Skip to main content
Log in

Steroid myopathy: Some unresolved issues

  • Short Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Steroid myopathy is a non-inflammatory toxic myopathy that occurs as side effect of exogenous and endogenous glucocorticoid excess. The purpose of this review is to examine issues that limit our understanding of this myopathy with respect to nosology, etiopathogenesis, conditioning factors, and muscle fiber selectivity. We suggest that if more data were available on these issues, the understanding of steroid myopathy would be enhanced substantially, thus allowing an early detection of its occurrence (before the appearance of clinical or laboratory signs) and a proper treatment of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Minetto MA, Rainoldi A, Jabre JF. The clinical use of macro and surface electromyography in diagnosis and follow-up of endocrine and drug-induced myopathies. J Endocrinol Invest 2007, 30: 791–6.

    PubMed  CAS  Google Scholar 

  2. Khaleeli AA, Edwards RH, Gohil K, et al. Corticosteroid myopathy: a clinical and pathological study. Clin Endocrinol (Oxf) 1983, 18: 155–66.

    Article  CAS  Google Scholar 

  3. Kanda F, Okuda S, Matsushita T, Takatani K, Kimura KI, Chihara K. Steroid myopathy: pathogenesis and effects of growth hormone and insulin-like growth factor-I administration. Horm Res 2001, 56(Suppl 1): 24–8.

    Article  PubMed  CAS  Google Scholar 

  4. Owczarek J, Jasiska M, Orszulak-Michalak D. Drug-induced myopathies. An overview of the possible mechanisms. Pharmacol Rep 2005, 57: 23–34.

    CAS  Google Scholar 

  5. Ruff RL, Weissmann J. Endocrine myopathies. Neurol Clin 1988, 6: 575–92.

    PubMed  CAS  Google Scholar 

  6. Dumitru D. Myopathies. In: Dumitru D, ed. Electrodiagnostic Medicine. 1st ed. Philadelphia: Hanley & Belfus. 1995, 1031–129.

    Google Scholar 

  7. Mills GH, Kyroussis D, Jenkins P, et al. Respiratory muscle strength in Cushing’s syndrome. Am J Respir Crit Care Med 1999, 160: 1762–5.

    Article  PubMed  CAS  Google Scholar 

  8. Hanson P, Dive A, Brucher JM, Bisteau M, Dangoisse M, Deltombe T. Acute corticosteroid myopathy in intensive care patients. Muscle Nerve 1997, 20: 1371–80.

    Article  PubMed  CAS  Google Scholar 

  9. Pecori Giraldi F, Moro M, Cavagnini F; Study Group on the Hypothalamo-Pituitary-Adrenal Axis of the Italian Society of Endocrinology. Gender-related differences in the presentation and course of Cushing’s disease. J Clin Endocrinol Metab 2003, 88: 1554–8.

    Article  PubMed  Google Scholar 

  10. Faludi G, Gotlieb J, Meyers J. Factors influencing the development of steroid-induced myopathies. Ann N Y Acad Sci 1966, 138: 62–72.

    PubMed  CAS  Google Scholar 

  11. Rich MM, Pinter MJ. Crucial role of sodium channel fast inactivation in muscle fibre inexcitability in a rat model of critical illness myopathy. J Physiol 2003, 547: 555–66.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Schakman O, Gilson H, Thissen JP. Mechanisms of glucocorticoid-induced myopathy. J Endocrinol 2008, 197: 1–10.

    Article  PubMed  CAS  Google Scholar 

  13. Goodlad GA, Clark CM. Glucocorticoid-mediated muscle atrophy: alterations in transcriptional activity of skeletal muscle nuclei. Biochim Biophys Acta 1991, 1097: 166–70.

    Article  PubMed  CAS  Google Scholar 

  14. Inder WJ, Jang C, Obeyesekere VR, Alford FP. Dexamethasone administration inhibits skeletal muscle expression of the androgen receptor and IGF-1 — implications for steroid-induced myopathy. Clin Endocrinol (Oxf) 2010, 73: 126–32.

    CAS  Google Scholar 

  15. Jacquemin V, Butler-Browne GS, Furling D, Mouly V. IL-13 mediates the recruitment of reserve cells for fusion during IGF-1-induced hypertrophy of human myotubes. J Cell Sci 2007, 120: 670–81.

    Article  PubMed  CAS  Google Scholar 

  16. Ma K, Mallidis C, Bhasin S, et al. Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 2003, 285: E363–71.

    PubMed  CAS  Google Scholar 

  17. Gilson H, Schakman O, Combaret L, et al. Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology 2007, 148: 452–60.

    Article  PubMed  CAS  Google Scholar 

  18. Yamamoto D, Ikeshita N, Matsubara T, et al. GHRP-2, a GHS-R agonist, directly acts on myocytes to attenuate the dexamethasone-induced expressions of muscle-specific ubiquitin ligases, Atrogin-1 and MuRF1. Life Sci 2008, 82: 460–6.

    Article  PubMed  CAS  Google Scholar 

  19. Waddell DS, Baehr LM, van den Brandt J, et al. The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab 2008, 295: E785–97.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Zheng B, Ohkawa S, Li H, Roberts-Wilson TK, Price SR. FOXO3a mediates signaling crosstalk that coordinates ubiquitin and atrogin-1/MAFbx expression during glucocorticoid-induced skeletal muscle atrophy. FASEB J 2010, 24: 2660–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Tisdale MJ. Is there a common mechanism linking muscle wasting in various disease types? Curr Opin Support Palliat Care 2007, 1: 287–92.

    Article  PubMed  Google Scholar 

  22. Psarra AM, Solakidi S, Sekeris CE. The mitochondrion as a primary site of action of steroid and thyroid hormones: presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells. Mol Cell Endocrinol 2006, 246: 21–33.

    Article  PubMed  CAS  Google Scholar 

  23. Du J, Wang Y, Hunter R, et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc Natl Acad Sci U S A 2009, 106: 3543–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Dirks-Naylor AJ, Griffiths CL. Glucocorticoid-induced apoptosis and cellular mechanisms of myopathy. J Steroid Biochem Mol Biol 2009, 117: 1–7.

    Article  PubMed  CAS  Google Scholar 

  25. Du J, McEwen B, Manji HK. Glucocorticoid receptors modulate mitochondrial function: A novel mechanism for neuroprotection. Commun Integr Biol 2009, 2: 350–2.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Betters JL, Long JH, Howe KS, et al. Nitric oxide reverses prednisolone-induced inactivation of muscle satellite cells. Muscle Nerve 2008, 37: 203–9.

    Article  PubMed  CAS  Google Scholar 

  27. Horinouchi H, Kumamoto T, Kimura N, Ueyama H, Tsuda T. Myosin loss in denervated rat soleus muscle after dexamethasone treatment. Pathobiology 2005, 72: 108–16.

    Article  PubMed  CAS  Google Scholar 

  28. Mozaffar T, Haddad F, Zeng M, Zhang LY, Adams GR, Baldwin KM. Molecular and cellular defects of skeletal muscle in an animal model of acute quadriplegic myopathy. Muscle Nerve 2007, 35: 55–65.

    Article  PubMed  CAS  Google Scholar 

  29. Qian T, Guo X, Levi AD, Vanni S, Shebert RT, Sipski ML. High-dose methylprednisolone may cause myopathy in acute spinal cord injury patients. Spinal Cord 2005, 43: 199–203.

    Article  PubMed  CAS  Google Scholar 

  30. Ellis JT. Degeneration and regeneration in the muscles of cortisone-treated rabbits. Am J Phys Med 1955, 34: 240–3.

    PubMed  CAS  Google Scholar 

  31. Williams RS. Triamcinolone myopathy. Lancet 1959, 1: 698–701.

    Article  PubMed  CAS  Google Scholar 

  32. Hagstrom JW, Roseman DM, Ellis JT. Debilitating muscular weakness and steroid therapy. A case with detailed clinical and pathological studies. Arch Neurol 1961, 5: 60–7.

    CAS  Google Scholar 

  33. Faludi G, Mills LC, Chayes ZW. Effect of steroids on muscle. Acta Endocrinol (Copenh) 1964, 45: 68–78.

    CAS  Google Scholar 

  34. D’Agostino AN, Chiga M. Cortisone myopathy in rabbits. A light and electron microscopic study. Neurology 1966, 16: 257–63.

    Google Scholar 

  35. Tice LW, Engel AG. The effects of glucocorticoids on red and white muscles in the rat. Am J Pathol 1967, 50: 311–33.

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Afifi AK, Bergman RA, Harvey JC. Steroid myopathy. Clinical, histologic and cytologic observations. Johns Hopkins Med J 1968, 123: 158–73.

    CAS  Google Scholar 

  37. Stern LZ, Gruener R, Kirkpatrick JB, Nemeth P. The fine structure of cortisone-induced myopathy. Exp Neurol 1972, 36: 530–8.

    Article  PubMed  CAS  Google Scholar 

  38. Braunstein PW Jr, DeGirolami U. Experimental corticosteroid myopathy. Acta Neuropathol 1981, 55: 167–72.

    Article  PubMed  Google Scholar 

  39. Dekhuijzen PN, Gayan-Ramirez G, Bisschop A, De Bock V, Dom R, Decramer M. Corticosteroid treatment and nutritional deprivation cause a different pattern of atrophy in rat diaphragm. J Appl Physiol 1995, 78: 629–37.

    PubMed  CAS  Google Scholar 

  40. Decramer M, de Bock V, Dom R. Functional and histologic picture of steroid-induced myopathy in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1996, 153: 1958–64.

    Article  PubMed  CAS  Google Scholar 

  41. Fournier M, Huang ZS, Li H, Da X, Cercek B, Lewis MI. Insulin-like growth factor I prevents corticosteroid-induced diaphragm muscle atrophy in emphysematous hamsters. Am J Physiol Regul Integr Comp Physiol 2003, 285: R34–43.

    PubMed  CAS  Google Scholar 

  42. Engel AG. Electron microscopic observations in thyrotoxic and corticosteroid-induced myopathies. Mayo Clin Proc 1966, 41: 785–96.

    PubMed  CAS  Google Scholar 

  43. Walsh G, DeVivo D, Olson W. Histochemical and ultrastructural changes in rat muscle. Occurrence following adrenal corticotrophic hormone, glucocorticoids, and starvation. Arch Neurol 1971, 24: 83–93.

    CAS  Google Scholar 

  44. Braund KG, Dillon AR, Mikeal RL, August JR. Subclinical myopathy associated with hyperadrenocorticism in the dog. Vet Pathol 1980, 17: 134–48.

    Article  PubMed  CAS  Google Scholar 

  45. Braund KG, Dillon AR, Mikeal RL. Experimental investigation of glucocorticoid-induced myopathy in the dog. Exp Neurol 1980, 68: 50–71.

    Article  PubMed  CAS  Google Scholar 

  46. Horber FF, Hoppeler H, Herren D, et al. Altered skeletal muscle ultrastructure in renal transplant patients on prednisone. Kidney Int 1986, 30: 411–6.

    Article  PubMed  CAS  Google Scholar 

  47. Gardiner PF, Edgerton VR. Contractile responses of rat fast-twitch and slow-twitch muscles to glucocorticoid treatment. Muscle Nerve 1979, 2: 274–81.

    Article  PubMed  CAS  Google Scholar 

  48. Pellegrino MA, D’Antona G, Bortolotto S, et al. Clenbuterol antagonizes glucocorticoid-induced atrophy and fibre type transformation in mice. Exp Physiol 2004, 89: 89–100.

    Article  PubMed  CAS  Google Scholar 

  49. Polla B, D’Antona G, Bottinelli R, Reggiani C. Respiratory muscle fibres: specialisation and plasticity. Thorax 2004, 59: 808–17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Tuncbay TO, Ketel WB, Boshes B. Cortisone effects on myoneural junction. Neurology 1965, 15: 314–20.

    Article  PubMed  CAS  Google Scholar 

  51. Shapiro MS, Namba T, Grob D. The effect of corticotropin on the neuromuscular junction. Morphologic studies in rabbits. Neurology 1968, 18: 1018–22.

    Article  CAS  Google Scholar 

  52. Mitsui T, Umaki Y, Nagasawa M, et al. Motor neuron involvement in a patient with long-term corticosteroid administration. Intern Med 2003, 42: 862–6.

    Article  PubMed  Google Scholar 

  53. Chokroverty S, Reyes MG, Chokroverty M, Kaplan R. Effect of prednisolone on motor end-plate fine structure: a morphometric study in hamsters. Ann Neurol 1978, 3: 358–65.

    Article  PubMed  CAS  Google Scholar 

  54. Lewis MI, Monn SA, Sieck GC. Effect of corticosteroids on diaphragm fatigue, SDH activity, and muscle fiber size. J Appl Physiol 1992, 72: 293–301.

    PubMed  CAS  Google Scholar 

  55. Lieu FK, Powers SK, Herb RA, et al. Exercise and glucocorticoid-induced diaphragmatic myopathy. J Appl Physiol 1993, 75: 763–71.

    PubMed  CAS  Google Scholar 

  56. Polla B, Bottinelli R, Sandoli D, Sardi C, Reggiani C. Cortisone-induced changes in myosin heavy chain distribution in respiratory and hindlimb muscles. Acta Physiol Scand 1994, 151: 353–61.

    Article  PubMed  CAS  Google Scholar 

  57. Dekhuijzen PN, Decramer M. Steroid-induced myopathy and its significance to respiratory disease: a known disease rediscovered. Eur Respir J 1992, 5: 997–1003.

    PubMed  CAS  Google Scholar 

  58. Blanco C, Marazuela M, Flores J, Alvarez J. Severe respiratory failure secondary to Cushing’s myopathy. J Endocrinol Invest 2001, 24: 618–21.

    PubMed  CAS  Google Scholar 

  59. Short KR, Nygren J, Bigelow ML, Nair KS. Effect of short-term prednisone use on blood flow, muscle protein metabolism, and function. J Clin Endocrinol Metab 2004, 89: 6198–207.

    Article  PubMed  CAS  Google Scholar 

  60. Askari A, Vignos PJ Jr, Moskowitz RW. Steroid myopathy in connective tissue disease. Am J Med 1976, 61: 485–92.

    Article  PubMed  CAS  Google Scholar 

  61. Minetto MA, Botter A, Lanfranco F, Baldi M, Ghigo E, Arvat E. Muscle fiber conduction slowing and decreased levels of circulating muscle proteins after short-term dexamethasone administration in healthy subjects. J Clin Endocrinol Metab 2010, 95: 1663–71.

    Article  PubMed  CAS  Google Scholar 

  62. van der Hoeven JH. Decline of muscle fiber conduction velocity during short-term high-dose methylprednisolone therapy. Muscle Nerve 1996, 19: 100–2.

    Article  PubMed  Google Scholar 

  63. Pereira RM, Freire de Carvalho J. Glucocorticoid-induced myopathy. Joint Bone Spine 2011, 78: 41–4.

    Article  PubMed  CAS  Google Scholar 

  64. Menezes LG, Sobreira C, Neder L, Rodrigues-Júnior AL, Martinez JA. Creatine supplementation attenuates corticosteroid-induced muscle wasting and impairment of exercise performance in rats. J Appl Physiol 2007, 102: 698–703.

    Article  PubMed  CAS  Google Scholar 

  65. Kanda F, Takatani K, Okuda S, Matsushita T, Chihara K. Preventive effects of insulinlike growth factor-I on steroid-induced muscle atrophy. Muscle Nerve 1999, 22: 213–7.

    Article  PubMed  CAS  Google Scholar 

  66. Jones A, Hwang DJ, Narayanan R, Miller DD, Dalton JT. Effects of a novel selective androgen receptor modulator on dexamethasone-induced and hypogonadism-induced muscle atrophy. Endocrinology 2010, 151: 3706–19.

    Article  PubMed  CAS  Google Scholar 

  67. Robinzon B, Cutolo M. Should dehydroepiandrosterone replacement therapy be provided with glucocorticoids? Rheumatology (Oxford) 1999, 38: 488–95.

    Article  CAS  Google Scholar 

  68. Crawford BA, Liu PY, Kean MT, Bleasel JF, Handelsman DJ. Randomized placebo-controlled trial of androgen effects on muscle and bone in men requiring long-term systemic glucocorticoid treatment. J Clin Endocrinol Metab 2003, 88: 3167–76.

    Article  PubMed  CAS  Google Scholar 

  69. Maccario M, Tassone F, Gauna C, et al. Effects of short-term administration of low-dose rhGH on IGF-I levels in obesity and Cushing’s syndrome: indirect evaluation of sensitivity to GH. Eur J Endocrinol 2001, 144: 251–6.

    Article  PubMed  CAS  Google Scholar 

  70. Wajchenberg BL, Liberman B, Giannella Neto D, et al. Growth hormone axis in cushing’s syndrome. Horm Res 1996, 45: 99–107.

    Article  PubMed  CAS  Google Scholar 

  71. Yamamoto D, Maki T, Herningtyas EH, et al. Branched-chain amino acids protect against dexamethasone-induced soleus muscle atrophy in rats. Muscle Nerve 2010, 41: 819–27.

    Article  PubMed  CAS  Google Scholar 

  72. Falduto MT, Czerwinski SM, Hickson RC. Glucocorticoid-induced muscle atrophy prevention by exercise in fast-twitch fibers. J Appl Physiol 1990, 69: 1058–62.

    PubMed  CAS  Google Scholar 

  73. Falduto MT, Young AP, Hickson RC. Exercise interrupts ongoing glucocorticoid-induced muscle atrophy and glutamine synthetase induction. Am J Physiol 1992, 263: E1157–63.

    PubMed  CAS  Google Scholar 

  74. Uchikawa K, Takahashi H, Hase K, Masakado Y, Liu M. Strenuous exercise-induced alterations of muscle fiber cross-sectional area and fiber-type distribution in steroid myopathy rats. Am J Phys Med Rehabil 2008, 87: 126–33.

    Article  PubMed  Google Scholar 

  75. Barel M, Perez OA, Giozzet VA, Rafacho A, Bosqueiro JR, do Amaral SL. Exercise training prevents hyperinsulinemia, muscular glycogen loss and muscle atrophy induced by dexamethasone treatment. Eur J Appl Physiol 2010, 108: 999–1007.

    Article  PubMed  CAS  Google Scholar 

  76. LaPier TK. Glucocorticoid-induced muscle atrophy. The role of exercise in treatment and prevention. J Cardiopulm Rehabil 1997, 17: 76–84.

    Article  PubMed  CAS  Google Scholar 

  77. Horber FF, Scheidegger JR, Grünig BE, Frey FJ. Evidence that prednisone-induced myopathy is reversed by physical training. J Clin Endocrinol Metab 1985, 61: 83–8.

    Article  PubMed  CAS  Google Scholar 

  78. Horber FF, Scheidegger JR, Grünig BE, Frey FJ. Thigh muscle mass and function in patients treated with glucocorticoids. Eur J Clin Invest 1985, 15: 302–7.

    Article  PubMed  CAS  Google Scholar 

  79. Horber FF, Hoopeler H, Scheidegger JR, Grünig BE, Howald H, Frey FJ. Impact of physical training on the ultrastructure of midthigh muscle in normal subjects and in patients treated with glucocorticoids. J Clin Invest 1987, 79: 1181–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Minetto MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minetto, M.A., Lanfranco, F., Motta, G. et al. Steroid myopathy: Some unresolved issues. J Endocrinol Invest 34, 370–375 (2011). https://doi.org/10.1007/BF03347462

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347462

Key-words

Navigation