Skip to main content

Peptide Optimization and Conjugation Strategies in the Development of Molecularly Targeted Magnetic Resonance Imaging Contrast Agents

  • Protocol
  • First Online:
Book cover Therapeutic Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1088))

Abstract

Peptides are highly selective, high-affinity ligands for a diverse array of disease targets, but suitably derivatizing them for application as diagnostic or therapeutic agents often presents a significant challenge. Covalent modification with metal chelates frequently results in decreased binding affinity, so a variety of strategies must be explored to find suitable locations for modification and facile peptide conjugation chemistries that maintain or enhance binding affinity. In this chapter, we present a paradigm for systematically optimizing peptide binding and determining the favorable sites and methods for peptide conjugation. This strategy is illustrated by two case studies of peptide-based targeted gadolinium contrast agents: EP-2104R for diagnosis of thrombosis and EP-3533 for diagnosis of cardiac perfusion and fibrosis. Two different architectures for the peptide–metal complex conjugation were designed: EP-2104R contains a total of four gadolinium (Gd) chelates linked at the N- and C-termini, whereas EP-3533 is derivatized with three Gd chelates, two on the N-terminus and one on a lysine side chain. Detailed protocols are provided for two Gd chelate conjugation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512–523

    Article  PubMed  CAS  Google Scholar 

  2. Ladner RC (1999) Polypeptides from phage display. A superior source of in vivo imaging agents. Q J Nucl Med 43:119–124

    PubMed  CAS  Google Scholar 

  3. Lever JR (2007) PET and SPECT imaging of the opioid system: receptors, radioligands and avenues for drug discovery and development. Curr Pharm Des 13:33–49

    Article  PubMed  CAS  Google Scholar 

  4. Reubi JC, Maecke HR (2008) Peptide-based probes for cancer imaging. J Nucl Med 49:1735–1738

    Article  PubMed  CAS  Google Scholar 

  5. Nahrendorf M, Sosnovik DE, Weissleder R (2008) MR-optical imaging of cardiovascular molecular targets. Basic Res Cardiol 103:87–94

    Article  PubMed  CAS  Google Scholar 

  6. Pham W, Choi Y, Weissleder R, Tung CH (2004) Developing a peptide-based near-infrared molecular probe for protease sensing. Bioconjug Chem 15:1403–1407

    Article  PubMed  CAS  Google Scholar 

  7. Villanueva FS (2008) Molecular imaging of cardiovascular disease using ultrasound. J Nucl Cardiol 15:576–586

    Article  PubMed  Google Scholar 

  8. Klibanov AL (2006) Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest Radiol 41:354–362

    Article  PubMed  Google Scholar 

  9. Newton J, Deutscher SL (2008) Phage peptide display. Handb Exp Pharmacol 185(pt 2):145–63

    Article  PubMed  CAS  Google Scholar 

  10. Aina OH, Liu R, Sutcliffe JL, Marik J, Pan CX, Lam KS (2007) From combinatorial chemistry to cancer-targeting peptides. Mol Pharm 4:631–651

    Article  PubMed  CAS  Google Scholar 

  11. Lam KS, Kiu R, Miyamoto S, Lehman AL, Tuscano JM (2003) Applications of one-bead-one-compound combinatorial libraries and chemical microarrays in signal transduction research. Acc Chem Res 36:370–377

    Article  PubMed  CAS  Google Scholar 

  12. Uchiyama F, Tanaka Y, Minari Y, Tokui N (2005) Designing scaffolds of peptides for phage display libraries. J Biosci Bioeng 99:448–456

    Article  PubMed  CAS  Google Scholar 

  13. Overoye-Chan K, Koerner S, Looby RJ, Kolodziej AF, Zech SG, Deng Q, Chasse JM, McMurry TJ, Caravan P (2008) EP-2104R: a fibrin-specific gadolinium-based MRI contrast agent for detection of thrombus. J Am Chem Soc 130:6025–6039

    Article  PubMed  CAS  Google Scholar 

  14. Caravan P, Das B, Dumas S, Epstein FH, Helm PA, Jacques V, Koerner S, Kolodziej A, Shen L, Sun WC, Zhang Z (2007) Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew Chem Int Ed Eng 46:8171–8173

    Article  CAS  Google Scholar 

  15. Sato AK, Sexton DJ, Morganelli LA, Cohen EH, Wu QL, Conley GP, Streltsova Z, Lee SW, Devlin M, DeOliveira DB, Enright J, Kent RB, Wescott CR, Ransohoff TC, Ley AC, Ladner RC (2002) Development of mammalian serum albumin affinity purification media by peptide phage display. Biotechnol Prog 18:182–192

    Article  PubMed  CAS  Google Scholar 

  16. Ladner RC (1995) Constrained peptides as binding entities. Trends Biotechnol 13:426–430

    Article  PubMed  CAS  Google Scholar 

  17. Lowman HB, Chen YM, Skelton NJ, Mortensen DL, Tomlinson EE, Sadick MD, Robinson ICAF, Clark RG (1998) Molecular mimics of insulin like growth factors 1 (IGF-1) for inhibiting IGF-1:IGF-1 binding protein interactions. Biochemistry 37:8870–8878

    Google Scholar 

  18. Cunningham BC, Wells JA (1989) High-resolution epitope mapping of hGH-receptor interactions by alanine scanning mutagenesis. Science 44:1081–1085

    Article  Google Scholar 

  19. Caravan P, Das B, Deng Q, Dumas S, Jacques V, Koerner SK, Kolodziej A, Looby RJ, Sun WC, Zhang Z (2009) A lysine walk to high relaxivity collagen-targeted MRI contrast agents. Chem Commun (Camb) 4:430–432

    Article  Google Scholar 

  20. Eisenwiener KP, Powell P, Macke HR (2000) A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling. Bioorg Med Chem Lett 10:2133–2135

    Article  PubMed  CAS  Google Scholar 

  21. Kumar K, Chang CA, Francesconi LC, Dischino DD, Malley MF, Gougoutas JZ, Tweedle M (1994) Synthesis, stability, and structure of gadolinium(III) and yttrium(III) macrocyclic poly(amino carboxylates). Inorg Chem 33:3567–3575

    Article  CAS  Google Scholar 

  22. Pulukkody KP, Normann TJ, Parker D, Royle L, Brouan CJ (1993) Synthesis of charged and uncharged complexes of gadolinium and yttrium with cyclic polyazaphosphinic acid ligands for in vivo applications. J Chem Soc Perkins Trans 2:605–620

    Article  Google Scholar 

  23. Kolodziej AF, Nair SA, Graham P, McMurry TJ, Wescott W, Sexton DJ, Ladner RC (2012) Fibrin specific peptides derived by phage display: characterization of peptides and conjugates for imaging. Bioconjug Chem 23:548–556

    Article  PubMed  CAS  Google Scholar 

  24. Moskowitz KA, Budzynski AZ (1994) The (DD)E complex is maintained by a composite fibrin polymerization site. Biochemistry 33:12937–12944

    Article  PubMed  CAS  Google Scholar 

  25. Spuentrup E, Buecker A, Katoh M, Wiethoff AJ, Parsons EC Jr, Botnar RM, Weisskoff RM, Graham PB, Manning WJ, Günther R (2005) Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation 111:1377–1382

    Article  PubMed  CAS  Google Scholar 

  26. Spuentrup E, Botnar RM, Wiethoff AJ, Ibrahim T, Kelle S, Katoh M, Ozgun M, Nagel E, Vymazal J, Graham PB, Günther RW, Maintz D (2008) MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. Eur Radiol 18:1995–2005

    Article  PubMed  Google Scholar 

  27. Sirol M, Aguinaldo JG, Graham PB, Weisskoff R, Lauffer R, Mizsei G, Chereshnev I, Fallon JT, Reis E, Fuster V, Toussaint JF, Fayad ZA (2005) Fibrin-targeted contrast agent for improvement of in vivo acute thrombus detection with magnetic resonance imaging. Atherosclerosis 182:79–85

    Article  PubMed  CAS  Google Scholar 

  28. Levy SG, Jacques V, Zhou KL, Kalogeropoulos S, Schumacher K, Amedio JC, Scherer JE, Witowski SR, Lombardy R, Koppetsch K (2009) Development of a multigram asymmetric synthsis of 2-(R)-2-(4,7,10-Tris tert-butylcarboxymethyl-1,4,7,10-tetraazacyclododec-1-yl)-pentanedioic acid, 1-tert-butyl ester, (R)-tert-Bu4-DOTAGA. Org Process Res Dev 13:535–542

    Google Scholar 

  29. Liu S (2008) Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev 60:1347–1370

    Article  PubMed  CAS  Google Scholar 

  30. De Leon-Rodriguez LM, Kavacs Z (2008) The synthesis and chelation chemistry of DOTA-peptide conjugates. Bioconjug Chem 19:391–402

    Article  PubMed  Google Scholar 

  31. Yoo B, Page MD (2007) Peptidyl molecular imaging contrast agents using a new solid phase peptide synthesis approach. Bioconjug Chem 18:903–911

    Article  PubMed  CAS  Google Scholar 

  32. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34:595–598

    Article  PubMed  CAS  Google Scholar 

  33. Vojkovsky T (1995) Detection of secondary amines on solid support. Pept Res 8:236–7

    PubMed  CAS  Google Scholar 

  34. Karle IL, Balaram P (1990) Structural characteristics of alpha-helical peptide molecules containing Aib residues. Biochemistry 29:6747–56

    Article  PubMed  CAS  Google Scholar 

  35. Lewis MR, Kao JY, Anderson AL, Shively JE, Raubitschek A (2001) An improved method for conjugating monoclonal antibodies with N-hydroxysulfosuccinimidyl DOTA. Bioconjug Chem 12:320–324

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Thomas McMurry and Phil Graham for their leadership and scientific contributions to the development of EP-2104R and EP-3533. We also acknowledge the many contributions of colleagues at EPIX Pharmaceuticals to the development of these strategies and protocols, including John Amedio, Jaclyn Chasse, Biplab Das, Qing Deng, Stephane Dumas, Matthew Greenfield, Steffi Koerner, Richard Looby, Shrikumar Nair, Luhua Shen, Wei-Chuan Sun, and Stephan Zech. Discovery of the peptide leads was enabled by collaborations with David Buckler, Bob Ladner, Dan Sexton, and Charles Wescott at DYAX Corporation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kolodziej, A.F., Zhang, Z., Overoye-Chan, K., Jacques, V., Caravan, P. (2014). Peptide Optimization and Conjugation Strategies in the Development of Molecularly Targeted Magnetic Resonance Imaging Contrast Agents. In: Nixon, A. (eds) Therapeutic Peptides. Methods in Molecular Biology, vol 1088. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-673-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-673-3_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-672-6

  • Online ISBN: 978-1-62703-673-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics