Skip to main content
Log in

Cortical and striatal neurone number in Huntington's disease

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The total cortical and striatal neurone and glial numbers were estimated in five cases of Huntington's disease (three males, two females) and five age-and sex-matched control cases. Serial 500-μm-thick gallocyanin-stained frontal sections through the left hemisphere were analysed using Cavalieri's principle for volume and the optical disector for cell density estimations. The average cortical neurone number of five controls (mean age 53±13 years, range 36–72 years) was 5.97×109±320×106, the average number of small striatal neurones was 82×106±15.8×106. The left striatum (caudatum, putamen, and accumbens) contained a mean of 273×106±53×106 glial cells (oligodendrocytes, astrocytes and unclassifiable glial profiles). The mean cortical neurone number in Huntington's disease patients (mean age 49±14 years, range 36–75 years) was diminished by about 33% to 3.99×109±218×106 nerve cells (P≦0.012, Mann-Whitney U-test). The mean number of small striatal neurones decreased tremendously to 9.72×106±3.64×106 (−88%). The decrease in total glial cells was less pronounced (193×106±26×106) but the mean glial index, the numerical ratio of glial cells per neurone, increased from 3.35 to 22.59 in Huntington's disease. Qualitatively, neuronal loss was most pronounced in supragranular layers of primary sensory areas (Brodmann's areae 3,1,2; area 17, area 41). Layer IIIc pyramidal cells were preferentially lost in association areas of the temporal, frontal, and parietal lobes, whereas spared layer IV granule cells formed a conspicuous band between layer III and V in these fields. Methodological issues are discussed in context with previous investigations and similarities and differences of laminar and lobar nerve cell loss in Huntington's disease are compared with nerve cell degeneration in other neuropsychiatric diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbruzzese G, Dall'Agata D, Morena M, Reni L, Favale E (1990) Abnormalities of parietal and prerolandic somatosensory evoked potentials in Huntington's disease. Electroencephalogr Clin Neurophysiol 77: 340–346

    Google Scholar 

  2. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375

    Google Scholar 

  3. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381

    Google Scholar 

  4. Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85: 119–146

    Google Scholar 

  5. Alzheimer A (1911) deÜber die anatomische Grundlage der Huntingtonschen Chorea und der choreatischen Bewegungen überhaupt. Neurol Centralbl 30: 891–892

    Google Scholar 

  6. Arikuni T, Kubota K (1986) The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: a retrograde study using HRP-gel. J Comp Neurol 244: 492–510

    Google Scholar 

  7. Armstrong RA (1993) Is the clustering of neurofibrillary tangles in Alzheimer's patients related to the cells of origin of specific cortico-cortical projections. Neurosci Lett 160: 57–60

    Google Scholar 

  8. Bancher C, Braak H, Fischer P, Jellinger KA (1993) Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer's and Parkinson's disease patients. Neurosci Lett 162: 179–182

    Google Scholar 

  9. Bauchot R (1967) Les modifications du poid encéphalique au cours de la fixation. J Hirnforsch 6: 253–283

    Google Scholar 

  10. Braak H (1980) Architectonics of the human telencephalic cortex. In: Braitenberg V (ed) Studies on brain function. Springer, Berlin Heidelberg New York, pp 1–147

    Google Scholar 

  11. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82: 239–259

    Google Scholar 

  12. Braak H, Braak E (1992) Allocortical involvement in Huntington's disease. Neuropathol Appl Neurobiol 18: 539–547

    Google Scholar 

  13. Braak H, Braak E (1992) Layer-specific allocortical destruction in Huntington's chorea (abstract). Clin Neuropathol 11: 278

    Google Scholar 

  14. Braak H, Braak E, Kalus P (1989) Alzheimer's disease: areal and laminar pathology in the occipital isocortex. Acta Neuropathol 77: 494–506

    Google Scholar 

  15. Braendgaard H, Gundersen HJG (1986) The impact of recent stereological advances on quantitative studies of the nervous system. J Neurosci Methods 18: 39–78

    Google Scholar 

  16. Braendgaard H, Evans SM, Howard CV, Gundersen HJ (1990) The total number of neurons in the human neocortex unbiasedly estimated using optical disectors. J Microsc 157: 285–304

    Google Scholar 

  17. Brandt J, Folstein SE, Folstein MF (1988) Differential cognitive impairment in Alzheimer's disease and Huntington's disease. Ann Neurol 23: 555–561

    Google Scholar 

  18. Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. J.A. Barth, Leipzig

    Google Scholar 

  19. Bruyn GW (1968) Huntington's chorea. Historical, clinical and laboratory synopsis. Handb Clin Neurol 6: 298–378

    Google Scholar 

  20. Bruyn GW, Bots GTAM, Dom R (1979) Huntington's chorea: current neuropathological status. Adv Neurol 23: 83–93

    Google Scholar 

  21. Butters N, Albert MS, Sax D (1979) Investigations of the memory disorders of patients with Huntington's discase. Adv Neurol 23: 203–213

    Google Scholar 

  22. Caine ED, Hunt RD, Weingartner H, Ebert MH (1978) Huntington's dementia. Clinical and neuropsychological features. Arch Gen Psychiatry 35: 377–384

    Google Scholar 

  23. Catalá I, Ferrer I, Galofré E, Fábregues I (1988) Decreased numbers of dendritic spines on cortical pyramidal neurons in dementia. A quantitative Golgi study on biopsy samples. Hum Neurobiol 6: 255–259

    Google Scholar 

  24. Constantinidis J, Richard J, Tissot R (1974) Pick's disease: histological and clinical correlations. Eur Neurol 11: 208–217

    Google Scholar 

  25. Cudkowicz M, Kowall NW (1990) Degeneration of pyramidal projection neurons in Huntington's disease cortex. Ann Neurol 27: 200–204

    Google Scholar 

  26. Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50: 873–880

    Google Scholar 

  27. Davies CA, Mann DMA, Sumpter PQ, Yates PO (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with alzheimer's disease. J Neurol Sci 78: 151–164

    Google Scholar 

  28. de la Monte SM, Vonssattel JP, Richardson EP Jr (1988) Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington's disease. J Neuropathol Exp Neurol 47: 516–525

    Google Scholar 

  29. DeFelipe J (1993) Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cerebral Cortex 3: 273–289

    Google Scholar 

  30. Drüge H, Heinsen H, Heinsen YL (1986) Quantitative studies in ageing Chbb: THOM(Wistar) rats. II. Neuron numbers in lobules I, VIb+c and X. Bibl Anat 28: 121–137

    Google Scholar 

  31. Dunlap CB (1927) Pathologic changes in Huntington's chorea: with special reference to the corpus striatum. Arch Neurol Psychiatry 18: 867–943

    Google Scholar 

  32. Economo C v (1929) The cytoarchitectonics of the human cerebral cortex. Oxford University Press, London, pp 1–186

    Google Scholar 

  33. Economo C v, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Julius Springer, Wien Berlin, pp 1–810

    Google Scholar 

  34. Ehle AL, Stewart RM, Lellelid NA, Leventhal NA (1984) Evoked potentials in Huntington's disease. A comparative and longitudinal study. Arch Neurol 41: 379–382

    Google Scholar 

  35. Ellison DW, Beal MF, Mazurek MF, Malloy JR, Bird ED, Martin JB (1987) Amino acid neurotransmitter abnormalities in Huntington's disease and the quinolinic acid animal model of Huntington's disease. Brain 110: 1657–1673

    Google Scholar 

  36. Faull RL, Nauta WJ, Domesick VB (1986) The visual corticostriato-nigral pathway in the rat. Neuroscience 19: 1119–1132

    Google Scholar 

  37. Fisher RS, Boylan MK, Hull CD, Buchwald NA, Levine MS (1986) Branched projections of cat sensorimotor cortex: multiple retrograde labeling via commissural corticocortical, decussated corticostriatal and undecussated corticostriatal axons. Brain Res 384: 395–400

    Google Scholar 

  38. Flood DG, Coleman PD (1987) Neuron numbers and sizes in aging brain: comparison of human, monkey, and rodent data. Neurobiol Aging 9: 453–463

    Google Scholar 

  39. Folstein SE (1989) Huntington's disease: a disorder of families. Johns Hopkins University, Baltimore

    Google Scholar 

  40. Forno LS, Jose C (1973) Huntington's chorea: a pathological study. In: Barbeau A, Chase TN, Paulson GW (eds) Huntington's chorea 1872–1972. Huntington's chorea, vol 1. Raven Press, New York, pp 453–470

    Google Scholar 

  41. Gallyas F (1981) An argyrophil III method for the demonstration of fibrous neuroglia. Acta Morphol Acad Sci Hung 29: 185–193

    Google Scholar 

  42. Goldman PS, Nauta WJ (1977) An intricately patterned prefronto-caudate projection in the rhesus monkey. J Comp Neurol 72: 369–386

    Google Scholar 

  43. Goldman-Rakic PS, Selemon LD (1986) Topography of corticostriatal projections in nonhuman primates and implications for functional parcellation of the neostriatum. In: Jones EG, Peters A (eds) Cerebral cortex, vol 5. Plenum Press, New York, pp 447–466

    Google Scholar 

  44. Grafton ST, Mazziotta JC, Pahl JJ, St. George Hyslop P, Haines JL, Gusella J, Hoffman JM, Baxter LR, Phelps ME (1990) A comparison of neurological, metabolic, structural, and genetic evaluations in persons at risk for Huntington's disease. Ann Neurol 28: 614–621

    Google Scholar 

  45. Gundersen HJ (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones — In memory of William R. Thompson. J Microse 143: 3–45

    Google Scholar 

  46. Hallervorden J (1957) Huntingtonsche Chorea (Chorea chronica progressive hereditaria). In: Scholz W (ed) Handbuch der speziellen pathologischen Anatomie und Histologie, vol. XIII. Erkrankungen des zentralen Nervensystems, Teil 1/A. Springer, Berlin Göttingen Heidelberg, pp 793–822

    Google Scholar 

  47. Hansen LA, Masliah E, Quijada-Fawcett S, Rexin D (1991) Entorhinal neurofibrillary tangles in Alzheimer disease with Lewy bodies. Neurosci Lett 129: 269–272

    Google Scholar 

  48. Hasselbalch SG, Oberg G, Sorensen SA, Andersen AR, Waldemar G, Schmidt JF, Fenger K, Paulson OB (1992) Reduced regional cerebral blood flow in Huntington's disease studied by SPECT. J Neurol Neurosurg Psychiatry 55: 1018–1023

    Google Scholar 

  49. Haug H (1970) Quantitative data in neuroanatomy. Prog Brain Res 33: 113–127

    Google Scholar 

  50. Haug H (1985) Are neurons of the human cerebral cortex really lost during aging? A morphometric examination. In: Traber J, Gispen WH (eds) Senile dementia of the Alzheimer type. Springer-Verlag, Berlin Heidelberg New York Tokyo, pp 150–163

    Google Scholar 

  51. Haug H, Eggers R (1992) Methods and problems in the quantitative study of cerebral cortex. In: Fujisawa K, Morimatsu Y (eds) Development and involution of neurones. Japan Scientific Societies Press, Tokyo, pp 203–217

    Google Scholar 

  52. Heckers S, Geula C, Mesulam MM (1992) Acetylcholinesterase-rich pyramidal neurons in Alzheimer's disease. Neurobiol Aging 13: 455–460

    Google Scholar 

  53. Hedreen JC, Peyser CE, Folstein SE, Ross CA (1991) Neuronal loss in layers V and VI of cerebral cortex in Huntington's disease. Neurosci Lett 133: 257–261

    Google Scholar 

  54. Heinsen H, Heinsen YL (1991) Serial thick, frozen, gallocyanin-stained sections of human central nervous system. J Histotechnol 14: 167–173

    Google Scholar 

  55. Heinsen H, Beckmann H, Heinsen YL, Gallyas F, Haas S, Scharff G (1990) Laminar neuropathology in Alzheimer's disease by a modified Gallyas impregnation. Psychiatry Res 29: 463–465

    Google Scholar 

  56. Heinsen H, Bauer M, Berger K, Ulmar G (1991) Cortical nerve cell loss in Huntington's disease: a stereological investigation in five cases (abstr). Clin Neuropathol 10: 257

    Google Scholar 

  57. Heinsen H, Bauer M, Ulmar G, Gangnus D, Jungkunz G (1992) The entorhinal region in Huntington's disease: a cytoarchitectonic and quantitative investigation in five cases (abstract). Clin Neuropathol 11: 226

    Google Scholar 

  58. Heinsen H, Henn R, Eisenmenger W, Götz M, Bohl J, Bethke B, Lockemann U, Püschel K (1994) Quantitative investigations on the human entorhinal area: left-right asymmetry and age-related changes. Anat Embryol (in press)

  59. Hof PR, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer's disease. II. Primary and secondary visual cortex. J Comp Neurol 301: 55–64

    Google Scholar 

  60. Hof PR, Cox K, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer's disease. I. Superior frontal and inferior temporal cortex. J Comp Neurol 301: 44–54

    Google Scholar 

  61. Hof PR, Bouras C, Perl DP, Morrison JH (1994) Quantitative neuropathologic analysis of Pick's disease cases: cortical distribution of Pick bodies and coexistence with Alzheimer's disease. Acta Neuropathol 87: 115–124

    Google Scholar 

  62. Huttunen J, Homberg V, Lange HW (1993) Precentral and postcentral somatosensory evoked potentials in Huntington's disease: effects of stimulus repetition rate. J Neurol Sci 116: 119–124

    Google Scholar 

  63. Hyman BT, van Hoesen GW, Damasio AR (1990) Memoryrelated neural systems in Alzheimer's disease: an anatomic study. Neurology 40: 1721–1730

    Google Scholar 

  64. Jakob H (1979) Die Picksche Krankheit. Eine neuropathologisch-anatomisch-klinische Studie. In: Hippius H, Janzarik W, Müller C (eds) Monographien aus dem Gesamtgebiete der Psychiatrie. Psychiatry Series. Springer, Berlin Heidelberg New York, pp 1–110

    Google Scholar 

  65. Jones EG (1984) Laminar distribution of cortical efferent cells. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Plenum Press, New York, pp 521–553

    Google Scholar 

  66. Jones EG, Coulter JD, Burton H, Porter R (1977) Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory-motor cortex of monkeys. J Comp Neurol 173: 53–80

    Google Scholar 

  67. Josiassen RC, Curry LM, Mancall EL (1983) Development of neuropsychological deficits in Huntington's disease. Arch Neurol 40: 791–796

    Google Scholar 

  68. Kemp JM, Powell TP (1970) The cortico-striate projection in the monkey. Brain 93: 525–546

    Google Scholar 

  69. Kretschmann HJ, Tafesse U, Herrmann A (1982) Different volume changes of cerebral cortex and white matter during histological preparation. Microsc Acta 86: 13–24

    Google Scholar 

  70. Kretschmann HJ, Kammradt G, Krauthausen I, Sauer B, Wingert F (1986) Brain growth in man. Bibl Anat 28: 1–26

    Google Scholar 

  71. Kuwert T, Lange HW, Langen KJ, Herzog H, Aulich A, Feinendegen LE (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington's disease. Brain 113: 1405–1423

    Google Scholar 

  72. Künzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. Brain Res 88: 195–209

    Google Scholar 

  73. Künzle H (1977) Projections from the primary somatosensory cortex to basal ganglia and thalamus in the monkey. Exp Brain Res 30: 481–492

    Google Scholar 

  74. Lange H, Thörner G, Hopf A, Schröder KF (1976) Morphometric studies of the neuropathological changes in choreatic diseases. J Neurol Sci 28: 401–425

    Google Scholar 

  75. Lange HW (1981) Quantitative changes of telencephalon, diencephalon, and mesencephalon in Huntington's chorea, postencephalitic, and idiopathic parkinsonism. Verh Anat Ges 75: 923–925

    Google Scholar 

  76. Lewis DA, Campbell MJ, Terry RD, Morrison JH (1987) Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer's disease: a quantitative study of visual and auditory cortices. J Neurosi 7: 1799–1808

    Google Scholar 

  77. Lüers T, Spatz H (1957) Picksche Krankheit (Progressive umschriebene Großhirnatrophie). In: Sholz W (ed) Handbuch der speziellen pathologischen Anatomie und Histologie, vol XIII. Erkrankungen des zentralen Nervensystems, Teil 1/A. Springer, Berlin Göttingen Heidelberg, pp 614–715

    Google Scholar 

  78. Maioli MG, Squatrito S, Battaglini PP, Rossi R, Galletti C (1983) Projections from the visual cortical region of the superior temporal sulcus to the striatum and claustrum in the macaque monkey. Arch Ital Biol 121: 259–266

    Google Scholar 

  79. Mann DMA, Oliver R, Snowden JS (1993) The topographic distribution of brain atrophy in Huntington's disease and progressive supranuclear palsy. Acta Neuropathol 85: 553–559

    Google Scholar 

  80. Marie P, Lhermitte J (1914) Les lésions de la chorée chronique progressive (chorée d' Huntington). La dégéneration atrophique cortico-striée. Ann Med (Paris) 1: 18–47

    Google Scholar 

  81. Martin WRW, Clark C, Ammann W, Stoessl AJ, Shtybel W, Hayden MR (1992) Cortical glucose metabolism in Huntington's disease. Neurology 42: 223–229

    Google Scholar 

  82. Mayeux R, Stern Y, Rosen J, Benson F (1983) Is “subcortical dementia” a recognizable clinical entity? Ann Neurol 14: 278–283

    Google Scholar 

  83. McCaughey WTE (1961) The pathologic spectrum of Huntington's chorea. J Nerv Ment Dis 133: 91–103

    Google Scholar 

  84. McGeorge AJ, Faull RL (1987) The organization and collateralization of corticostriate neurones in the motor and sensory cortex of the rat brain. Brain Res 423: 318–324

    Google Scholar 

  85. Mendez MF, Adams NL, Lewandowski KS (1989) Neurobehavioral changes associated with caudate lesions. Neurology 39: 349–354

    Google Scholar 

  86. Myers RH, Vonsattel JP, Stevens TJ, Cupples LA, Richardson EP, Martin JB, Bird ED (1988) Clinical and neuropathologic assessment of severity in Huntington's disease. Neurology 38: 341–347

    Google Scholar 

  87. Noth J, Engel L, Friedemann HH, Lange HW (1984) Evoked potentials in patients with Huntington's disease and their offspring. I. Somatosensory evoked potentials. Electroencephalogr Clin Neurophysiol 59: 134–141

    Google Scholar 

  88. Oka H (1980) Organization of the cortico-caudate projections. A horseradish peroxidase study in the cat. Exp Brain Res 40: 203–208

    Google Scholar 

  89. Pakkenberg B (1992) Stereological quantitation of human brains from normal and schizophrenic individuals. Acta Neurol Scand 85: 20–33

    Google Scholar 

  90. Pakkenberg B (1993) Total nerve cell number in neocortex in chronic schizophrenics and controls estimated using optical dissectors. Biol Psychiatry 34: 768–772

    Google Scholar 

  91. Pakkenberg B, Evans SM, Moller A, Braendgaard H, Gundersen HJG (1989) Total number of neurons in human neocortex related to age and sex estimated by way of optical disectors. Acta Stereol 8: 251–256

    Google Scholar 

  92. Pillon B, Deweer B, Agid Y, Dubois B (1993) Explicit memory in Alzheimer's, Huntington's, and Parkinson's diseases. Arch Neurol 50: 374–379

    Google Scholar 

  93. Price JL, Davis PB, Morris JC, White DL (1991) The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer's disease. Neurobiol Aging 12: 295–312

    Google Scholar 

  94. Reale RA, Imig TJ (1983) Auditory cortical field projections to the basal ganglia of the cat. Neuroscience 8: 67–86

    Google Scholar 

  95. Regeur L, Pakkenberg B (1989) Optimizing sampling designs for volume measurements of components of human brain using a stereological method. J Microsc 155: 113–121

    Google Scholar 

  96. Reiner A, Albin RL, Anderson KD, D'Amato CJ, Penney JB, Young AB (1988) Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci USA 85: 5733–5737

    Google Scholar 

  97. Reynolds GP, Pearson SJ (1987) Decreased glutamic acid and increased 5-hydroxytryptamine in Huntington's disease brain. Neurosci Lett 78: 233–238

    Google Scholar 

  98. Reynolds GP, Pearson SJ, Heathfield KW (1990) Dementia in Huntington's disease is associated with neurochemical deficits in the caudate nucleus, not the cerebral cortex. Neurosci Lett 113: 95–100

    Google Scholar 

  99. Richardson EP Jr (1990) Third Dorothy S. Russell memorial lecture. Huntington's disease: some recent neuropathological studies. Neuropathol Appl Neurobiol 16: 451–460

    Google Scholar 

  100. Roberts GW, Nash M, Ince PG, Royston MC, Gentleman SM (1993) On the origin of Alzheimers disease — a hypothesis. NeuroReport 4: 7–9

    Google Scholar 

  101. Romeis B (1948) Mikroskopische Technik. Oldenbourg, München

    Google Scholar 

  102. Rosene DL, Roy NJ, Davis BJ (1986) A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifacts. J Histochem Cytochem 34: 1301–1315

    Google Scholar 

  103. Saint-Cyr JA, Ungerleider LG, Desimone R (1990) Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey. J Comp Neurol 298: 129–156

    Google Scholar 

  104. Salmon DP, Kwo on Yuen PF, Heindel WC, Butters N, Thal LJ (1989) Differentiation of Alzheimer's disease and Huntington's disease with the Dementia Rating Scale. Arch Neurol 46: 1204–1208

    Google Scholar 

  105. Scheff SW, Price DA (1993) Synapse loss in the temporal lobe in Alzheimer's disease. Ann Neurol 33: 190–199

    Google Scholar 

  106. Schiffer D (1954) Contribution à l'histopathologie de la maladie de Pick. J Hirnforsch 1: 497–515

    Google Scholar 

  107. Schröder KF, Hopf A, Lange H, Thörner G (1975) Morphometrisch-statistische Strukturanalysen des Striatum, Pallidum und Nucleus subthalamicus beim Menschen. I. Striatum. J Hirnforsch 16: 333–350

    Google Scholar 

  108. Sotrel A, Paskevich PA, Kiely DK, Bird ED, Williams RS, Myers RH (1991) Morphometric analysis of the prefrontal cortex in Huntington's disease. Neurology 41: 1117–1123

    Google Scholar 

  109. Sotrel A, Williams RS, Kaufmann WE, Myers RH (1993) Evidence for neuronal degeneration and dendritic plasticity in cortical pyramidal neurons of Huntington's disease: a quantitative Golgi study. Neurology 43: 2088–2096

    Google Scholar 

  110. Spargo E, Everall IP, Lantos PL (1993) Neuronal loss in the hippocampus in Huntington's disease: a comparison with HIV infection. J Neurol Neurosurg Psychiatry 56: 487–491

    Google Scholar 

  111. Stanton GB, Goldberg ME, Bruce CJ (1988) Frontal eye field efferents in the macaque monkey. I. Subcortical pathways and topography of striatal and thalamic terminal fields. J Comp Neurol 271: 473–492

    Google Scholar 

  112. Starkstein SE, Brandt J, Folstein S, Strauss M, Berthier ML, Pearlson GD, Wong D, McDonnell A, Folstein M (1988) Neuropsychological and neuroradiological correlates in Huntington's disease. J Neurol Neurosurg Psychiatry 51: 1259–1263

    Google Scholar 

  113. Stephan H (1960) Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. Z Wiss Zool 164: 143–172

    Google Scholar 

  114. Storey E, Beal MF (1993) Neurochemical substrates of rigidity and chorea in Huntington's disease. Brain 116: 1201–1222

    Google Scholar 

  115. Tanahashi N, Meyer JS, Ishikawa Y, Kandula P, Mortel KF, Rogers RL, Gandhi S, Walker M (1985) Cerebral blood flow and cognitive testing correlate in Huntington's disease. Arch Neurol 42: 1169–1175

    Google Scholar 

  116. Terplan K (1924) Zur pathologischen Anatomie der chronischen progressiven Chorea. Virchows Arch [A] 252: 146–176

    Google Scholar 

  117. Topper R, Schwarz M, Podoll K, Domges F, Noth J (1993) Absence of frontal somatosensory evoked potential in Huntington's disease. Brain 116: 87–101

    Google Scholar 

  118. van Hoesen GW, Yeterian EH, Lavizzo-Mourey R (1981) Widespread corticostriate projections from temporal cortex of the rhesus monkey. J Comp Neurol 199: 205–219

    Google Scholar 

  119. Vogt C, Vogt O (1920) Zur Lehre der Erkrankungen des striären Systems. J Psychol Neurol 25 [Suppl 3]: 631–846

    Google Scholar 

  120. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathologic classification of Huntington's disease. J Neuropathol Exp Neurol 44: 559–577

    Google Scholar 

  121. Weibel ER (1979) Stereological methods, vol 1. Academic Press, London New York, pp 1–415

    Google Scholar 

  122. West MJ (1993) New stereological methods for counting neurons. Neurobiol Aging 14: 275–285

    Google Scholar 

  123. West MJ (1993) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14: 287–293

    Google Scholar 

  124. West MJ, Gundersen HJG (1990) Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol 296: 1–22

    Google Scholar 

  125. Wiley CA, Masliah E, Morey M, Lemere C, DeTeresa R, Grafe M, Hansen L, Terry R (1991) Neocortical damage during HIV infection. Ann Neurol 29: 651–657

    Google Scholar 

  126. Witter MP, Groenewegen HJ (1986) Connections of the parahippocampal cortex in the cat. III. Cortical and thalamic efferents. J Comp Neurol 252: 1–31

    Google Scholar 

  127. Yeterian EH, van Hoesen GW (1978) Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res 139: 43–63

    Google Scholar 

  128. Young AB, Penney JB, Starosta-Rubinstein S, Markel DS, Berent S, Giordani B, Ehrenkaufer R, Jewett D, Hichwa R (1986) PET scan investigations of Huntington's disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol 20: 296–303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant from the Deutsche Forschungsgemeinschaft (He 1430/3-3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinsen, H., Strik, M., Bauer, M. et al. Cortical and striatal neurone number in Huntington's disease. Acta Neuropathol 88, 320–333 (1994). https://doi.org/10.1007/BF00310376

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00310376

Key words

Navigation