Skip to main content
Log in

Blood pressure monitoring: Automated oscillometric devices

  • Knowing Your Monitoring Equipment
  • Published:
Journal of Clinical Monitoring Aims and scope Submit manuscript

Abstract

An understanding of the principles of blood pressure measurement with automated oscillometric devices (e.g., Dinamap) allows a user to realize the purpose and level of accuracy for which the equipment is designed. Good technique calls for various actions: (1) using a cuff of proper size (too large a cuff will generally work acceptably, but too small a cuff will yield erroneously high readings); (2) squeezing all of the residual air out of the cuff before applying it to the arm or leg; (3) wrapping the cuff snugly around the arm or leg; (4) instructing the patient to refrain from talking or moving and letting nothing press against the cuff during measurement; (5) keeping the cuff and heart at the same horizontal level. (6) When instrument malfunction is suspected, first checking the status of the patient (not the status of the instrument) to be sure that a clinical emergency is not causing the suspected “malfunction”; (7) repeating a reading several times when it is suspicious and, if necessary, modifying the measurement conditions by using, for example, different limbs or different cuffs until the question is resolved; and (8) remembering that a leak in the cuff, hoses, or connection can cause an unexpected malfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cushing H. On routine determinations of arterial tension in operating room and clinic. N Engl J Med 1903;148:250–256

    Google Scholar 

  2. Prys-Roberts C. Arterial manometry under pressure? Anesthesiology 1974;40:1–3

    Article  PubMed  CAS  Google Scholar 

  3. Ramsey M. Non-invasive automatic determination of mean arterial pressure. Med Biol Eng Comput 1979;17:11–18

    Article  PubMed  Google Scholar 

  4. Erlanger J. Studies in blood pressure estimations by indirect methods. Am J Physiol 1916;39:401–446

    Google Scholar 

  5. Geddes LA. Direct and indirect measurement of blood pressure. New York: Yearbook Medical Publishers, 1970

    Google Scholar 

  6. Posey JA, Geddes LA, Williams H, Moore AG. The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure. Cardiovasc Res Cent Bull 1969;8:15–25

    PubMed  CAS  Google Scholar 

  7. Geddes LA, Moore AG, Garner H, et al. The indirect measurement of mean blood pressure in the horse. Southwest Veterinarian 1970;23:289–294

    Google Scholar 

  8. Cullen DJ. Interpretation of blood pressure measurements in anesthesia. Anesthesiology 1974;40:6–12

    Article  PubMed  CAS  Google Scholar 

  9. Benson H, Herd JA. Oscillometric measurement of arterial blood pressure. Circulation 1969;[Suppl 3]:39–40

    Google Scholar 

  10. Ream AK. Systolic, diastolic, mean or pulse: Which is the best measurement of arterial pressure? In: Gravenstein JS, Ream AK, Smith T, eds. Essential noninvasive monitoring in anesthesia. New York: Grune & Stratton, 1980:53–74

    Google Scholar 

  11. Yelderman M, Ream AK. Indirect measurement of mean blood pressure in the anesthetized patient. Anesthesiology 1979;50:253–256

    Article  PubMed  CAS  Google Scholar 

  12. Von Recklinghausen H. Neue Wege der Blutdrugmessung. Berlin: Springer-Verlag, 1931

    Google Scholar 

  13. Fabré PH. Determination de la pression arterielle maxima par la methode oscillometrique. C R Soc Biol (Paris) 1922:951–952

  14. Ramsey M. Automatic mean blood pressure reading device. U.S. Patent 4,360,029. Washington, DC: U.S. Patent Office, 1982

    Google Scholar 

  15. Ramsey M. Automatic mean blood pressure reading device. U.S. Patent 4,349,034. Washington, DC: U.S. Patent Office, 1982

    Google Scholar 

  16. Medero R, Hood RW, Apple HP, Ramsey M. Method of automated blood pressure detection. U.S. Patent 4,543,962. Washington, DC: U.S. Patent Office, 1985

    Google Scholar 

  17. Ramsey M, Muskatello JM, Hood RW, et al. Sphygmonanometric cuff pressurizing system. U.S. Patent 4,627,440. Washington, DC: U.S. Patent Office, 1986

    Google Scholar 

  18. Ramsey M, Medero R, Hood RW. Automated diastolic blood pressure monitor with data enhancement. U.S. Patent 4,638,810. Washington, DC: U.S. Patent Office, 1987

    Google Scholar 

  19. Ramsey M, Medero R, Hood RW. Automated mean arterial blood pressure monitor with data enhancement. U.S. Patent 4,754,761. Washington, DC: U.S. Patent Office, 1988

    Google Scholar 

  20. Link WT. Apparatus and process for producing sphygmometric information. U.S. Patent 3,903,872. Washington, DC: U.S. Patent Office, 1975

    Google Scholar 

  21. Nunn DE, Beveridge RW. Apparatus and method for measuring blood pressure. U.S. Patent 4,427,013. Washington, DC: U.S. Patent Office, 1984

    Google Scholar 

  22. Flynn GJ. Method and apparatus for diastolic pressure measurement. U.S. Patent 4,271,843. Washington, DC: U.S. Patent Office, 1981

    Google Scholar 

  23. Williams WJ. Method and apparatus for blood pressure measurements. U.S. Patent 4,117,835. Washington, DC: U.S. Patent Office, 1978

    Google Scholar 

  24. Swearingen, JD, Watson RC. Methods of and apparatus for the measurement of blood pressure. U.S. Patent 4,263,918. Washington, DC: U.S. Patent Office, 1981

    Google Scholar 

  25. Adiseshiah M, Cross FW, Belsham PA. Ankel blood pressure measured by automatic oscillotonometry: a comparison with Doppler pressure measurements. Annals of the Royal College of Surgeons of England (1987) vol. 69:271–273

    PubMed  CAS  Google Scholar 

  26. Montfrans GA, Van Der Hoeven GMA, Karemaker JM, Wieling W. Accuracy of auscultatory blood pressure measurement with a long cuff. Br Med J 1987;295:354–355

    Article  Google Scholar 

  27. Linfors EW, Feussner JR, Blessing CL, et al. Spurious hypertension in the obese patient. Effect of sphygmomanometer cuff size on prevalence of hypertension. Arch Intern Med 1984;144:1482–1485

    Article  PubMed  CAS  Google Scholar 

  28. Manning DM, Kuchirka C, Kaminski J. Miscuffing: inappropriate blood pressure cuff application. Circulation 1983;68(4):764–766

    Google Scholar 

  29. Anderson T, Stokholm KH, Nielson PE. Blood pressure and arm circumference during large weight reduction in normotensive and borderline hypertensive obese patients. J Clin Hypertens 1987;3:547–553

    Google Scholar 

  30. Mariotti G, Alli C, Avanzini F, et al. Arm position as a source of error in blood pressure measurement. Clin Cardiol 1987;10:591–593

    PubMed  CAS  Google Scholar 

  31. Waal-Manning HJ, Paulin JM. Effects of arm position and support on blood-pressure readings. J Clin Hypertens 1987;3:624–630

    PubMed  CAS  Google Scholar 

  32. Wadsworth TG, Williams JR. Cubital tunnel compression syndrome. Br Med J 1973;1:662–666

    PubMed  CAS  Google Scholar 

  33. Park MK, Menard SM. Accuracy of blood pressure measurement of the Dinamap monitor in infants and children. Pediatrics 1987;79:907–914

    PubMed  CAS  Google Scholar 

  34. Wareham JS, Haugh LD, Yeager SB, Horbar JD. Prediction of arterial blood pressure in the premature neonate using the oscillometric method. Am J Dis Child 1987;141:1108–1110

    PubMed  CAS  Google Scholar 

  35. Debru JL, Doyon B, Morin B, et al. Mesure automatique de la pression arterielle par methode oscillometrique (Dynamap 845). Arch Mal Coeur 1981;74:125–129

    PubMed  Google Scholar 

  36. Pessenhofer H. Single cuff comparison of two methods for indirect measurement of arterial blood pressure; standard auscultatory method versus automatic oscillometric method. Basic Res Cardiol 1986;81:101–109

    Article  PubMed  CAS  Google Scholar 

  37. Silas JH, Barker AT, Ramsay LE. Clinical evaluation of Dinamap 845 automated blood pressure recorder. Br Heart J 1980;43:202–205

    Article  PubMed  CAS  Google Scholar 

  38. Cullen PM, Dye J, Hughes DG. Clinical assessment of the neonatal Dinamap 847 during anesthesia in neonates and infants. J Clin Monit 1987;3:229–234

    PubMed  CAS  Google Scholar 

  39. Hutton P, Dye J, Prys-Roberts C. An assessment of the Dinamap 845. Anesthesia 1984;39:261–267

    Article  CAS  Google Scholar 

  40. Johnson CJH, Kerr JH. Automatic blood pressure monitors; a clinical evaluation of five models in adults. Anesthesia 1985;40:471–478

    Article  CAS  Google Scholar 

  41. Van den Broeke JJ, Karliczek GF. Labor- Und Kontrollverfahren. DINAMAP—eine neue automatische Blutdruckmessung; Ergebnisse von Vergleichsmessungen. Anasth Intensivther Notfallmed 1979;14:533–536

    Google Scholar 

  42. Loubser PG. Comparison of intra-arterial and automated oscillometric blood pressure measurement methods in postoperative hypertensive patients. Med Instrumen 1986;20:255–259

    CAS  Google Scholar 

  43. Dellagrammaticas HD, Wilson AJ. Clinical evaluation of the Dinamap non-invasive blood pressure monitor in preterm neonates. Clin Phys Physiol Meas 1981;2:271–276

    Article  PubMed  CAS  Google Scholar 

  44. Milsom I, Svahn SO, Forssman L, Sivertson R. An evaluation of automated indirect blood pressure measurement during pregnancy. Acta Obstet Gynecol Scand 1986;65:721–725

    Article  PubMed  CAS  Google Scholar 

  45. Hutton P, Dye J, Prys-Roberts C. An assessment of the Dinamap 845. Anesthesia 1984;39:261–267

    Article  CAS  Google Scholar 

  46. Kimble K, Darnall RA, Yelderman M, et al. An automated oscillometric technique for estimating mean arterial pressure in critically ill newborns. Anesthesiology 1981;54:423–425

    Article  PubMed  CAS  Google Scholar 

  47. Baker LK. DINAMAP monitor versus direct blood pressure measurements. Dimens Crit Care Nursing 1986;5:228–235

    Article  CAS  Google Scholar 

  48. Borow KM, Newburger JW. Noninvasive estimation of central aortic pressure during the oscillometric method: a comparative study of brachial artery pressure with simultaneous central aortic pressure measurements. Am Heart J 1982;103:879–886

    Article  PubMed  CAS  Google Scholar 

  49. Nystrom E, Keid KH, Bennett R, et al. A comparison of two automated indirect arterial blood pressure meters: with recordings from a radial arterial catheter in anesthetized surgical patients. Anesthesiology 1985;62:526–530

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsey, M. Blood pressure monitoring: Automated oscillometric devices. J Clin Monitor Comput 7, 56–67 (1991). https://doi.org/10.1007/BF01617900

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01617900

Key words

Navigation