, Attaya M, Brown MG, Monaco JJ (1991) A cluster of transcribed sequences between the Pb and Ob genes of the murine major histocompatibility complex. Proc Natl Acad Sci USA 88(12):5197–5201

    Article  PubMed  CAS  Google Scholar 

  19. Akiyama K, Yokota K, Kagawa S, Shimbara N, Tamura T, Akioka H, Nothwang HG, Noda C, Tanaka K, Ichihara A (1994) cDNA cloning and interferon gamma down-regulation of proteasomal subunits X and Y. Science 265(5176):1231–1234

    Article  PubMed  CAS  Google Scholar 

  20. Früh K, Gossen M, Wang K, Bujard H, Peterson PA, Yang Y (1994) Displacement of housekeeping proteasome subunits by MHC-encoded LMPs: a newly discovered mechanism for modulating the multicatalytic proteinase complex. EMBO J 13(14):3236–3244

    PubMed  Google Scholar 

  21. Belich MP, Glynne RJ, Senger G, Sheer D, Trowsdale J (1994) Proteasome components with reciprocal expression to that of the MHC-encoded LMP proteins. Curr Biol 4(9):769–776

    Article  PubMed  CAS  Google Scholar 

  22. Heink S, Ludwig D, Kloetzel PM, Krüger E (2005) IFN-gamma-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc Natl Acad Sci USA 102(26):9241–9246

    Article  PubMed  CAS  Google Scholar 

  23. Boes B, Hengel H, Ruppert T, Multhaup G, Koszinowski UH, Kloetzel PM (1994) Interferon gamma stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. J Exp Med 179(3):901–909

    Article  PubMed  CAS  Google Scholar 

  24. Tanaka K (1994) Role of proteasomes modified by interferon-gamma in antigen processing. J Leukoc Biol 56(5):571–575

    PubMed  CAS  Google Scholar 

  25. Gaczynska M, Rock KL, Goldberg AL (1993) Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365(6443):264–267

    Article  PubMed  CAS  Google Scholar 

  26. Gaczynska M, Rock KL, Spies T, Goldberg AL (1994) Peptidase activities of proteasomes are differentially regulated by the major histocompatibility complex-encoded genes for LMP2 and LMP7. Proc Natl Acad Sci USA 91(20):9213–9217

    Article  PubMed  CAS  Google Scholar 

  27. Toes RE, Nussbaum AK, Degermann S, Schirle M, Emmerich NP, Kraft M, Laplace C, Zwinderman A, Dick TP, Müller J, Schönfisch B, Schmid C, Fehling HJ, Stevanovic S, Rammensee HG, Schild H (2001) Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J Exp Med 194(1):1–12

    Article  PubMed  CAS  Google Scholar 

  28. Fehling HJ, Swat W, Laplace C, Kühn R, Rajewsky K, Müller U, von Boehmer H (1994) MHC class I expression in mice lacking the proteasome subunit LMP-7. Science 265(5176):1234–1237

    Article  PubMed  CAS  Google Scholar 

  29. Van Kaer L, Ashton-Rickardt PG, Eichelberger M, Gaczynska M, Nagashima K, Rock KL, Goldberg AL, Doherty PC, Tonegawa S (1994) Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity 1(7):533–541

    Article  PubMed  Google Scholar 

  30. Strehl B, Joeris T, Rieger M, Visekruna A, Textoris-Taube K, Kaufmann SH, Kloetzel PM, Kuckelkorn U, Steinhoff U (2006) Immunoproteasomes are essential for clearance of Listeria monocytogenes in nonlymphoid tissues but not for induction of bacteria-specific CD8+ T cells. J Immunol 177(9):6238–6244

    PubMed  CAS  Google Scholar 

  31. Sibille C, Gould KG, Willard-Gallo K, Thomson S, Rivett AJ, Powis S, Butcher GW, De Baetselier P (1995) LMP2+ proteasomes are required for the presentation of specific antigens to cytotoxic T lymphocytes. Curr Biol 5(8):923–930

    Article  PubMed  CAS  Google Scholar 

  32. Cerundolo V, Kelly A, Elliott T, Trowsdale J, Townsend A (1995) Genes encoded in the major histocompatibility complex affecting the generation of peptides for TAP transport. Eur J Immunol 25(2):554–562

    Article  PubMed  CAS  Google Scholar 

  33. Groettrup M, Kraft R, Kostka S, Standera S, Stohwasser R, Kloetzel PM (1996) A third interferon-gamma-induced subunit exchange in the 20S proteasome. Eur J Immunol 26(4):863–869

    Article  PubMed  CAS  Google Scholar 

  34. Nandi D, Jiang H, Monaco JJ (1996) Identification of MECL-1 (LMP-10) as the third IFN-gamma-inducible proteasome subunit. J Immunol 156(7):2361–2364

    PubMed  CAS  Google Scholar 

  35. Larsen F, Solheim J, Kristensen T, Kolsto AB, Prydz H (1993) A tight cluster of five unrelated human genes on chromosome 16q22.1. Hum Mol Genet 2(10):1589–1595

    Article  PubMed  CAS  Google Scholar 

  36. Sijts AJ, Standera S, Toes RE, Ruppert T, Beekman NJ, van Veelen PA, Ossendorp FA, Melief CJ, Kloetzel PM (2000) MHC class I antigen processing of an adenovirus CTL epitope is linked to the levels of immunoproteasomes in infected cells. J Immunol 164(9):4500–4506

    PubMed  CAS  Google Scholar 

  37. Schwarz K, van Den Broek M, Kostka S, Kraft R, Soza A, Schmidtke G, Kloetzel PM, Groettrup M (2000) Overexpression of the proteasome subunits LMP2, LMP7, and MECL-1, but not PA28 alpha/beta, enhances the presentation of an immunodominant lymphocytic choriomeningitis virus T cell epitope. J Immunol 165(2):768–778

    PubMed  CAS  Google Scholar 

  38. Noda C, Tanahashi N, Shimbara N, Hendil KB, Tanaka K (2000) Tissue distribution of constitutive proteasomes, immunoproteasomes, and PA28 in rats. Biochem Biophys Res Commun 277(2):348–354

    Article  PubMed  CAS  Google Scholar 

  39. Haorah J, Heilman D, Diekmann C, Osna N, Donohue TM Jr, Ghorpade A, Persidsky Y (2004) Alcohol and HIV decrease proteasome and immunoproteasome function in macrophages: implications for impaired immune function during disease. Cell Immunol 229(2):139–148

    Article  PubMed  CAS  Google Scholar 

  40. Frisan T, Levitsky V, Masucci MG (2000) Variations in proteasome subunit composition and enzymatic activity in B-lymphoma lines and normal B cells. Int J Cancer 88(6):881–888

    Article  PubMed  CAS  Google Scholar 

  41. Frisan T, Levitsky V, Polack A, Masucci MG (1998) Phenotype-dependent differences in proteasome subunit composition and cleavage specificity in B cell lines. J Immunol 160(7):3281–3289

    PubMed  CAS  Google Scholar 

  42. Altun M, Galardy PJ, Shringarpure R, Hideshima T, LeBlanc R, Anderson KC, Ploegh HL, Kessler BM (2005) Effects of PS-341 on the activity and composition of proteasomes in multiple myeloma cells. Cancer Res 65(17):7896–7901

    PubMed  CAS  Google Scholar 

  43. Macagno A, Gilliet M, Sallusto F, Lanzavecchia A, Nestle FO, Groettrup M (1999) Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation. Eur J Immunol 29(12):4037–4042

    Article  PubMed  CAS  Google Scholar 

  44. Link C, Gavioli R, Ebensen T, Canella A, Reinhard E, Guzman CA (2004) The Toll-like receptor ligand MALP-2 stimulates dendritic cell maturation and modulates proteasome composition and activity. Eur J Immunol 34(3):899–907

    Article  PubMed  CAS  Google Scholar 

  45. Macagno A, Kuehn L, de Giuli R, Groettrup M (2001) Pronounced up-regulation of the PA28alpha/beta proteasome regulator but little increase in the steady-state content of immunoproteasome during dendritic cell maturation. Eur J Immunol 31(11):3271–3280

    Article  PubMed  CAS  Google Scholar 

  46. Ossendorp F, Fu N, Camps M, Granucci F, Gobin SJ, van den Elsen PJ, Schuurhuis D, Adema GJ, Lipford GB, Chiba T, Sijts A, Kloetzel PM, Ricciardi-Castagnoli P, Melief CJ (2005) Differential expression regulation of the alpha and beta subunits of the PA28 proteasome activator in mature dendritic cells. J Immunol 174(12):7815–7822

    PubMed  CAS  Google Scholar 

  47. Li J, Schuler-Thurner B, Schuler G, Huber C, Seliger B (2001) Bipartite regulation of different components of the MHC class I antigen-processing machinery during dendritic cell maturation. Int Immunol 13(12):1515–1523

    Article  PubMed  CAS  Google Scholar 

  48. Guillaume B, Chapiro J, Stroobant V, Colau D, Van Holle B, Parvizi G, Bousquet-Dubouch MP, Theate I, Parmentier N, Van den Eynde BJ (2010) Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules. Proc Natl Acad Sci USA 107(43):18599–18604

    Article  PubMed  CAS  Google Scholar 

  49. Ebstein F, Lange N, Urban S, Seifert U, Krüger E, Kloetzel PM (2009) Maturation of human dendritic cells is accompanied by functional remodelling of the ubiquitin-proteasome system. Int J Biochem Cell Biol 41(5):1205–1215

    Article  PubMed  CAS  Google Scholar 

  50. Barton LF, Cruz M, Rangwala R, Deepe GS Jr, Monaco JJ (2002) Regulation of immunoproteasome subunit expression in vivo following pathogenic fungal infection. J Immunol 169(6):3046–3052

    PubMed  CAS  Google Scholar 

  51. Chatterjee-Kishore M, Wright KL, Ting JP, Stark GR (2000) How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene. EMBO J 19(15):4111–4122

    Article  PubMed  CAS  Google Scholar 

  52. Visekruna A, Slavova N, Dullat S, Grone J, Kroesen AJ, Ritz JP, Buhr HJ, Steinhoff U (2009) Expression of catalytic proteasome subunits in the gut of patients with Crohn’s disease. Int J Colorectal Dis 24(10):1133–1139

    Article  PubMed  Google Scholar 

  53. Visekruna A, Joeris T, Seidel D, Kroesen A, Loddenkemper C, Zeitz M, Kaufmann SH, Schmidt-Ullrich R, Steinhoff U (2006) Proteasome-mediated degradation of IkappaBalpha and processing of p105 in Crohn disease and ulcerative colitis. J Clin Invest 116(12):3195–3203

    Article  PubMed  CAS  Google Scholar 

  54. Chen M, Tabaczewski P, Truscott SM, Van Kaer L, Stroynowski I (2005) Hepatocytes express abundant surface class I MHC and efficiently use transporter associated with antigen processing, tapasin, and low molecular weight polypeptide proteasome subunit components of antigen processing and presentation pathway. J Immunol 175(2):1047–1055

    PubMed  CAS  Google Scholar 

  55. Vasuri F, Capizzi E, Bellavista E, Mishto M, Santoro A, Fiorentino M, Capri M, Cescon M, Grazi GL, Grigioni WF, D’Errico-Grigioni A, Franceschi C (2010) Studies on immunoproteasome in human liver. Part I: absence in fetuses, presence in normal subjects, and increased levels in chronic active hepatitis and cirrhosis. Biochem Biophys Res Commun 397(2):301–306

    Article  PubMed  CAS  Google Scholar 

  56. Loukissa A, Cardozo C, Altschuller-Felberg C, Nelson JE (2000) Control of LMP7 expression in human endothelial cells by cytokines regulating cellular and humoral immunity. Cytokine 12(9):1326–1330

    Article  PubMed  CAS  Google Scholar 

  57. Roby KF, Yang Y, Gershon D, Hunt JS (1995) Cellular distribution of proteasome subunit Lmp7 mRNA and protein in human placentas. Immunology 86(3):469–474

    PubMed  CAS  Google Scholar 

  58. Baldovino S, Piccinini M, Anselmino A, Ramondetti C, Rinaudo MT, Costanzo P, Sena LM, Roccatello D (2006) Structural and functional properties of proteasomes purified from the human kidney. J Nephrol 19(6):710–716

    PubMed  CAS  Google Scholar 

  59. Singh S, Awasthi N, Egwuagu CE, Wagner BJ (2002) Immunoproteasome expression in a nonimmune tissue, the ocular lens. Arch Biochem Biophys 405(2):147–153

    Article  PubMed  CAS  Google Scholar 

  60. Hussong SA, Kapphahn RJ, Phillips SL, Maldonado M, Ferrington DA (2010) Immunoproteasome deficiency alters retinal proteasome’s response to stress. J Neurochem 113(6):1481–1490

    PubMed  CAS  Google Scholar 

  61. Ferrington DA, Hussong SA, Roehrich H, Kapphahn RJ, Kavanaugh SM, Heuss ND, Gregerson DS (2008) Immunoproteasome responds to injury in the retina and brain. J Neurochem 106(1):158–169

    Article  PubMed  CAS  Google Scholar 

  62. Piccinini M, Mostert M, Croce S, Baldovino S, Papotti M, Rinaudo MT (2003) Interferon-gamma-inducible subunits are incorporated in human brain 20S proteasome. J Neuroimmunol 135(1–2):135–140

    Article  PubMed  CAS  Google Scholar 

  63. Mishto M, Bellavista E, Santoro A, Stolzing A, Ligorio C, Nacmias B, Spazzafumo L, Chiappelli M, Licastro F, Sorbi S, Pession A, Ohm T, Grune T, Franceschi C (2006) Immunoproteasome and LMP2 polymorphism in aged and Alzheimer’s disease brains. Neurobiol Aging 27(1):54–66

    Article  PubMed  CAS  Google Scholar 

  64. Nijholt DA, de Graaf TR, van Haastert ES, Oliveira AO, Berkers CR, Zwart R, Ovaa H, Baas F, Hoozemans JJ, Scheper W (2011) Endoplasmic reticulum stress activates autophagy but not the proteasome in neuronal cells: implications for Alzheimer’s disease. Cell Death Differ 18(6):1071–1081

    Article  PubMed  CAS  Google Scholar 

  65. Diaz-Hernandez M, Hernandez F, Martin-Aparicio E, Gomez-Ramos P, Moran MA, Castano JG, Ferrer I, Avila J, Lucas JJ (2003) Neuronal induction of the immunoproteasome in Huntington’s disease. J Neurosci 23(37):11653–11661

    PubMed  CAS  Google Scholar 

  66. Diaz-Hernandez M, Martin-Aparicio E, Avila J, Hernandez F, Lucas JJ (2004) Enhanced induction of the immunoproteasome by interferon gamma in neurons expressing mutant Huntingtin. Neurotoxic Res 6(6):463–468

    Article  Google Scholar 

  67. Gavilan MP, Castano A, Torres M, Portavella M, Caballero C, Jimenez S, Garcia-Martinez A, Parrado J, Vitorica J, Ruano D (2009) Age-related increase in the immunoproteasome content in rat hippocampus: molecular and functional aspects. J Neurochem 108(1):260–272

    Article  PubMed  CAS  Google Scholar 

  68. Mishto M, Santoro A, Bellavista E, Bonafe M, Monti D, Franceschi C (2003) Immunoproteasomes and immunosenescence. Ageing Res Rev 2(4):419–432

    Article  PubMed  CAS  Google Scholar 

  69. Kremer M, Henn A, Kolb C, Basler M, Moebius J, Guillaume B, Leist M, Van den Eynde BJ, Groettrup M (2010) Reduced immunoproteasome formation and accumulation of immunoproteasomal precursors in the brains of lymphocytic choriomeningitis virus-infected mice. J Immunol 185(9):5549–5560

    Article  PubMed  CAS  Google Scholar 

  70. Godbout JP, Johnson RW (2009) Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Immunol Allergy Clin North Am 29(2):321–337

    Article  PubMed  Google Scholar 

  71. Lelouard H, Gatti E, Cappello F, Gresser O, Camosseto V, Pierre P (2002) Transient aggregation of ubiquitinated proteins during dendritic cell maturation. Nature 417(6885):177–182

    Article  PubMed  CAS  Google Scholar 

  72. Canadien V, Tan T, Zilber R, Szeto J, Perrin AJ, Brumell JH (2005) Cutting edge: microbial products elicit formation of dendritic cell aggresome-like induced structures in macrophages. J Immunol 174(5):2471–2475

    PubMed  CAS  Google Scholar 

  73. Szeto J, Kaniuk NA, Canadien V, Nisman R, Mizushima N, Yoshimori T, Bazett-Jones DP, Brumell JH (2006) ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy. Autophagy 2(3):189–199

    PubMed  CAS  Google Scholar 

  74. Seifert U, Bialy LP, Ebstein F, Bech-Otschir D, Voigt A, Schröter F, Prozorovski T, Lange N, Steffen J, Rieger M, Kuckelkorn U, Aktas O, Kloetzel PM, Krüger E (2010) Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142(4):613–624

    Article  PubMed  CAS  Google Scholar 

  75. Sijts AJ, Ruppert T, Rehermann B, Schmidt M, Koszinowski U, Kloetzel PM (2000) Efficient generation of a hepatitis B virus cytotoxic T lymphocyte epitope requires the structural features of immunoproteasomes. J Exp Med 191(3):503–514

    Article  PubMed  CAS  Google Scholar 

  76. Ferrer I, Martin B, Castano JG, Lucas JJ, Moreno D, Olive M (2004) Proteasomal expression, induction of immunoproteasome subunits, and local MHC class I presentation in myofibrillar myopathy and inclusion body myositis. J Neuropathol Exp Neurol 63(5):484–498

    PubMed  CAS  Google Scholar 

  77. French BA, Oliva J, Bardag-Gorce F, French SW (2011) The immunoproteasome in steatohepatitis: its role in Mallory-Denk body formation. Exp Mol Pathol 90(3):252–256

    Article  PubMed  CAS  Google Scholar 

  78. Arima K, Kinoshita A, Mishima H, Kanazawa N, Kaneko T, Mizushima T, Ichinose K, Nakamura H, Tsujino A, Kawakami A, Matsunaka M, Kasagi S, Kawano S, Kumagai S, Ohmura K, Mimori T, Hirano M, Ueno S, Tanaka K, Tanaka M, Toyoshima I, Sugino H, Yamakawa A, Tanaka K, Niikawa N, Furukawa F, Murata S, Eguchi K, Ida H, Yoshiura K (2011) Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci USA 108(36):14914–14919

    Article  PubMed  CAS  Google Scholar 

  79. Kitamura A, Maekawa Y, Uehara H, Izumi K, Kawachi I, Nishizawa M, Toyoshima Y, Takahashi H, Standley DM, Tanaka K, Hamazaki J, Murata S, Obara K, Toyoshima I, Yasutomo K (2011) A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest 121(10):4150–4160. doi:10.1172/JCI58414

    Article  PubMed  CAS  Google Scholar 

  80. Opitz E, Koch A, Klingel K, Schmidt F, Prokop S, Rahnefeld A, Sauter M, Heppner FL, Volker U, Kandolf R, Kuckelkorn U, Stangl K, Krüger E, Kloetzel PM, Voigt A (2011) Impairment of immunoproteasome function by beta5i/LMP7 subunit deficiency results in severe enterovirus myocarditis. PLoS Pathog 7(9):e1002233

    Article  PubMed  CAS  Google Scholar 

  81. Basler M, Dajee M, Moll C, Groettrup M, Kirk CJ (2010) Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. J Immunol 185(1):634–641

    Article  PubMed  CAS  Google Scholar 

  82. Schmidt N, Gonzalez E, Visekruna A, Kühl AA, Loddenkemper C, Mollenkopf H, Kaufmann SH, Steinhoff U, Joeris T (2010) Targeting the proteasome: partial inhibition of the proteasome by bortezomib or deletion of the immunosubunit LMP7 attenuates experimental colitis. Gut 59(7):896–906

    Article  PubMed  CAS  Google Scholar 

  83. Frohner IE, Bourgeois C, Yatsyk K, Majer O, Kuchler K (2009) Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol Microbiol 71(1):240–252

    Article  PubMed  CAS  Google Scholar 

  84. Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32(9):790–796

    Article  PubMed  CAS  Google Scholar 

  85. Teoh CY, Davies KJ (2004) Potential roles of protein oxidation and the immunoproteasome in MHC class I antigen presentation: the ‘PrOxI’ hypothesis. Arch Biochem Biophys 423(1):88–96

    Article  PubMed  CAS  Google Scholar 

  86. Grune T, Reinheckel T, Joshi M, Davies KJ (1995) Proteolysis in cultured liver epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome. J Biol Chem 270(5):2344–2351

    Article  PubMed  CAS  Google Scholar 

  87. Grune T, Reinheckel T, Davies KJ (1996) Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome. J Biol Chem 271(26):15504–15509

    Article  PubMed  CAS  Google Scholar 

  88. Grune T, Reinheckel T, Davies KJ (1997) Degradation of oxidized proteins in mammalian cells. Faseb J 11(7):526–534

    PubMed  CAS  Google Scholar 

  89. Ullrich O, Reinheckel T, Sitte N, Hass R, Grune T, Davies KJ (1999) Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc Natl Acad Sci USA 96(11):6223–6228

    Article  PubMed  CAS  Google Scholar 

  90. Ullrich O, Sitte N, Sommerburg O, Sandig V, Davies KJ, Grune T (1999) Influence of DNA binding on the degradation of oxidized histones by the 20S proteasome. Arch Biochem Biophys 362(2):211–216

    Article  PubMed  CAS  Google Scholar 

  91. Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83(3–4):301–310

    Article  PubMed  CAS  Google Scholar 

  92. Pickering AM, Koop AL, Teoh CY, Ermak G, Grune T, Davies KJ (2010) The immunoproteasome, the 20S proteasome and the PA28alphabeta proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem J 432(3):585–594

    Article  PubMed  CAS  Google Scholar 

  93. Ding Q, Martin S, Dimayuga E, Bruce-Keller AJ, Keller JN (2006) LMP2 knock-out mice have reduced proteasome activities and increased levels of oxidatively damaged proteins. Antioxid Redox Signal 8(1–2):130–135

    Article  PubMed  CAS  Google Scholar 

  94. Shringarpure R, Grune T, Mehlhase J, Davies KJ (2003) Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 278(1):311–318

    Article  PubMed  CAS  Google Scholar 

  95. Inai Y, Nishikimi M (2002) Increased degradation of oxidized proteins in yeast defective in 26 S proteasome assembly. Arch Biochem Biophys 404(2):279–284

    Article  PubMed  CAS  Google Scholar 

  96. Sahakian JA, Szweda LI, Friguet B, Kitani K, Levine RL (1995) Aging of the liver: proteolysis of oxidatively modified glutamine synthetase. Arch Biochem Biophys 318(2):411–417

    Article  PubMed  CAS  Google Scholar 

  97. Grune T, Blasig IE, Sitte N, Roloff B, Haseloff R, Davies KJ (1998) Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J Biol Chem 273(18):10857–10862

    Article  PubMed  CAS  Google Scholar 

  98. Ferrington DA, Sun H, Murray KK, Costa J, Williams TD, Bigelow DJ, Squier TC (2001) Selective degradation of oxidized calmodulin by the 20 S proteasome. J Biol Chem 276(2):937–943

    Article  PubMed  CAS  Google Scholar 

  99. Basler M, Moebius J, Elenich L, Groettrup M, Monaco JJ (2006) An altered T cell repertoire in MECL-1-deficient mice. J Immunol 176(11):6665–6672

    PubMed  CAS  Google Scholar 

  100. Zaiss DM, de Graaf N, Sijts AJ (2008) The proteasome immunosubunit multicatalytic endopeptidase complex-like 1 is a T-cell-intrinsic factor influencing homeostatic expansion. Infect Immun 76(3):1207–1213

    Article  PubMed  CAS  Google Scholar 

  101. Chen W, Norbury CC, Cho Y, Yewdell JW, Bennink JR (2001) Immunoproteasomes shape immunodominance hierarchies of antiviral CD8(+) T cells at the levels of T cell repertoire and presentation of viral antigens. J Exp Med 193(11):1319–1326

    Article  PubMed  CAS  Google Scholar 

  102. Moebius J, van den Broek M, Groettrup M, Basler M (2010) Immunoproteasomes are essential for survival and expansion of T cells in virus-infected mice. Eur J Immunol 40(12):3439–3449. doi:10.1002/eji.201040620

    Article  PubMed  CAS  Google Scholar 

  103. Kuhn DJ, Hunsucker SA, Chen Q, Voorhees PM, Orlowski M, Orlowski RZ (2009) Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 113(19):4667–4676

    Article  PubMed  CAS  Google Scholar 

  104. Singh AV, Bandi M, Aujay MA, Kirk CJ, Hark DE, Raje N, Chauhan D, Anderson KC (2011) PR-924, a selective inhibitor of the immunoproteasome subunit LMP-7, blocks multiple myeloma cell growth both in vitro and in vivo. Br J Haematol 152(2):155–163

    Article  PubMed  CAS  Google Scholar 

  105. Caudill CM, Jayarapu K, Elenich L, Monaco JJ, Colbert RA, Griffin TA (2006) T cells lacking immunoproteasome subunits MECL-1 and LMP7 hyperproliferate in response to polyclonal mitogens. J Immunol 176(7):4075–4082

    PubMed  CAS  Google Scholar 

  106. Naujokat C, Hoffmann S (2002) Role and function of the 26S proteasome in proliferation and apoptosis. Lab Invest 82(8):965–980

    PubMed  CAS  Google Scholar 

  107. Morgan DO (1995) Principles of CDK regulation. Nature 374(6518):131–134

    Article  PubMed  CAS  Google Scholar 

  108. Konstantinova IM, Tsimokha AS, Mittenberg AG (2008) Role of proteasomes in cellular regulation. Int Rev Cell Mol Biol 267:59–124

    Article  PubMed  CAS  Google Scholar 

  109. Roninson IB (2002) Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett 179(1):1–14

    Article  PubMed  CAS  Google Scholar 

  110. Yang Z, Gagarin D, St Laurent G 3rd, Hammell N, Toma I, Hu CA, Iwasa A, McCaffrey TA (2009) Cardiovascular inflammation and lesion cell apoptosis: a novel connection via the interferon-inducible immunoproteasome. Arterioscler Thromb Vasc Biol 29(8):1213–1219

    Article  PubMed  CAS  Google Scholar 

  111. Coulombe P, Rodier G, Pelletier S, Pellerin J, Meloche S (2003) Rapid turnover of extracellular signal-regulated kinase 3 by the ubiquitin-proteasome pathway defines a novel paradigm of mitogen-activated protein kinase regulation during cellular differentiation. Mol Cell Biol 23(13):4542–4558

    Article  PubMed  CAS  Google Scholar 

  112. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663

    Article  PubMed  CAS  Google Scholar 

  113. Hensley SE, Zanker D, Dolan BP, David A, Hickman HD, Embry AC, Skon CN, Grebe KM, Griffin TA, Chen W, Bennink JR, Yewdell JW (2010) Unexpected role for the immunoproteasome subunit LMP2 in antiviral humoral and innate immune responses. J Immunol 184(8):4115–4122

    Article  PubMed  CAS  Google Scholar 

  114. Muchamuel T, Basler M, Aujay MA, Suzuki E, Kalim KW, Lauer C, Sylvain C, Ring ER, Shields J, Jiang J, Shwonek P, Parlati F, Demo SD, Bennett MK, Kirk CJ, Groettrup M (2009) A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med 15(7):781–787

    Article  PubMed  CAS  Google Scholar 

  115. Firestein GS (2004) NF-kappaB: Holy Grail for rheumatoid arthritis? Arthritis Rheum 50(8):2381–2386

    Article  PubMed  Google Scholar 

  116. Agarwal S, Deschner J, Long P, Verma A, Hofman C, Evans CH, Piesco N (2004) Role of NF-kappaB transcription factors in antiinflammatory and proinflammatory actions of mechanical signals. Arthritis Rheum 50(11):3541–3548

    Article  PubMed  CAS  Google Scholar 

  117. Reis J, Hassan F, Guan XQ, Shen J, Monaco JJ, Papasian CJ, Qureshi AA, Van Way CW 3rd, Vogel SN, Morrison DC, Qureshi N (2011) The immunoproteasomes regulate LPS-induced TRIF/TRAM signaling pathway in murine macrophages. Cell Biochem Biophys 60(1–2):119–126

    Article  PubMed  CAS  Google Scholar 

  118. Liu Y, Ramot Y, Torrelo A, Paller AS, Si N, Babay S, Kim PW, Sheikh A, Lee CC, Chen Y, Vera A, Zhang X, Goldbach-Mansky R, Zlotogorski A (2011) Mutations in PSMB8 cause CANDLE syndrome with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum doi. doi:10.1002/art.33368

    Google Scholar 

  119. Park GB, Kim YS, Lee HK, Song H, Cho DH, Lee WJ, Hur DY (2010) Endoplasmic reticulum stress-mediated apoptosis of EBV-transformed B cells by cross-linking of CD70 is dependent upon generation of reactive oxygen species and activation of p38 MAPK and JNK pathway. J Immunol 185(12):7274–7284

    Article  PubMed  CAS  Google Scholar 

  120. Zhang J, Bardos T, Li D, Gal I, Vermes C, Xu J, Mikecz K, Finnegan A, Lipkowitz S, Glant TT (2002) Cutting edge: regulation of T cell activation threshold by CD28 costimulation through targeting Cbl-b for ubiquitination. J Immunol 169(5):2236–2240

    PubMed  CAS  Google Scholar 

  121. Oh KI, Seo JN (2009) Expression pattern of immunoproteasome subunits in human thymus. Immune Netw 9(6):285–288

    Article  PubMed  Google Scholar 

  122. Egerer T, Martinez-Gamboa L, Dankof A, Stuhlmüller B, Dörner T, Krenn V, Egerer K, Rudolph PE, Burmester GR, Feist E (2006) Tissue-specific up-regulation of the proteasome subunit beta5i (LMP7) in Sjögren’s syndrome. Arthritis Rheum 54(5):1501–1508

    Article  PubMed  CAS  Google Scholar 

  123. Coppo R, Camilla R, Alfarano A, Balegno S, Mancuso D, Peruzzi L, Amore A, Dal Canton A, Sepe V, Tovo P (2009) Upregulation of the immunoproteasome in peripheral blood mononuclear cells of patients with IgA nephropathy. Kidney Int 75(5):536–541

    Article  PubMed  CAS  Google Scholar 

  124. Nagata N, Oshida T, Yoshida NL, Yuyama N, Sugita Y, Tsujimoto G, Katsunuma T, Akasawa A, Saito H (2003) Analysis of highly expressed genes in monocytes from atopic dermatitis patients. Int Arch Allergy Immunol 132(2):156–167

    Article  PubMed  CAS  Google Scholar 

  125. Visekruna A, Joeris T, Schmidt N, Lawrenz M, Ritz JP, Buhr HJ, Steinhoff U (2009) Comparative expression analysis and characterization of 20S proteasomes in human intestinal tissues: the proteasome pattern as diagnostic tool for IBD patients. Inflamm Bowel Dis 15(4):526–533

    Article  PubMed  Google Scholar 

  126. Kuckelkorn U, Ruppert T, Strehl B, Jungblut PR, Zimny-Arndt U, Lamer S, Prinz I, Drung I, Kloetzel PM, Kaufmann SH, Steinhoff U (2002) Link between organ-specific antigen processing by 20S proteasomes and CD8(+) T cell-mediated autoimmunity. J Exp Med 195(8):983–990

    Article  PubMed  CAS  Google Scholar 

  127. Fitzpatrick LR, Small JS, Poritz LS, McKenna KJ, Koltun WA (2007) Enhanced intestinal expression of the proteasome subunit low molecular mass polypeptide 2 in patients with inflammatory bowel disease. Dis Colon Rectum 50(3):337–348 (discussion 348–350)

    Article  PubMed  Google Scholar 

  128. Ushiama S, Nakamura T, Ishijima T, Misaka T, Abe K, Nakai Y (2010) The hepatic genes for immunoproteasome are upregulated by refeeding after fasting in the rat. Biosci Biotechnol Biochem 74(6):1320–1323

    Article  PubMed  CAS  Google Scholar 

  129. Bardag-Gorce F, Oliva J, Li J, French BA, French SW (2010) SAMe prevents the induction of the immunoproteasome and preserves the 26S proteasome in the DDC-induced MDB mouse model. Exp Mol Pathol 88(3):353–362

    Article  PubMed  CAS  Google Scholar 

  130. Ethen CM, Reilly C, Feng X, Olsen TW, Ferrington DA (2007) Age-related macular degeneration and retinal protein modification by 4-hydroxy-2-nonenal. Invest Ophthalmol Vis Sci 48(8):3469–3479

    Article  PubMed  Google Scholar 

  131. Gelman BB, Nguyen TP (2010) Synaptic proteins linked to HIV-1 infection and immunoproteasome induction: proteomic analysis of human synaptosomes. J Neuroimmune Pharmacol 5(1):92–102

    Article  PubMed  Google Scholar 

  132. Mishto M, Bellavista E, Ligorio C, Textoris-Taube K, Santoro A, Giordano M, D’Alfonso S, Listi F, Nacmias B, Cellini E, Leone M, Grimaldi LM, Fenoglio C, Esposito F, Martinelli-Boneschi F, Galimberti D, Scarpini E, Seifert U, Amato MP, Caruso C, Foschini MP, Kloetzel PM, Franceschi C (2010) Immunoproteasome LMP2 60HH variant alters MBP epitope generation and reduces the risk to develop multiple sclerosis in Italian female population. PLoS One 5(2):e9287

    Article  PubMed  CAS  Google Scholar 

  133. Mishto M, Ligorio C, Bellavista E, Martucci M, Santoro A, Giulioni M, Marucci G, Franceschi C (2011) Immunoproteasome expression is induced in mesial temporal lobe epilepsy. Biochem Biophys Res Commun 408(1):65–70

    Article  PubMed  CAS  Google Scholar 

  134. Husom AD, Peters EA, Kolling EA, Fugere NA, Thompson LV, Ferrington DA (2004) Altered proteasome function and subunit composition in aged muscle. Arch Biochem Biophys 421(1):67–76

    Article  PubMed  CAS  Google Scholar 

  135. Kotamraju S, Matalon S, Matsunaga T, Shang T, Hickman-Davis JM, Kalyanaraman B (2006) Upregulation of immunoproteasomes by nitric oxide: potential antioxidative mechanism in endothelial cells. Free Radic Biol Med 40(6):1034–1044

    Article  PubMed  CAS  Google Scholar 

  136. Zu L, Bedja D, Fox-Talbot K, Gabrielson KL, Van Kaer L, Becker LC, Cai ZP (2010) Evidence for a role of immunoproteasomes in regulating cardiac muscle mass in diabetic mice. J Mol Cell Cardiol 49(1):5–15

    Article  PubMed  CAS  Google Scholar 

  137. Cai ZP, Shen Z, Van Kaer L, Becker LC (2008) Ischemic preconditioning-induced cardioprotection is lost in mice with immunoproteasome subunit low molecular mass polypeptide-2 deficiency. Faseb J 22(12):4248–4257

    Article  PubMed  CAS  Google Scholar 

  138. Martin S, Gee JR, Bruce-Keller AJ, Keller JN (2004) Loss of an individual proteasome subunit alters motor function but not cognitive function or ambulation in mice. Neurosci Lett 357(1):76–78

    Article  PubMed  CAS  Google Scholar 

  139. Hussong SA, Roehrich H, Kapphahn RJ, Maldonado M, Pardue MT, Ferrington DA (2011) A novel role for the immunoproteasome in retinal function. Invest Ophthalmol Vis Sci 52(2):714–723

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the Deutsche Forschungsgemeinschaft: SFB/TR 84 to P.M.K., U.S., Kr 1914/4-1 to E.K., U.S., SFB 740 to E.K., P.M.K., KL421/15 to P.M.K., E.K., SFB TRR19 to P.M.K., SFB TRR 43 to E.K., P.M.K.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elke Krüger or Ulrike Seifert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebstein, F., Kloetzel, PM., Krüger, E. et al. Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell. Mol. Life Sci. 69, 2543–2558 (2012). https://doi.org/10.1007/s00018-012-0938-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0938-0

Keywords

Navigation