Skip to main content

Site-Specific Biotinylation of Purified Proteins Using BirA

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1266))

Abstract

The binding between biotin and streptavidin or avidin is one of the strongest known non-covalent biological interactions. The (strept)avidin-biotin interaction has been widely used for decades in biological research and biotechnology. Therefore labeling of purified proteins by biotin is a powerful way to achieve protein capture, immobilization, and functionalization, as well as multimerizing or bridging molecules. Chemical biotinylation often generates heterogeneous products, which may have impaired function. Enzymatic biotinylation with E. coli biotin ligase (BirA) is highly specific in covalently attaching biotin to the 15 amino acid AviTag peptide, giving a homogeneous product with high yield. AviTag can conveniently be added genetically at the N-terminus, C-terminus, or in exposed loops of a target protein. We describe here procedures for AviTag insertion by inverse PCR, purification of BirA fused to glutathione-S-transferase (GST-BirA) from E. coli, BirA biotinylation of purified protein, and gel-shift analysis by SDS-PAGE to quantify the extent of biotinylation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chapman-Smith A, Cronan JE Jr (1999) In vivo enzymatic protein biotinylation. Biomol Eng 16:119–125

    Article  CAS  PubMed  Google Scholar 

  2. Green NM (1990) Avidin and streptavidin. Methods Enzymol 184:51–67

    Article  CAS  PubMed  Google Scholar 

  3. Sano T, Vajda S, Cantor CR (1998) Genetic engineering of streptavidin, a versatile affinity tag. J Chromatogr B Biomed Sci Appl 715:85–91

    Article  CAS  PubMed  Google Scholar 

  4. Cronan JE Jr (1990) Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem 265:10327–10333

    CAS  PubMed  Google Scholar 

  5. Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8:921–929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. de Boer E et al (2003) Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc Natl Acad Sci U S A 100:7480–7485

    Article  PubMed Central  PubMed  Google Scholar 

  7. Parrott MB, Barry MA (2001) Metabolic biotinylation of secreted and cell surface proteins from mammalian cells. Biochem Biophys Res Commun 281:993–1000

    Article  CAS  PubMed  Google Scholar 

  8. Howarth M, Takao K, Hayashi Y, Ting AY (2005) Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci U S A 102:7583–7588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Yang J, Jaramillo A, Shi R, Kwok WW, Mohanakumar T (2004) In vivo biotinylation of the major histocompatibility complex (MHC) class II/peptide complex by coexpression of BirA enzyme for the generation of MHC class II/tetramers. Hum Immunol 65:692–699

    Article  CAS  PubMed  Google Scholar 

  10. Ooi SL, Henikoff JG, Henikoff S (2010) A native chromatin purification system for epigenomic profiling in Caenorhabditis elegans. Nucleic Acids Res 38:e26

    Article  PubMed Central  PubMed  Google Scholar 

  11. Howarth M, Ting AY (2008) Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat Protoc 3:534–545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Sims S, Willberg C, Klenerman P (2010) MHC-peptide tetramers for the analysis of antigen-specific T cells. Expert Rev Vaccines 9:765–774

    Article  CAS  PubMed  Google Scholar 

  13. Valadon P et al (2010) Designed auto-assembly of nanostreptabodies for rapid tissue-specific targeting in vivo. J Biol Chem 285:713–722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Williams JG et al (2008) An artificial processivity clamp made with streptavidin facilitates oriented attachment of polymerase-DNA complexes to surfaces. Nucleic Acids Res 36:e121

    Article  PubMed Central  PubMed  Google Scholar 

  15. Rakshit S, Zhang Y, Manibog K, Shafraz O, Sivasankar S (2012) Ideal, catch, and slip bonds in cadherin adhesion. Proc Natl Acad Sci U S A 109:18815–18820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Jain J, Veggiani G, Howarth M (2013) Cholesterol loading and ultrastable protein interactions determine the level of tumor marker required for optimal isolation of cancer cells. Cancer Res 73:2310–2321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Sung K, Maloney MT, Yang J, Wu C (2011) A novel method for producing mono-biotinylated, biologically active neurotrophic factors: an essential reagent for single molecule study of axonal transport. J Neurosci Methods 200:121–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Viens A et al (2008) Use of protein biotinylation in vivo for immunoelectron microscopic localization of a specific protein isoform. J Histochem Cytochem 56:911–919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Wu SC, Wong SL (2004) Development of an enzymatic method for site-specific incorporation of desthiobiotin to recombinant proteins in vitro. Anal Biochem 331:340–348

    Article  CAS  PubMed  Google Scholar 

  20. Chen I, Howarth M, Lin W, Ting AY (2005) Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2:99–104

    Article  CAS  PubMed  Google Scholar 

  21. Slavoff SA, Chen I, Choi YA, Ting AY (2008) Expanding the substrate tolerance of biotin ligase through exploration of enzymes from diverse species. J Am Chem Soc 130:1160–1162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Uttamapinant C et al (2010) A fluorophore ligase for site-specific protein labeling inside living cells. Proc Natl Acad Sci U S A 107:10914–10919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Howarth M et al (2006) A monovalent streptavidin with a single femtomolar biotin binding site. Nat Methods 3:267–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chivers CE et al (2010) A streptavidin variant with slower biotin dissociation and increased mechanostability. Nat Methods 7:391–393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Chivers CE, Koner AL, Lowe ED, Howarth M (2011) How the biotin-streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer. Biochem J 435:55–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lau PN, Cheung P (2013) Elucidating combinatorial histone modifications and crosstalks by coupling histone-modifying enzyme with biotin ligase activity. Nucleic Acids Res 41:e49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Liu DS, Loh KH, Lam SS, White KA, Ting AY (2013) Imaging trans-cellular neurexin-neuroligin interactions by enzymatic probe ligation. PLoS One 8:e52823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Deal RB, Henikoff S (2011) The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6:56–68

    Article  CAS  PubMed  Google Scholar 

  29. Steiner FA, Talbert PB, Kasinathan S, Deal RB, Henikoff S (2012) Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res 22:766–777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Cronan JE (2005) Targeted and proximity-dependent promiscuous protein biotinylation by a mutant Escherichia coli biotin protein ligase. J Nutr Biochem 16:416–418

    Article  CAS  PubMed  Google Scholar 

  31. Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Martell JD et al (2012) Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30:1143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Gallivan JP, Lester HA, Dougherty DA (1997) Site-specific incorporation of biotinylated amino acids to identify surface-exposed residues in integral membrane proteins. Chem Biol 4:739–749

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe T, Muranaka N, Iijima I, Hohsaka T (2007) Position-specific incorporation of biotinylated non-natural amino acids into a protein in a cell-free translation system. Biochem Biophys Res Commun 361:794–799

    Article  CAS  PubMed  Google Scholar 

  35. Yoshihara HA, Mahrus S, Wells JA (2008) Tags for labeling protein N-termini with subtiligase for proteomics. Bioorg Med Chem Lett 18:6000–6003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lesaicherre ML, Lue RYP, Chen GYJ, Zhu Q, Yao SQ (2002) Intein-mediated biotinylation of proteins and its application in a protein microarray. J Am Chem Soc 124:8768–8769

    Article  CAS  PubMed  Google Scholar 

  37. Carvajal-Vallejos P, Pallisse R, Mootz HD, Schmidt SR (2012) Unprecedented rates and efficiencies revealed for new natural split inteins from metagenomic sources. J Biol Chem 287:28686–28696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Shah NH, Dann GP, Vila-Perello M, Liu Z, Muir TW (2012) Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J Am Chem Soc 134:11338–11341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Popp MW, Antos JM, Grotenbreg GM, Spooner E, Ploegh HL (2007) Sortagging: a versatile method for protein labeling. Nat Chem Biol 3:707–708

    Article  CAS  PubMed  Google Scholar 

  40. Zakeri B et al (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109:E690–E697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lim KH, Huang H, Pralle A, Park S (2013) Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnol Bioeng 110:57–67

    Article  CAS  PubMed  Google Scholar 

  42. O’Callaghan CA et al (1999) BirA enzyme: production and application in the study of membrane receptor-ligand interactions by site-specific biotinylation. Anal Biochem 266:9–15

    Article  PubMed  Google Scholar 

  43. Gama L, Breitwieser GE (2002) Generation of epitope-tagged proteins by inverse polymerase chain reaction mutagenesis. Methods Mol Biol 182:77–83

    CAS  PubMed  Google Scholar 

  44. Chiu J, March PE, Lee R, Tillett D (2004) Site-directed, ligase-independent mutagenesis (SLIM): a single-tube methodology approaching 100% efficiency in 4 h. Nucleic Acids Res 32:e174

    Article  PubMed Central  PubMed  Google Scholar 

  45. Saviranta P, Haavisto T, Rappu P, Karp M, Lovgren T (1998) In vitro enzymatic biotinylation of recombinant fab fragments through a peptide acceptor tail. Bioconjug Chem 9:725–735

    Article  CAS  PubMed  Google Scholar 

  46. Cull MG, Schatz PJ (2000) Biotinylation of proteins in vivo and in vitro using small peptide tags. Methods Enzymol 326:430–440

    Article  CAS  PubMed  Google Scholar 

  47. Marttila AT et al (2000) Recombinant NeutraLite avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties. FEBS Lett 467:31–36

    Article  CAS  PubMed  Google Scholar 

  48. Schatz PJ (1993) Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology (N Y) 11:1138–1143

    Article  CAS  Google Scholar 

  49. Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S (2008) Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456:125–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Brown MT et al (2012) Flagellar hook flexibility is essential for bundle formation in swimming Escherichia coli cells. J Bacteriol 194:3495–3501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Bates IR et al (2006) Membrane lateral diffusion and capture of CFTR within transient confinement zones. Biophys J 91:1046–1058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Lau PW, Potter CS, Carragher B, MacRae IJ (2012) DOLORS: versatile strategy for internal labeling and domain localization in electron microscopy. Structure 20:1995–2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Li Y, Sousa R (2012) Expression and purification of E. coli BirA biotin ligase for in vitro biotinylation. Protein Expr Purif 82:162–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC). We thank Jayati Jain (Howarth laboratory) for providing Fig. 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Howarth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fairhead, M., Howarth, M. (2015). Site-Specific Biotinylation of Purified Proteins Using BirA. In: Gautier, A., Hinner, M. (eds) Site-Specific Protein Labeling. Methods in Molecular Biology, vol 1266. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2272-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2272-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2271-0

  • Online ISBN: 978-1-4939-2272-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics