Skip to main content

New Insights in the IP3 Receptor and Its Regulation

  • Chapter
  • First Online:
Book cover Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1131))

Abstract

The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a Ca2+-release channel mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms are responsible for the generation of intracellular Ca2+ signals that may spread across the entire cell or occur locally in so-called microdomains. Because of their ubiquitous expression, these channels are involved in the regulation of a plethora of cellular processes, including cell survival and cell death. To exert their proper function a fine regulation of their activity is of paramount importance. In this review, we will highlight the recent advances in the structural analysis of the IP3R and try to link these data with the newest information concerning IP3R activation and regulation. A special focus of this review will be directed towards the regulation of the IP3R by protein-protein interaction. Especially the protein family formed by calmodulin and related Ca2+-binding proteins and the pro- and anti-apoptotic/autophagic Bcl-2-family members will be highlighted. Finally, recently identified and novel IP3R regulatory proteins will be discussed. A number of these interactions are involved in cancer development, illustrating the potential importance of modulating IP3R-mediated Ca2+ signaling in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a.a.:

amino acids

BAP1:

BRCA-associated protein 1

Bcl:

B-cell lymphoma

BH:

Bcl-2 homology

CaBP:

neuronal Ca2+-binding protein

CaM:

calmodulin

CaM1234:

calmodulin fully deficient in Ca2+ binding

cryo-EM:

cryo-electron microscopy

DARPP-32:

dopamine- and cAMP-regulated phosphoprotein of 32 kDa

ER:

endoplasmic reticulum

IBC:

IP3-binding core

IICR:

IP3-induced Ca2+ release

IP3 :

inositol 1,4,5-trisphosphate

IP3R:

IP3 receptor

IRBIT:

IP3R-binding protein released by IP3

MLCK:

myosin light chain kinase

NCS-1:

neuronal Ca2+ sensor-1

PK:

pyruvate kinase

PKA:

cAMP-dependent protein kinase

PKB:

protein kinase B/Akt

PLC:

phospholipase C

PTEN:

phosphatase and tensin homolog

RyR:

ryanodine receptor

TCR:

T-cell receptor

TESPA1:

thymocyte-expressed, positive selection-associated 1

TIRF:

total internal reflection fluorescence

TKO:

triple-knockout

References

  1. Vermassen E, Parys JB, Mauger JP (2004) Subcellular distribution of the inositol 1,4,5-trisphosphate receptors: functional relevance and molecular determinants. Biol Cell 96:3–17

    Article  CAS  PubMed  Google Scholar 

  2. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  3. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  4. Berridge MJ (2016) The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol Rev 96:1261–1296

    Article  CAS  PubMed  Google Scholar 

  5. Tada M, Nishizawa M, Onodera O (2016) Roles of inositol 1,4,5-trisphosphate receptors in spinocerebellar ataxias. Neurochem Int 94:1–8

    Article  CAS  PubMed  Google Scholar 

  6. Egorova PA, Bezprozvanny IB (2018) Inositol 1,4,5-trisphosphate receptors and neurodegenerative disorders. FEBS J 285:3547–3565

    Google Scholar 

  7. Hisatsune C, Mikoshiba K (2017) IP3 receptor mutations and brain diseases in human and rodents. J Neurochem 141:790–807

    Article  CAS  PubMed  Google Scholar 

  8. Hisatsune C, Hamada K, Mikoshiba K (2018) Ca2+ signaling and spinocerebellar ataxia. Biochim Biophys Acta 1865:1733–1744

    Article  CAS  Google Scholar 

  9. Kerkhofs M, Seitaj B, Ivanova H, Monaco G, Bultynck G, Parys JB (2018) Pathophysiological consequences of isoform-specific IP3 receptor mutations. Biochim Biophys Acta 1865: 1707–1717

    Article  CAS  Google Scholar 

  10. Terry LE, Alzayady KJ, Furati E, Yule DI (2018) Inositol 1,4,5-trisphosphate receptor mutations associated with human disease. Messenger 6:29–44

    Article  PubMed  Google Scholar 

  11. Fedorenko OA, Popugaeva E, Enomoto M, Stathopulos PB, Ikura M, Bezprozvanny I (2014) Intracellular calcium channels: Inositol-1,4,5-trisphosphate receptors. Eur J Pharmacol 739:39–48

    Article  CAS  PubMed  Google Scholar 

  12. Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658

    Article  CAS  PubMed  Google Scholar 

  13. Parys JB, De Smedt H (2012) Inositol 1,4,5-trisphosphate and its receptors. Adv Exp Med Biol 740:255–279

    Article  CAS  PubMed  Google Scholar 

  14. Prole DL, Taylor CW (2016) Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. J Physiol 594:2849–2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vanderheyden V, Devogelaere B, Missiaen L, De Smedt H, Bultynck G, Parys JB (2009) Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. Biochim Biophys Acta 1793:959–970

    Article  CAS  PubMed  Google Scholar 

  16. Ivanova H, Vervliet T, Missiaen L, Parys JB, De Smedt H, Bultynck G (2014) Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. Biochim Biophys Acta 1843:2164–2183

    Article  CAS  PubMed  Google Scholar 

  17. Patel S, Joseph SK, Thomas AP (1999) Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 25:247–264

    Article  CAS  PubMed  Google Scholar 

  18. Taylor CW, Genazzani AA, Morris SA (1999) Expression of inositol trisphosphate receptors. Cell Calcium 26:237–251

    Article  CAS  PubMed  Google Scholar 

  19. Vervloessem T, Yule DI, Bultynck G, Parys JB (2015) The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca2+-release channel. Biochim Biophys Acta 1853:1992–2005

    Article  CAS  PubMed  Google Scholar 

  20. Gutierrez T, Simmen T (2018) Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium 70:64–75

    Article  CAS  PubMed  Google Scholar 

  21. La Rovere RM, Roest G, Bultynck G, Parys JB (2016) Intracellular Ca2+ signaling and Ca2+ microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 60: 74–87

    Article  CAS  PubMed  Google Scholar 

  22. Marchi S, Bittremieux M, Missiroli S, Morganti C, Patergnani S, Sbano L et al (2017) Endoplasmic reticulum-mitochondria communication through Ca2+ signaling: the importance of mitochondria-associated membranes (MAMs). Adv Exp Med Biol 997:49–67

    Article  CAS  PubMed  Google Scholar 

  23. Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR et al (2018) Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium 69:62–72

    Article  CAS  PubMed  Google Scholar 

  24. Raffaello A, Mammucari C, Gherardi G, Rizzuto R (2016) Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem Sci 41:1035–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ando H, Kawaai K, Bonneau B, Mikoshiba K (2018) Remodeling of Ca2+ signaling in cancer: regulation of inositol 1,4,5-trisphosphate receptors through oncogenes and tumor suppressors. Adv Biol Regul 68:64–76

    Article  CAS  PubMed  Google Scholar 

  26. Garcia MI, Boehning D (2017) Cardiac inositol 1,4,5-trisphosphate receptors. Biochim Biophys Acta 1864:907–914

    Article  CAS  Google Scholar 

  27. Kania E, Roest G, Vervliet T, Parys JB, Bultynck G (2017) IP3 receptor-mediated calcium signaling and its role in autophagy in cancer. Front Oncol 7:140

    Article  PubMed  PubMed Central  Google Scholar 

  28. Roest G, La Rovere RM, Bultynck G, Parys JB (2017) IP3 receptor properties and function at membrane contact sites. Adv Exp Med Biol 981:149–178

    Article  CAS  PubMed  Google Scholar 

  29. Serysheva II, Baker MR, Fan G (2017) Structural insights into IP3R function. Adv Exp Med Biol 981:121–147

    Article  CAS  PubMed  Google Scholar 

  30. Wang L, Alzayady KJ, Yule DI (2016) Proteolytic fragmentation of inositol 1,4,5-trisphosphate receptors: a novel mechanism regulating channel activity? J Physiol 594: 2867–2876

    Article  CAS  PubMed  Google Scholar 

  31. Wright FA, Wojcikiewicz RJ (2016) Chapter 4 – inositol 1,4,5-trisphosphate receptor ubiquitination. Prog Mol Biol Transl Sci 141:141–159

    Article  CAS  PubMed  Google Scholar 

  32. Eid AH, El-Yazbi AF, Zouein F, Arredouani A, Ouhtit A, Rahman MM et al (2018) Inositol 1,4,5-trisphosphate receptors in hypertension. Front Physiol 9:1018

    Article  PubMed  PubMed Central  Google Scholar 

  33. Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K (2003) Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 278:16551–16560

    Article  CAS  PubMed  Google Scholar 

  34. Bosanac I, Alattia JR, Mal TK, Chan J, Talarico S, Tong FK et al (2002) Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420: 696–700

    Article  CAS  PubMed  Google Scholar 

  35. Bosanac I, Yamazaki H, Matsu-Ura T, Michikawa T, Mikoshiba K, Ikura M (2005) Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol Cell 17:193–203

    Article  CAS  PubMed  Google Scholar 

  36. Lin CC, Baek K, Lu Z (2011) Apo and InsP3-bound crystal structures of the ligand-binding domain of an InsP3 receptor. Nat Struct Mol Biol 18:1172–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seo MD, Velamakanni S, Ishiyama N, Stathopulos PB, Rossi AM, Khan SA et al (2012) Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature 483:108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bosanac I, Michikawa T, Mikoshiba K, Ikura M (2004) Structural insights into the regulatory mechanism of IP3 receptor. Biochim Biophys Acta 1742:89–102

    Article  CAS  PubMed  Google Scholar 

  39. Hamada K, Miyatake H, Terauchi A, Mikoshiba K (2017) IP3-mediated gating mechanism of the IP3 receptor revealed by mutagenesis and X-ray crystallography. Proc Natl Acad Sci USA 114:4661–4666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Taylor CW, da Fonseca PC, Morris EP (2004) IP3 receptors: the search for structure. Trends Biochem Sci 29:210–219

    Article  CAS  PubMed  Google Scholar 

  41. Fan G, Baker ML, Wang Z, Baker MR, Sinyagovskiy PA, Chiu W et al (2015) Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature 527:336–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoshikawa F, Iwasaki H, Michikawa T, Furuichi T, Mikoshiba K (1999) Trypsinized cerebellar inositol 1,4,5-trisphosphate receptor. Structural and functional coupling of cleaved ligand binding and channel domains. J Biol Chem 274:316–327

    Article  CAS  PubMed  Google Scholar 

  43. Wang L, Wagner LE 2nd, Alzayady KJ, Yule DI (2017) Region-specific proteolysis differentially regulates type 1 inositol 1,4,5-trisphosphate receptor activity. J Biol Chem 292:11714–11726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang L, Yule DI (2018) Differential regulation of ion channels function by proteolysis. Biochim Biophys Acta 1865:1698–1706

    Article  CAS  Google Scholar 

  45. Wang L, Wagner LE 2nd, Alzayady KJ, Yule DI (2018) Region-specific proteolysis differentially modulates type 2 and type 3 inositol 1,4,5-trisphosphate receptor activity in models of acute pancreatitis. J Biol Chem 293:13112–13124

    Google Scholar 

  46. Chan J, Yamazaki H, Ishiyama N, Seo MD, Mal TK, Michikawa T et al (2010) Structural studies of inositol 1,4,5-trisphosphate receptor: coupling ligand binding to channel gating. J Biol Chem 285:36092–36099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schug ZT, Joseph SK (2006) The role of the S4-S5 linker and C-terminal tail in inositol 1,4,5-trisphosphate receptor function. J Biol Chem 281:24431–24440

    Article  CAS  PubMed  Google Scholar 

  48. Yamazaki H, Chan J, Ikura M, Michikawa T, Mikoshiba K (2010) Tyr-167/Trp-168 in type 1/3 inositol 1,4,5-trisphosphate receptor mediates functional coupling between ligand binding and channel opening. J Biol Chem 285:36081–36091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Paknejad N, Hite RK (2018) Structural basis for the regulation of inositol trisphosphate receptors by Ca2+ and IP3. Nat Struct Mol Biol 25:660–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marchant JS, Taylor CW (1997) Cooperative activation of IP3 receptors by sequential binding of IP3 and Ca2+ safeguards against spontaneous activity. Curr Biol 7:510–518

    Article  CAS  PubMed  Google Scholar 

  51. Meyer T, Holowka D, Stryer L (1988) Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate. Science 240:653–656

    Article  CAS  PubMed  Google Scholar 

  52. Boehning D, Joseph SK (2000) Direct association of ligand-binding and pore domains in homo- and heterotetrameric inositol 1,4,5-trisphosphate receptors. EMBO J 19:5450–5459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alzayady KJ, Wang L, Chandrasekhar R, Wagner LE 2nd, Van Petegem F, Yule DI (2016) Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca2+ release. Sci Signal 9:ra35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yoshikawa F, Morita M, Monkawa T, Michikawa T, Furuichi T, Mikoshiba K (1996) Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 271:18277–18284

    Article  CAS  PubMed  Google Scholar 

  55. Iwai M, Tateishi Y, Hattori M, Mizutani A, Nakamura T, Futatsugi A et al (2005) Molecular cloning of mouse type 2 and type 3 inositol 1,4,5-trisphosphate receptors and identification of a novel type 2 receptor splice variant. J Biol Chem 280:10305–10317

    Article  CAS  PubMed  Google Scholar 

  56. Konieczny V, Tovey SC, Mataragka S, Prole DL, Taylor CW (2017) Cyclic AMP recruits a discrete intracellular Ca2+ store by unmasking hypersensitive IP3 receptors. Cell Rep 18: 711–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Joseph SK, Lin C, Pierson S, Thomas AP, Maranto AR (1995) Heteroligomers of type-I and type-III inositol trisphosphate receptors in WB rat liver epithelial cells. J Biol Chem 270:23310–23316

    Article  CAS  PubMed  Google Scholar 

  58. Monkawa T, Miyawaki A, Sugiyama T, Yoneshima H, Yamamoto-Hino M, Furuichi T et al (1995) Heterotetrameric complex formation of inositol 1,4,5-trisphosphate receptor subunits. J Biol Chem 270:14700–14704

    Article  CAS  PubMed  Google Scholar 

  59. Wojcikiewicz RJ, He Y (1995) Type I, II and III inositol 1,4,5-trisphosphate receptor co-immunoprecipitation as evidence for the existence of heterotetrameric receptor complexes. Biochem Biophys Res Commun 213:334–341

    Article  CAS  PubMed  Google Scholar 

  60. Joseph SK, Bokkala S, Boehning D, Zeigler S (2000) Factors determining the composition of inositol trisphosphate receptor hetero-oligomers expressed in COS cells. J Biol Chem 275:16084–16090

    Article  CAS  PubMed  Google Scholar 

  61. Alzayady KJ, Wagner LE 2nd, Chandrasekhar R, Monteagudo A, Godiska R, Tall GG et al (2013) Functional inositol 1,4,5-trisphosphate receptors assembled from concatenated homo- and heteromeric subunits. J Biol Chem 288:29772–29784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. De Smedt H, Missiaen L, Parys JB, Henning RH, Sienaert I, Vanlingen S et al (1997) Isoform diversity of the inositol trisphosphate receptor in cell types of mouse origin. Biochem J 322:575–583

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wojcikiewicz RJ (1995) Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem 270:11678–11683

    Article  CAS  PubMed  Google Scholar 

  64. Chandrasekhar R, Alzayady KJ, Wagner LE 2nd, Yule DI (2016) Unique regulatory properties of heterotetrameric inositol 1,4,5-trisphosphate receptors revealed by studying concatenated receptor constructs. J Biol Chem 291:4846–4860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Taylor CW (2017) Regulation of IP3 receptors by cyclic AMP. Cell Calcium 63:48–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wagner LE 2nd, Joseph SK, Yule DI (2008) Regulation of single inositol 1,4,5-trisphosphate receptor channel activity by protein kinase A phosphorylation. J Physiol 586:3577–3596

    Article  CAS  PubMed  Google Scholar 

  67. Meena A, Tovey SC, Taylor CW (2015) Sustained signalling by PTH modulates IP3 accumulation and IP3 receptors through cyclic AMP junctions. J Cell Sci 128:408–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tovey SC, Dedos SG, Rahman T, Taylor EJ, Pantazaka E, Taylor CW (2010) Regulation of inositol 1,4,5-trisphosphate receptors by cAMP independent of cAMP-dependent protein kinase. J Biol Chem 285:12979–12989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tovey SC, Dedos SG, Taylor EJ, Church JE, Taylor CW (2008) Selective coupling of type 6 adenylyl cyclase with type 2 IP3 receptors mediates direct sensitization of IP3 receptors by cAMP. J Cell Biol 183:297–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328

    Article  CAS  PubMed  Google Scholar 

  71. Villarroel A, Taglialatela M, Bernardo-Seisdedos G, Alaimo A, Agirre J, Alberdi A et al (2014) The ever changing moods of calmodulin: how structural plasticity entails transductional adaptability. J Mol Biol 426:2717–2735

    Article  CAS  PubMed  Google Scholar 

  72. Tidow H, Nissen P (2013) Structural diversity of calmodulin binding to its target sites. FEBS J 280:5551–5565

    Article  CAS  PubMed  Google Scholar 

  73. Yap KL, Kim J, Truong K, Sherman M, Yuan T, Ikura M (2000) Calmodulin target database. J Struct Funct Genom 1:8–14

    Article  CAS  Google Scholar 

  74. Maeda N, Kawasaki T, Nakade S, Yokota N, Taguchi T, Kasai M et al (1991) Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J Biol Chem 266:1109–1116

    CAS  PubMed  Google Scholar 

  75. Yamada M, Miyawaki A, Saito K, Nakajima T, Yamamoto-Hino M, Ryo Y et al (1995) The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 308:83–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Adkins CE, Morris SA, De Smedt H, Sienaert I, Török K, Taylor CW (2000) Ca2+-calmodulin inhibits Ca2+ release mediated by type-1, −2 and −3 inositol trisphosphate receptors. Biochem J 345:357–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sienaert I, Nadif Kasri N, Vanlingen S, Parys JB, Callewaert G, Missiaen L et al (2002) Localization and function of a calmodulin-apocalmodulin-binding domain in the N-terminal part of the type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 365:269–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Islam MO, Yoshida Y, Koga T, Kojima M, Kangawa K, Imai S (1996) Isolation and characterization of vascular smooth muscle inositol 1,4,5-trisphosphate receptor. Biochem J 316:295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin C, Widjaja J, Joseph SK (2000) The interaction of calmodulin with alternatively spliced isoforms of the type-I inositol trisphosphate receptor. J Biol Chem 275:2305–2311

    Article  CAS  PubMed  Google Scholar 

  80. Cardy TJ, Taylor CW (1998) A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors. Biochem J 334:447–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Patel S, Morris SA, Adkins CE, O'Beirne G, Taylor CW (1997) Ca2+-independent inhibition of inositol trisphosphate receptors by calmodulin: redistribution of calmodulin as a possible means of regulating Ca2+ mobilization. Proc Natl Acad Sci U S A 94:11627–11632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sipma H, De Smet P, Sienaert I, Vanlingen S, Missiaen L, Parys JB et al (1999) Modulation of inositol 1,4,5-trisphosphate binding to the recombinant ligand-binding site of the type-1 inositol 1,4, 5-trisphosphate receptor by Ca2+ and calmodulin. J Biol Chem 274: 12157–12162

    Article  CAS  PubMed  Google Scholar 

  83. Vanlingen S, Sipma H, De Smet P, Callewaert G, Missiaen L, De Smedt H et al (2000) Ca2+ and calmodulin differentially modulate myo-inositol 1,4, 5-trisphosphate (IP3)-binding to the recombinant ligand-binding domains of the various IP3 receptor isoforms. Biochem J 346:275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Michikawa T, Hirota J, Kawano S, Hiraoka M, Yamada M, Furuichi T et al (1999) Calmodulin mediates calcium-dependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor. Neuron 23:799–808

    Article  CAS  PubMed  Google Scholar 

  85. Missiaen L, Parys JB, Weidema AF, Sipma H, Vanlingen S, De Smet P et al (1999) The bell-shaped Ca2+ dependence of the inositol 1,4, 5-trisphosphate-induced Ca2+ release is modulated by Ca2+/calmodulin. J Biol Chem 274:13748–13751

    Article  CAS  PubMed  Google Scholar 

  86. Missiaen L, DeSmedt H, Bultynck G, Vanlingen S, Desmet P, Callewaert G et al (2000) Calmodulin increases the sensitivity of type 3 inositol-1,4, 5-trisphosphate receptors to Ca2+ inhibition in human bronchial mucosal cells. Mol Pharmacol 57:564–567

    Article  CAS  PubMed  Google Scholar 

  87. Nosyreva E, Miyakawa T, Wang Z, Glouchankova L, Mizushima A, Iino M et al (2002) The high-affinity calcium-calmodulin-binding site does not play a role in the modulation of type 1 inositol 1,4,5-trisphosphate receptor function by calcium and calmodulin. Biochem J 365:659–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kasri NN, Bultynck G, Smyth J, Szlufcik K, Parys JB, Callewaert G et al (2004) The N-terminal Ca2+-independent calmodulin-binding site on the inositol 1,4,5-trisphosphate receptor is responsible for calmodulin inhibition, even though this inhibition requires Ca2+. Mol Pharmacol 66:276–284

    Article  CAS  PubMed  Google Scholar 

  89. Kasri NN, Török K, Galione A, Garnham C, Callewaert G, Missiaen L et al (2006) Endogenously bound calmodulin is essential for the function of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 281:8332–8338

    Article  CAS  PubMed  Google Scholar 

  90. Sun Y, Taylor CW (2008) A calmodulin antagonist reveals a calmodulin-independent interdomain interaction essential for activation of inositol 1,4,5-trisphosphate receptors. Biochem J 416:243–253

    Article  CAS  PubMed  Google Scholar 

  91. Sun Y, Rossi AM, Rahman T, Taylor CW (2013) Activation of IP3 receptors requires an endogenous 1-8-14 calmodulin-binding motif. Biochem J 449:39–49

    Article  CAS  PubMed  Google Scholar 

  92. Kang S, Kwon H, Wen H, Song Y, Frueh D, Ahn HC et al (2011) Global dynamic conformational changes in the suppressor domain of IP3 receptor by stepwise binding of the two lobes of calmodulin. FASEB J 25:840–850

    Article  CAS  PubMed  Google Scholar 

  93. White C, Yang J, Monteiro MJ, Foskett JK (2006) CIB1, a ubiquitously expressed Ca2+-binding protein ligand of the InsP3 receptor Ca2+ release channel. J Biol Chem 281: 20825–20833

    Article  CAS  PubMed  Google Scholar 

  94. Yang J, McBride S, Mak DO, Vardi N, Palczewski K, Haeseleer F et al (2002) Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca2+ release channels. Proc Natl Acad Sci U S A 99:7711–7716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Haynes LP, Tepikin AV, Burgoyne RD (2004) Calcium-binding protein 1 is an inhibitor of agonist-evoked, inositol 1,4,5-trisphosphate-mediated calcium signaling. J Biol Chem 279:547–555

    Article  CAS  PubMed  Google Scholar 

  96. Kasri NN, Holmes AM, Bultynck G, Parys JB, Bootman MD, Rietdorf K et al (2004) Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins. EMBO J 23: 312–321

    Article  CAS  PubMed  Google Scholar 

  97. Bultynck G, Szlufcik K, Kasri NN, Assefa Z, Callewaert G, Missiaen L et al (2004) Thimerosal stimulates Ca2+ flux through inositol 1,4,5-trisphosphate receptor type 1, but not type 3, via modulation of an isoform-specific Ca2+-dependent intramolecular interaction. Biochem J 381:87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li C, Chan J, Haeseleer F, Mikoshiba K, Palczewski K, Ikura M et al (2009) Structural insights into Ca2+-dependent regulation of inositol 1,4,5-trisphosphate receptors by CaBP1. J Biol Chem 284:2472–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li C, Enomoto M, Rossi AM, Seo MD, Rahman T, Stathopulos PB et al (2013) CaBP1, a neuronal Ca2+ sensor protein, inhibits inositol trisphosphate receptors by clamping intersubunit interactions. Proc Natl Acad Sci U S A 110:8507–8512

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nakamura TY, Jeromin A, Mikoshiba K, Wakabayashi S (2011) Neuronal calcium sensor-1 promotes immature heart function and hypertrophy by enhancing Ca2+ signals. Circ Res 109:512–523

    Article  CAS  PubMed  Google Scholar 

  101. Schlecker C, Boehmerle W, Jeromin A, DeGray B, Varshney A, Sharma Y et al (2006) Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium. J Clin Invest 116:1668–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang K, Heidrich FM, DeGray B, Boehmerle W, Ehrlich BE (2010) Paclitaxel accelerates spontaneous calcium oscillations in cardiomyocytes by interacting with NCS-1 and the InsP3R. J Mol Cell Cardiol 49:829–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Boehmerle W, Splittgerber U, Lazarus MB, McKenzie KM, Johnston DG, Austin DJ et al (2006) Paclitaxel induces calcium oscillations via an inositol 1,4,5-trisphosphate receptor and neuronal calcium sensor 1-dependent mechanism. Proc Natl Acad Sci USA 103: 18356–18361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Boeckel GR, Ehrlich BE (2018) NCS-1 is a regulator of calcium signaling in health and disease. Biochim Biophys Acta 1865:1660–1667

    Article  CAS  Google Scholar 

  105. Meissner G (2017) The structural basis of ryanodine receptor ion channel function. J Gen Physiol 149:1065–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brini M, Cali T, Ottolini D, Carafoli E (2013) The plasma membrane calcium pump in health and disease. FEBS J 280:5385–5397

    Article  CAS  PubMed  Google Scholar 

  107. Hasan R, Zhang X (2018) Ca2+ regulation of TRP ion channels. Int J Mol Sci 19:1256

    Article  CAS  PubMed Central  Google Scholar 

  108. Saimi Y, Kung C (2002) Calmodulin as an ion channel subunit. Annu Rev Physiol 64: 289–311

    Article  CAS  PubMed  Google Scholar 

  109. Letai AG (2008) Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nat Rev Cancer 8:121–132

    Article  CAS  PubMed  Google Scholar 

  110. Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122:437–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Davids MS, Letai A (2012) Targeting the B-cell lymphoma/leukemia 2 family in cancer. J Clin Oncol 30:3127–3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vervliet T, Parys JB, Bultynck G (2016) Bcl-2 proteins and calcium signaling: complexity beneath the surface. Oncogene 35:5079–5092

    Article  CAS  PubMed  Google Scholar 

  113. Cárdenas C, Miller RA, Smith I, Bui T, Molgó J, Müller M et al (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142: 270–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Eckenrode EF, Yang J, Velmurugan GV, Foskett JK, White C (2010) Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem 285:13678–13684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB et al (2005) The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R. Nat Cell Biol 7: 1021–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rong YP, Bultynck G, Aromolaran AS, Zhong F, Parys JB, De Smedt H et al (2009) The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc Natl Acad Sci USA 106:14397–14402

    Article  PubMed  PubMed Central  Google Scholar 

  117. Parys JB (2014) The IP3 receptor as a hub for Bcl-2 family proteins in cell death control and beyond. Sci Signal 7:pe4

    Article  CAS  PubMed  Google Scholar 

  118. Monaco G, Beckers M, Ivanova H, Missiaen L, Parys JB, De Smedt H et al (2012) Profiling of the Bcl-2/Bcl-XL-binding sites on type 1 IP3 receptor. Biochem Biophys Res Commun 428:31–35

    Article  CAS  PubMed  Google Scholar 

  119. Monaco G, Decrock E, Akl H, Ponsaerts R, Vervliet T, Luyten T et al (2012) Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-xl. Cell Death Differ 19:295–309

    Article  CAS  PubMed  Google Scholar 

  120. Rong YP, Aromolaran AS, Bultynck G, Zhong F, Li X, McColl K et al (2008) Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2’s inhibition of apoptotic calcium signals. Mol Cell 31:255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bonneau B, Nougarede A, Prudent J, Popgeorgiev N, Peyrieras N, Rimokh R et al (2014) The Bcl-2 homolog Nrz inhibits binding of IP3 to its receptor to control calcium signaling during zebrafish epiboly. Sci Signal 7:ra14

    Article  CAS  PubMed  Google Scholar 

  122. Bonneau B, Ando H, Kawaai K, Hirose M, Takahashi-Iwanaga H, Mikoshiba K (2016) IRBIT controls apoptosis by interacting with the Bcl-2 homolog, Bcl2l10, and by promoting ER-mitochondria contact. elife 5:e19896

    Article  PubMed  PubMed Central  Google Scholar 

  123. Yang J, Vais H, Gu W, Foskett JK (2016) Biphasic regulation of InsP3 receptor gating by dual Ca2+ release channel BH3-like domains mediates Bcl-xL control of cell viability. Proc Natl Acad Sci USA 113:E1953–E1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ivanova H, Ritaine A, Wagner L, Luyten T, Shapovalov G, Welkenhuyzen K et al (2016) The trans-membrane domain of Bcl-2α, but not its hydrophobic cleft, is a critical determinant for efficient IP3 receptor inhibition. Oncotarget 7:55704–55720

    Article  PubMed  PubMed Central  Google Scholar 

  125. Chang MJ, Zhong F, Lavik AR, Parys JB, Berridge MJ, Distelhorst CW (2014) Feedback regulation mediated by Bcl-2 and DARPP-32 regulates inositol 1,4,5-trisphosphate receptor phosphorylation and promotes cell survival. Proc Natl Acad Sci U S A 111:1186–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ivanova H, Wagner LE, 2nd, Tanimura A, Vandermarliere E, Luyten T, Welkenhuyzen K et al (2019) Bcl-2 and IP3 compete for the ligand-binding domain of IP3Rs modulating Ca2+ signaling output. Cell Mol Life Sci. In press

    Google Scholar 

  127. Schulman JJ, Wright FA, Kaufmann T, Wojcikiewicz RJ (2013) The Bcl-2 protein family member Bok binds to the coupling domain of inositol 1,4,5-trisphosphate receptors and protects them from proteolytic cleavage. J Biol Chem 288:25340–25349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Assefa Z, Bultynck G, Szlufcik K, Nadif Kasri N, Vermassen E, Goris J et al (2004) Caspase-3-induced truncation of type 1 inositol trisphosphate receptor accelerates apoptotic cell death and induces inositol trisphosphate-independent calcium release during apoptosis. J Biol Chem 279:43227–43236

    Article  CAS  PubMed  Google Scholar 

  129. Hirota J, Furuichi T, Mikoshiba K (1999) Inositol 1,4,5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner. J Biol Chem 274:34433–34437

    Article  CAS  PubMed  Google Scholar 

  130. Schulman JJ, Wright FA, Han X, Zluhan EJ, Szczesniak LM, Wojcikiewicz RJ (2016) The stability and expression level of Bok are governed by binding to inositol 1,4,5-trisphosphate receptors. J Biol Chem 291:11820–11828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ivanova H, Luyten T, Decrock E, Vervliet T, Leybaert L, Parys JB et al (2017) The BH4 domain of Bcl-2 orthologues from different classes of vertebrates can act as an evolutionary conserved inhibitor of IP3 receptor channels. Cell Calcium 62:41–66

    Article  CAS  PubMed  Google Scholar 

  132. Cárdenas C, Müller M, McNeal A, Lovy A, Jana F, Bustos G et al (2016) Selective vulnerability of cancer cells by inhibition of Ca2+ transfer from endoplasmic reticulum to mitochondria. Cell Rep 14:2313–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Finkel T, Hwang PM (2009) The Krebs cycle meets the cell cycle: mitochondria and the G1-S transition. Proc Natl Acad Sci USA 106:11825–11826

    Article  PubMed  PubMed Central  Google Scholar 

  134. Distelhorst CW (2018) Targeting Bcl-2-IP3 receptor interaction to treat cancer: a novel approach inspired by nearly a century treating cancer with adrenal corticosteroid hormones. Biochim Biophys Acta 1865:1795–1804

    Article  CAS  Google Scholar 

  135. He C, Levine B (2010) The Beclin 1 interactome. Curr Opin Cell Biol 22:140–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Decuypere JP, Parys JB, Bultynck G (2012) Regulation of the autophagic Bcl-2/Beclin 1 interaction. Cell 1:284–312

    Article  CAS  Google Scholar 

  137. Erlich S, Mizrachy L, Segev O, Lindenboim L, Zmira O, Adi-Harel S et al (2007) Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy 3:561–568

    Article  CAS  PubMed  Google Scholar 

  138. Vicencio JM, Ortiz C, Criollo A, Jones AW, Kepp O, Galluzzi L et al (2009) The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 16:1006–1017

    Article  CAS  PubMed  Google Scholar 

  139. Decuypere JP, Welkenhuyzen K, Luyten T, Ponsaerts R, Dewaele M, Molgo J et al (2011) Ins(1,4,5)P3 receptor-mediated Ca2+ signaling and autophagy induction are interrelated. Autophagy 7:1472–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ando H, Mizutani A, Matsu-ura T, Mikoshiba K (2003) IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor. J Biol Chem 278:10602–10612

    Article  CAS  PubMed  Google Scholar 

  141. Ando H, Kawaai K, Mikoshiba K (2014) IRBIT: a regulator of ion channels and ion transporters. Biochim Biophys Acta 1843:2195–2204

    Article  CAS  PubMed  Google Scholar 

  142. Kawaai K, Ando H, Satoh N, Yamada H, Ogawa N, Hirose M et al (2017) Splicing variation of long-IRBIT determines the target selectivity of IRBIT family proteins. Proc Natl Acad Sci USA 114:3921–3926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liang J, Lyu J, Zhao M, Li D, Zheng M, Fang Y et al (2017) Tespa1 regulates T cell receptor-induced calcium signals by recruiting inositol 1,4,5-trisphosphate receptors. Nat Commun 8:15732

    Article  PubMed  PubMed Central  Google Scholar 

  144. Wang D, Zheng M, Lei L, Ji J, Yao Y, Qiu Y et al (2012) Tespa1 is involved in late thymocyte development through the regulation of TCR-mediated signaling. Nat Immunol 13:560–568

    Article  CAS  PubMed  Google Scholar 

  145. Dingli F, Parys JB, Loew D, Saule S, Mery L (2012) Vimentin and the K-Ras-induced actin-binding protein control inositol-(1,4,5)-trisphosphate receptor redistribution during MDCK cell differentiation. J Cell Sci 125:5428–5440

    Article  CAS  PubMed  Google Scholar 

  146. Fujimoto T, Machida T, Tanaka Y, Tsunoda T, Doi K, Ota T et al (2011) KRAS-induced actin-interacting protein is required for the proper localization of inositol 1,4,5-trisphosphate receptor in the epithelial cells. Biochem Biophys Res Commun 407:438–443

    Article  CAS  PubMed  Google Scholar 

  147. Matsuzaki H, Fujimoto T, Ota T, Ogawa M, Tsunoda T, Doi K et al (2012) Tespa1 is a novel inositol 1,4,5-trisphosphate receptor binding protein in T and B lymphocytes. FEBS Open Bio 2:255–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Malissen B, Gregoire C, Malissen M, Roncagalli R (2014) Integrative biology of T cell activation. Nat Immunol 15:790–797

    Article  CAS  PubMed  Google Scholar 

  149. Matsuzaki H, Fujimoto T, Tanaka M, Shirasawa S (2013) Tespa1 is a novel component of mitochondria-associated endoplasmic reticulum membranes and affects mitochondrial calcium flux. Biochem Biophys Res Commun 433:322–326

    Article  CAS  PubMed  Google Scholar 

  150. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D et al (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dayton TL, Jacks T, Vander Heiden MG (2016) PKM2, cancer metabolism, and the road ahead. EMBO Rep 17:1721–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hsu MC, Hung WC (2018) Pyruvate kinase M2 fuels multiple aspects of cancer cells: from cellular metabolism, transcriptional regulation to extracellular signaling. Mol Cancer 17:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dong G, Mao Q, Xia W, Xu Y, Wang J, Xu L et al (2016) PKM2 and cancer: the function of PKM2 beyond glycolysis. Oncol Lett 11:1980–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lavik AR (2016) The role of inositol 1,4,5-trisphosphate receptor-interacting proteins in regulating inositol 1,4,5-trisphosphate receptor-dependent calcium signals and cell survival. PhD thesis, Case Western Reserve University, USA. https://etd.ohiolink.edu/!etd.send_file?accession=case1448532307&disposition=inline

  155. Lavik A, Harr M, Kerkhofs M, Parys JB, Bultynck G, Bird G et al (2018) IP3Rs recruit the glycolytic enzyme PKM2 to the ER, promoting Ca2+ homeostasis and survival in hematologic malignancies. In: Abstract 66, 15th International meeting of the European Calcium Society. Hamburg, Germany

    Google Scholar 

  156. Liu F, Ma F, Wang Y, Hao L, Zeng H, Jia C et al (2017) PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nat Cell Biol 19:1358–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sipma H, Deelman L, Smedt HD, Missiaen L, Parys JB, Vanlingen S et al (1998) Agonist-induced down-regulation of type 1 and type 3 inositol 1,4,5-trisphosphate receptors in A7r5 and DDT1 MF-2 smooth muscle cells. Cell Calcium 23:11–21

    Article  CAS  PubMed  Google Scholar 

  158. Wojcikiewicz RJ, Furuichi T, Nakade S, Mikoshiba K, Nahorski SR (1994) Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation. J Biol Chem 269:7963–7969

    CAS  PubMed  Google Scholar 

  159. Wojcikiewicz RJ, Nakade S, Mikoshiba K, Nahorski SR (1992) Inositol 1,4,5-trisphosphate receptor immunoreactivity in SH-SY5Y human neuroblastoma cells is reduced by chronic muscarinic receptor activation. J Neurochem 59:383–386

    Article  CAS  PubMed  Google Scholar 

  160. Oberdorf J, Webster JM, Zhu CC, Luo SG, Wojcikiewicz RJ (1999) Down-regulation of types I, II and III inositol 1,4,5-trisphosphate receptors is mediated by the ubiquitin/proteasome pathway. Biochem J 339:453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lee HS, Lee SA, Hur SK, Seo JW, Kwon J (2014) Stabilization and targeting of INO80 to replication forks by BAP1 during normal DNA synthesis. Nat Commun 5:5128

    Article  CAS  PubMed  Google Scholar 

  162. Zarrizi R, Menard JA, Belting M, Massoumi R (2014) Deubiquitination of γ-tubulin by BAP1 prevents chromosome instability in breast cancer cells. Cancer Res 74:6499–6508

    Article  CAS  PubMed  Google Scholar 

  163. Yu H, Pak H, Hammond-Martel I, Ghram M, Rodrigue A, Daou S et al (2014) Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci U S A 111:285–290

    Article  CAS  PubMed  Google Scholar 

  164. Yu H, Mashtalir N, Daou S, Hammond-Martel I, Ross J, Sui G et al (2010) The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. Mol Cell Biol 30:5071–5085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Baughman JM, Rose CM, Kolumam G, Webster JD, Wilkerson EM, Merrill AE et al (2016) NeuCode proteomics reveals Bap1 regulation of metabolism. Cell Rep 16:583–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ruan HB, Han X, Li MD, Singh JP, Qian K, Azarhoush S et al (2012) O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability. Cell Metab 16:226–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bononi A, Giorgi C, Patergnani S, Larson D, Verbruggen K, Tanji M et al (2017) BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature 546:549–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bononi A, Yang H, Giorgi C, Patergnani S, Pellegrini L, Su M et al (2017) Germline BAP1 mutations induce a Warburg effect. Cell Death Differ 24:1694–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kuchay S, Giorgi C, Simoneschi D, Pagan J, Missiroli S, Saraf A et al (2017) PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth. Nature 546:554–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Worby CA, Dixon JE (2014) PTEN. Annu Rev Biochem 83:641–669

    Article  CAS  PubMed  Google Scholar 

  171. Carnero A, Paramio JM (2014) The PTEN/PI3K/AKT pathway in vivo, cancer mouse models. Front Oncol 4:252

    Article  PubMed  PubMed Central  Google Scholar 

  172. Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N et al (2015) PTEN: multiple functions in human malignant tumors. Front Oncol 5:24

    Article  PubMed  PubMed Central  Google Scholar 

  173. Bittremieux M, Parys JB, Pinton P, Bultynck G (2016) ER functions of oncogenes and tumor suppressors: modulators of intracellular Ca2+ signaling. Biochim Biophys Acta 1863: 1364–1378

    Article  CAS  PubMed  Google Scholar 

  174. Bononi A, Bonora M, Marchi S, Missiroli S, Poletti F, Giorgi C et al (2013) Identification of PTEN at the ER and MAMs and its regulation of Ca2+ signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ 20:1631–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342:32–38

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TV is recipient of a postdoctoral fellowship of the Research Foundation—Flanders (FWO). Work performed in the laboratory of the authors was supported by research grants of the FWO, the Research Council of the KU Leuven and the Interuniversity Attraction Poles Programme (Belgian Science Policy). JBP is member of the Transautophagy COST action CA15138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan B. Parys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parys, J.B., Vervliet, T. (2020). New Insights in the IP3 Receptor and Its Regulation. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-12457-1_10

Download citation

Publish with us

Policies and ethics