Skip to main content

Layer-Wise Relevance Propagation: An Overview

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11700))

Abstract

For a machine learning model to generalize well, one needs to ensure that its decisions are supported by meaningful patterns in the input data. A prerequisite is however for the model to be able to explain itself, e.g. by highlighting which input features it uses to support its prediction. Layer-wise Relevance Propagation (LRP) is a technique that brings such explainability and scales to potentially highly complex deep neural networks. It operates by propagating the prediction backward in the neural network, using a set of purposely designed propagation rules. In this chapter, we give a concise introduction to LRP with a discussion of (1) how to implement propagation rules easily and efficiently, (2) how the propagation procedure can be theoretically justified as a ‘deep Taylor decomposition’, (3) how to choose the propagation rules at each layer to deliver high explanation quality, and (4) how LRP can be extended to handle a variety of machine learning scenarios beyond deep neural networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://pytorch.org.

References

  1. Alber, M., et al.: iNNvestigate neural networks!. J. Mach. Learn. Res. 20(93), 1–8 (2019)

    MathSciNet  Google Scholar 

  2. Amodei, D., et al.: Deep speech 2 : end-to-end speech recognition in English and Mandarin. In: Proceedings of the 33nd International Conference on Machine Learning, pp. 173–182 (2016)

    Google Scholar 

  3. Anders, C., Montavon, G., Samek, W., Müller, K.-R.: Understanding patch-based learning of video data by explaining predictions. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.R., et al. (eds.) Explainable AI, LNCS, vol. 11700, pp. 297–309. Springer, Cham (2019)

    Google Scholar 

  4. Arbabzadah, F., Montavon, G., Müller, K., Samek, W.: Identifying individual facial expressions by deconstructing a neural network. In: 38th German Conference on Pattern Recognition, pp. 344–354 (2016)

    Google Scholar 

  5. Arras, L., Horn, F., Montavon, G., Müller, K.R., Samek, W.: “What is relevant in a text document?”: an interpretable machine learning approach. PLoS ONE 12(8), e0181142 (2017)

    Article  Google Scholar 

  6. Arras, L., Montavon, G., Müller, K.R., Samek, W.: Explaining recurrent neural network predictions in sentiment analysis. In: Proceedings of the 8th EMNLP Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 159–168 (2017)

    Google Scholar 

  7. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  8. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.: How to explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5(1) (2014). Article Number 4308

    Google Scholar 

  10. Balduzzi, D., Frean, M., Leary, L., Lewis, J.P., Ma, K.W., McWilliams, B.: The shattered gradients problem: if resnets are the answer, then what is the question? In: Proceedings of the 34th International Conference on Machine Learning, pp. 342–350 (2017)

    Google Scholar 

  11. Bazen, S., Joutard, X.: The Taylor decomposition: a unified generalization of the Oaxaca method to nonlinear models. Working papers, HAL (2013)

    Google Scholar 

  12. Binder, A., et al.: Towards computational fluorescence microscopy: machine learning-based integrated prediction of morphological and molecular tumor profiles. CoRR abs/1805.11178 (2018)

    Google Scholar 

  13. Calude, C.S., Longo, G.: The deluge of spurious correlations in big data. Found. Sci. 22(3), 595–612 (2017)

    Article  MathSciNet  Google Scholar 

  14. Chmiela, S., Tkatchenko, A., Sauceda, H.E., Poltavsky, I., Schütt, K.T., Müller, K.R.: Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3(5), e1603015 (2017)

    Article  Google Scholar 

  15. Clark, P., Matwin, S.: Using qualitative models to guide inductive learning. In: Proceedings of the 10th International Conference on Machine Learning, pp. 49–56 (1993)

    Chapter  Google Scholar 

  16. Doshi-Velez, F., Kim, B.: Considerations for evaluation and generalization in interpretable machine learning. In: Escalante, H.J., et al. (eds.) Explainable and Interpretable Models in Computer Vision and Machine Learning. TSSCML, pp. 3–17. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98131-4_1

    Chapter  Google Scholar 

  17. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  18. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: IEEE International Conference on Computer Vision, pp. 3449–3457 (2017)

    Google Scholar 

  19. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  20. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182 (2017)

    Google Scholar 

  21. Hettwer, B., Gehrer, S., Güneysu, T.: Deep neural network attribution methods for leakage analysis and symmetric key recovery. IACR Cryptology ePrint Arch. 2019, 143 (2019)

    MATH  Google Scholar 

  22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  23. Hochuli, J., Helbling, A., Skaist, T., Ragoza, M., Koes, D.R.: Visualizing convolutional neural network protein-ligand scoring. J. Mol. Graph. Model. 84, 96–108 (2018)

    Article  Google Scholar 

  24. Horst, F., Lapuschkin, S., Samek, W., Müller, K.R., Schöllhorn, W.I.: Explaining the unique nature of individual gait patterns with deep learning. Sci. Rep. 9, 2391 (2019)

    Article  Google Scholar 

  25. Kauffmann, J., Müller, K.R., Montavon, G.: Towards explaining anomalies: a deep Taylor decomposition of one-class models. CoRR abs/1805.06230 (2018)

    Google Scholar 

  26. Kauffmann, J., Esders, M., Montavon, G., Samek, W., Müller, K.R.: From clustering to cluster explanations via neural networks. CoRR abs/1906.07633 (2019)

    Google Scholar 

  27. Landecker, W., Thomure, M.D., Bettencourt, L.M.A., Mitchell, M., Kenyon, G.T., Brumby, S.P.: Interpreting individual classifications of hierarchical networks. In: IEEE Symposium on Computational Intelligence and Data Mining, pp. 32–38 (2013)

    Google Scholar 

  28. Lapuschkin, S., Binder, A., Montavon, G., Müller, K.R., Samek, W.: Analyzing classifiers: fisher vectors and deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2912–2920 (2016)

    Google Scholar 

  29. Lapuschkin, S., Binder, A., Müller, K.R., Samek, W.: Understanding and comparing deep neural networks for age and gender classification. In: IEEE International Conference on Computer Vision Workshops, pp. 1629–1638 (2017)

    Google Scholar 

  30. Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., Müller, K.R.: Unmasking Clever Hans predictors and assessing what machines really learn. Nat. Commun. 10, 1096 (2019)

    Article  Google Scholar 

  31. Leupold, S.: Second-order Taylor decomposition for Explaining Spatial Transformation of Images. Master’s thesis, Technische Universität Berlin (2017)

    Google Scholar 

  32. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep reinforcement learning. In: Proceedings of the 15th ACM Workshop on Hot Topics in Networks, pp. 50–56 (2016)

    Google Scholar 

  33. Mayr, A., Klambauer, G., Unterthiner, T., Hochreiter, S.: DeepTox: toxicity prediction using deep learning. Front. Environ. Sci. 3, 80 (2016)

    Article  Google Scholar 

  34. Memisevic, R., Hinton, G.E.: Learning to represent spatial transformations with factored higher-order Boltzmann machines. Neural Comput. 22(6), 1473–1492 (2010)

    Article  Google Scholar 

  35. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  36. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

    Article  Google Scholar 

  37. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digital Signal Process. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  38. Narayanan, M., Chen, E., He, J., Kim, B., Gershman, S., Doshi-Velez, F.: How do humans understand explanations from machine learning systems? an evaluation of the human-interpretability of explanation. CoRR abs/1802.00682 (2018)

    Google Scholar 

  39. Perotin, L., Serizel, R., Vincent, E., Guérin, A.: CRNN-based multiple DoA estimation using acoustic intensity features for ambisonics recordings. J. Sel. Top. Signal Process. 13(1), 22–33 (2019)

    Article  Google Scholar 

  40. Poerner, N., Schütze, H., Roth, B.: Evaluating neural network explanation methods using hybrid documents and morphosyntactic agreement. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, pp. 340–350 (2018)

    Google Scholar 

  41. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  42. Rieger, L., Chormai, P., Montavon, G., Hansen, L.K., Müller, K.-R.: Structuring neural networks for more explainable predictions. In: Escalante, H.J., et al. (eds.) Explainable and Interpretable Models in Computer Vision and Machine Learning. TSSCML, pp. 115–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98131-4_5

    Chapter  Google Scholar 

  43. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Networks Learn. Syst. 28(11), 2660–2673 (2017)

    Article  MathSciNet  Google Scholar 

  44. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C.: Support vector method for novelty detection. Adv. Neural Inf. Process. Syst. 12, 582–588 (1999)

    Google Scholar 

  45. Schütt, K.T., Arbabzadah, F., Chmiela, S., Müller, K.R., Tkatchenko, A.: Quantum-chemical insights from deep tensor neural networks. Nature Commun. 8, 13890 (2017)

    Article  Google Scholar 

  46. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: Proceedings of the 34th International Conference on Machine Learning, pp. 3145–3153 (2017)

    Google Scholar 

  47. Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black box: learning important features through propagating activation differences. CoRR abs/1605.01713 (2016)

    Google Scholar 

  48. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  49. Smilkov, D., Thorat, N., Kim, B., Viégas, F.B., Wattenberg, M.: SmoothGrad: removing noise by adding noise. CoRR abs/1706.03825 (2017)

    Google Scholar 

  50. Sturm, I., Lapuschkin, S., Samek, W., Müller, K.R.: Interpretable deep neural networks for single-trial EEG classification. J. Neurosci. Methods 274, 141–145 (2016)

    Article  Google Scholar 

  51. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning, pp. 3319–3328 (2017)

    Google Scholar 

  52. Swartout, W.R., Moore, J.D.: Explanation in second generation expert systems. In: David, J.M., Krivine, J.P., Simmons, R. (eds.) Second Generation Expert Systems, pp. 543–585. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-642-77927-5_24

    Chapter  Google Scholar 

  53. Szegedy, C., et al.: Intriguing properties of neural networks. In: 2nd International Conference on Learning Representations (2014)

    Google Scholar 

  54. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  55. Xue, H., Dai, X., Zhang, J., Huang, S., Chen, J.: Deep matrix factorization models for recommender systems. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 3203–3209 (2017)

    Google Scholar 

  56. Yang, Y., Tresp, V., Wunderle, M., Fasching, P.A.: Explaining therapy predictions with layer-wise relevance propagation in neural networks. In: IEEE International Conference on Healthcare Informatics, pp. 152–162 (2018)

    Google Scholar 

  57. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for deep learning. IEEE Trans. Neural Networks Learn. Syst. 1–20 (2019)

    Google Scholar 

  58. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  59. Zhang, J., Bargal, S.A., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-down neural attention by excitation backprop. Int. J. Comput. Vis. 126(10), 1084–1102 (2018)

    Article  Google Scholar 

  60. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. In: International Conference on Learning Representations (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the German Ministry for Education and Research as Berlin Big Data Centre (01IS14013A), Berlin Center for Machine Learning (01IS18037I) and TraMeExCo (01IS18056A). Partial funding by DFG is acknowledged (EXC 2046/1, project-ID: 390685689). This work was also supported by the Institute for Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (No. 2017-0-00451, No. 2017-0-01779).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégoire Montavon .

Editor information

Editors and Affiliations

Appendices

Appendices

10.A List of Commonly Used LRP Rules

The table below gives a non-exhaustive list of propagation rules that are commonly used for explaining deep neural networks with ReLU nonlinearities. The last column in the table indicates whether the rules can be derived from the deep Taylor decomposition [36] framework.

Name

Formula

Usage

DTD

LRP-0 [7]

\( R_j = \sum _k \frac{a_j w_{jk}}{\sum _{0,j} a_j w_{jk}} R_k\)

Upper layers

LRP-\(\epsilon \) [7]

\( R_j = \sum _k \frac{a_j w_{jk}}{\epsilon + \sum _{0,j} a_j w_{jk}} R_k\)

Middle layers

LRP-\(\gamma \)

\( R_j = \sum _k \frac{a_j (w_{jk} + \gamma w_{jk}^+)}{\sum _{0,j} a_j (w_{jk} + \gamma w_{jk}^+)} R_k\)

Lower layers

LRP-\(\alpha \beta \) [7]

\( R_j = \sum _k \Big (\alpha \frac{(a_j w_{jk})^+}{\sum _{0,j} (a_j w_{jk})^+} - \beta \frac{(a_j w_{jk})^-}{\sum _{0,j} (a_j w_{jk})^-}\Big ) R_k\)

Lower layers

\(\times ^{a}\)

flat [30]

\( R_j = \sum _k \frac{1}{\sum _{j} 1} R_k\)

Lower layers

\(\times \)

\(w^2\)-rule [36]

\( R_i = \sum _j \frac{w_{ij}^2}{\sum _{i} w_{ij}^2} R_j\)

First layer (\(\mathbb {R}^d\))

\(z^\mathcal {B}\)-rule [36]

\( R_i = \sum _j \frac{x_i w_{ij} - l_i w_{ij}^+ - h_i w_{ij}^- }{\sum _{i} x_i w_{ij} - l_i w_{ij}^+ - h_i w_{ij}^-} R_j\)

First layer (pixels)

  1. (\(^{a}\)DTD interpretation only for the case \(\alpha =1,\beta =0\).)

Here, we have used the notation \((\cdot )^+ = \max (0,\cdot )\) and \((\cdot )^{-} = \min (0,\cdot )\). For the LRP-\(\alpha \beta \) rule, the parameters \(\alpha ,\beta \) are subject to the conservation constraint \(\alpha = \beta + 1\). For the \(z^\mathcal {B}\)-rule the parameters \(l_i,h_i\) define the box constraints of the input domain (\(\forall _i: l_i \le x_i \le h_i\)).

10.B Justification of the Relevance Model

We give here a justification similar to [36, 37] that the relevance model \(\widehat{R}_k(\varvec{a})\) of Sect. 10.2.3 is suitable when relevance \(R_k\) results from applying LRP-0/\(\epsilon \)/\(\gamma \) in the higher layers. The generic propagation rule

$$\begin{aligned} R_k&= \sum _l \frac{a_k \cdot \rho (w_{kl})}{\epsilon + \sum _{0,k} a_k \cdot \rho (w_{kl})} R_l, \end{aligned}$$

of which LRP-0/\(\epsilon \)/\(\gamma \) are special cases, can be rewritten as \(R_k = a_k c_k\) with

$$ c_k(\varvec{a}) = \sum _l \rho (w_{kl}) \, \frac{\max \big (0,\sum _{0,k} a_k(\varvec{a}) \cdot w_{kl}\big )}{\epsilon + \sum _{0,k} a_k(\varvec{a}) \cdot \rho (w_{kl})} \, c_l(\varvec{a}), $$

where the dependences on lower activations \(\varvec{a}\) have been made explicit. Assume \(c_l(\varvec{a})\) to be approximately locally constant w.r.t. \(\varvec{a}\). Because other terms that depend on \(\varvec{a}\) are diluted by two nested sums, it is plausible that \(c_k(\varvec{a})\) is again locally approximately constant, which is the assumption made by the relevance model \(\widehat{R}_k(\varvec{a})\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, KR. (2019). Layer-Wise Relevance Propagation: An Overview. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., Müller, KR. (eds) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science(), vol 11700. Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28954-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28953-9

  • Online ISBN: 978-3-030-28954-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics