Skip to main content
Log in

Brain atrophy associations with white matter lesions in the ageing brain: the Lothian Birth Cohort 1936

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

Cerebral atrophy and white matter lesions (WMLs) are common in older people with common risk factors, but it is unclear if they are related. We investigated whether and to what degree they are related in deep and superficial structures using both volumetric and visual ratings.

Methods

The intracranial, total brain tissue (TBV), cerebrospinal fluid (CSF), ventricular superficial subarachnoid space (SSS), grey matter, normal-appearing white matter, WMLs, and combined CSF, venous sinuses and dural volumes were measured. WMLs were also rated using the Fazekas scale.

Results

Amongst 672 adults (mean age 73 ± 1 years), WMLs were associated with global brain atrophy (TBV, β = −0.43 mm3, P < 0.01) and specifically with deep (ventricular enlargement, β = 0.10 mm3, P = 0.03) rather than superficial (SSS, β = 0.09 mm3, P = 0.55) atrophy. A 1 mm3 increase in WML volume was associated with a 0.43 mm3 decrease in TBV and 0.10 mm3 increase in ventricular volume. WMLs were associated with combined CSF + Venous Sinuses + Meninges volumes, but not CSF volume alone. Some of the associations were attenuated after correcting for vascular risk factors. The associations were similar for visually scored WMLs.

Conclusion

WMLs are associated with brain atrophy, primarily with deep brain structures. Measures of brain atrophy should include all intracranial structures when assessing brain shrinkage.

Key Points

Increasing age-related white matter lesions (WML) are modestly associated with brain atrophy.

Most associated atrophy affects deep structures (white matter, basal ganglia, etc.).

This is true whether WMLs are assessed volumetrically or visually scored.

Precise evaluation of brain atrophy requires assessment of all intracranial tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Muller M, Appelman A, van der Graaf Y, Vincken K, Mali W, Geerlings M (2011) Brain atrophy and cognition: interaction with cerebrovascular pathology? Neurobiol Aging 32:885–893

    Article  PubMed  Google Scholar 

  2. Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23:3295–3301

    PubMed  CAS  Google Scholar 

  3. Evans MC, Barnes J, Nielsen C et al (2010) Volume changes in Alzheimer’s disease and mild cognitive impairment: cognitive associations. Eur Radiol 20:674–682. doi:10.1007/s00330-009-1581-5

    Article  PubMed  Google Scholar 

  4. Kakeda S, Korogi Y, Yoneda T et al (2011) A novel tract imaging technique of the brainstem using phase difference enhanced imaging: normal anatomy and initial experience in multiple system atrophy. Eur Radiol 21:2202–2210. doi:10.1007/s00330-011-2158-7

    Article  PubMed  Google Scholar 

  5. Appelman APA, Exalto LG, van der Graaf Y, Biessels GJ, Mali W, Geerlings MI (2009) White matter lesions and brain atrophy: more than shared risk factors? A systematic review. Cerebrovasc Dis 28:227–242

    Article  PubMed  Google Scholar 

  6. den Heijer T, Geerlings MI, Hoebeek FE, Hofman A, Koudstaal PJ, Breteler MMB (2006) Use of hippocamal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. Arch Gen Psychiatry 63:57–62

    Article  Google Scholar 

  7. Mok V, Wong KK, Xiong YY et al (2011) Cortical and frontal atrophy are associated with cognitive impairment in age-related confluent white-matter lesion. J Neurol Neurosurg Psychiatry 82:52–57

    Article  PubMed  Google Scholar 

  8. Koedam ELGE, Lehmann M, van der Flier WM et al (2011) Visual assessment of posterior atrophy development of a MRI rating scale. Eur Radiol 21:2618–2625. doi:10.1007/s00330-011-2205-4

    Article  PubMed  Google Scholar 

  9. Jokinen H, Lipsanen J, Schmidt R et al (2012) Brain atrophy accelerates cognitive decline in cerebral small vessel disease The LADIS study. Neurology 78:1785–1792. doi:10.1212/WNL.0b013e3182583070

    Article  PubMed  CAS  Google Scholar 

  10. Schmidt R, Grazer A, Enzinger C et al (2011) MRI-detected white matter lesions: do they really matter? J Neural Transm 118

  11. Longstreth WT, Arnold AM, Manolio TA et al (2000) Clinical correlates of ventricular and sulcal size on cranial magnetic resonance imaging of 3,301 elderly people—The cardiovascular health study. Neuroepidemiology 19:30–42

    Article  PubMed  Google Scholar 

  12. Debette S, Markus H (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 26

  13. van der Flier WM, van Straaten ECW, Barkhof F et al (2005) Small vessel disease and general cognitive function in nondisabled elderly—The LADIS study. Stroke 36:2116–2120

    Article  PubMed  Google Scholar 

  14. Prins ND, van Dijk EJ, den Heijer T et al (2005) Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain 128:2034–2041

    Article  PubMed  Google Scholar 

  15. Raji CA, Lopez OL, Kuller LH et al (2012) White matter lesions and brain gray matter volume in cognitively normal elders. Neurobiol Aging 33:834.e837–834.e816

    Article  Google Scholar 

  16. Liou L-M, Chen C-F, Guo Y-C et al (2010) Cerebral white matter hyperintensities predict functional stroke outcome. Cerebrovasc Dis 29:22–27

    Article  PubMed  Google Scholar 

  17. DeCarli C, Murphy DGM, Tranh M et al (1995) The effect of white-matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy-adults. Neurology 45:2077–2084

    Article  PubMed  CAS  Google Scholar 

  18. Breteler MMB, Vanswieten JC, Bots ML et al (1994) Cerebral white matter lesions, vascular risk-factors, and cognitive functions in a population-based study—The Rotterdam study. Neurology 44:1246–1252

    Article  PubMed  CAS  Google Scholar 

  19. Yue NC, Arnold AM, Longstreth WT et al (1997) Sulcal, ventricular, and white matter changes at MR imaging in the aging brain: data from the Cardiovascular Health Study. Radiology 202:33–39

    PubMed  CAS  Google Scholar 

  20. Mosley TH, Knopman DS, Catellier DJ et al (2005) Cerebral MRI findings and cognitive functioning—The atherosclerosis risk in communities study. Neurology 64:2056–2062

    Article  PubMed  Google Scholar 

  21. Christiansen P, Larsson HBW, Thomsen C, Wieslander SB, Henriksen O (1994) Age-dependent white-matter lesions and brain volume changes in healthy-volunteers. Acta Radiol 35:117–122

    PubMed  CAS  Google Scholar 

  22. Agartz I, Marions O, Saaf J, Wahlund LO, Wetterberg L (1992) Visual rating of magnetic-resonance images of human cerebrospinal-fluid spaces and white brain matter—relation to sex and age in healthy-volunteers. Magn Reson Imaging 10:135–142

    Article  PubMed  CAS  Google Scholar 

  23. Fazekas F, Barkhof F, Wahlund LO et al (2002) CT and MRI rating of white matter lesions. Cerebrovasc Dis 13:31–36

    Article  PubMed  Google Scholar 

  24. Kapeller P, Schmidt R, Enzinger C, Ropele S, Fazekas F (2002) CT and MRI rating of white matter changes. J Neural Transm Suppl 62:41–45

    PubMed  Google Scholar 

  25. Scheltens P, Erkinjunti T, Leys D et al (1998) White matter changes on CT and MRI: an overview of visual rating scales. Eur Neurol 39:80–89

    Article  PubMed  CAS  Google Scholar 

  26. Ikram MA, Vrooman HA, Vernooij MW et al (2008) Brain tissue volumes in the general elderly population—The Rotterdam Scan Study. Neurobiol Aging 29:882–890

    Article  PubMed  Google Scholar 

  27. Swan GE, DeCarli C, Miller BL, Reed T, Wolf PA, Carmelli D (2000) Biobehavioral characteristics of nondemented older adults with subclinical brain atrophy. Neurology 54:2108–2114

    Article  PubMed  CAS  Google Scholar 

  28. Deary IJ, Gow AJ, Taylor MD et al (2007) The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond. BMC Geriatr 7:28

    Article  PubMed  Google Scholar 

  29. Wardlaw JM, Bastin ME, Hernandez MCV et al (2011) Brain aging, cognition in youth and old age and vascular disease in the Lothian Birth Cohort 1936: rationale, design and methodology of the imaging protocol. Int J Stroke 6:547–559

    Article  PubMed  Google Scholar 

  30. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156

    Article  PubMed  CAS  Google Scholar 

  31. Hernandez MDV, Ferguson KJ, Chappell FM, Wardlaw JM (2010) New multispectral MRI data fusion technique for white matter lesion segmentation: method and comparison with thresholding in FLAIR images. Eur Radiol 20:1684–1691

    Article  Google Scholar 

  32. Mayo C (2008) Analyze 8.1. AnalyzeDirect, Inc. Mayo Clinic. http://www.analyzedirect.com/Analyze/upgrade.asp

  33. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5-t in alzheimer dementia and normal aging MR. Am J Roentgenol 149:351–356

    Article  CAS  Google Scholar 

  34. Wardlaw, Ferguson KJ, Graham C (2004) White matter hyperintensities and rating scales—observer reliability varies with lesion load. J Neurol 251:584–590

    Article  PubMed  Google Scholar 

  35. Piguet O, Double KL, Kril JJ et al (2009) White matter loss in healthy ageing: a postmortem analysis. Neurobiol Aging 30:1288–1295

    Article  PubMed  CAS  Google Scholar 

  36. Longstreth WT, Manolio TA, Arnold A et al (1996) Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people—The cardiovascular health study. Stroke 27:1274–1282

    Article  PubMed  Google Scholar 

  37. Ylikoski A, Erkinjuntti T, Raininko R, Sarna S, Sulkava R, Tilvis R (1995) White-matter hyperintensities on MRI in the neurologically nondiseased elderly—analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke 26:1171–1177

    Article  PubMed  CAS  Google Scholar 

  38. Grau-Olivares M, Arboix A, Junque C, Arenaza-Urquijo EM, Rovira M, Bartres-Faz D (2010) Progressive gray matter atrophy in lacunar patients with vascular mild cognitive impairment. Cerebrovasc Dis 30:157–166

    Article  PubMed  Google Scholar 

  39. Chowdhury MH, Nagai A, Bokura H, Nakamura E, Kobayashi S, Yamaguchi S (2011) Age-related changes in white matter lesions, hippocampal atrophy, and cerebral microbleeds in healthy subjects without major cerebrovascular risk factors. J Stroke Cerebrovasc Dis 20:302–309

    Article  PubMed  Google Scholar 

  40. van den Heuvel DMJ, ten Dam VH, de Craen AJM et al (2006) Measuring longitudinal white matter changes: Comparison of a visual rating scale with a volumetric measurement. Am J Neuroradiol 27:875–878

    PubMed  Google Scholar 

  41. Raz N (2004) The aging brain observed in vivo: Differential changes and their modifiers. In: Cabeza R, Nyberg L, Park DC (eds) Cognitive neuroscience of aging: Linking cognitive and cerebral aging. Oxford University Press, New York, pp 17–55

    Google Scholar 

  42. Raz N, Kennedy KM (2009) A systems approach to age-related change: Neuroanatomical changes, their modifiers, and cognitive correlates. In: Jagust W, D’Esposito M (eds) Imaging the aging brain. Oxford University Press, New York, pp 43–70

    Chapter  Google Scholar 

  43. Appelman APA, Vincken KL, van der Graaf Y et al (2010) White matter lesions and lacunar infarcts are independently and differently associated with brain atrophy: the SMART-MR study. Cerebrovasc Dis 29:28–35

    Article  PubMed  Google Scholar 

  44. Du AT, Schuff N, Chao LL et al (2005) White matter lesions are associated with cortical atrophy more than entorhinal and hippocampal atrophy. Neurobiol Aging 26:553–559. doi:10.1016/j.neurobiolaging.2004.05.002

    Article  PubMed  Google Scholar 

  45. Mungas D, Jagust WJ, Reed BR et al (2001) MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer’s disease. Neurology 57:2229–2235

    Article  PubMed  CAS  Google Scholar 

  46. Tullberg M, Fletcher E, DeCarli C et al (2004) White matter lesions impair frontal lobe function regardless of their location. Neurology 63:246–253

    Article  PubMed  CAS  Google Scholar 

  47. Ashburner J, Friston K (2005) Unified segmentation. NeuroImage 26:839

    Article  PubMed  Google Scholar 

  48. Fischl B, van der Kouwe A, Destrieux C et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22. doi:10.1093/cercor/bhg087

    Article  PubMed  Google Scholar 

  49. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

BSA, NAR, SMM and MCVH are supported by The Disconnected Mind (http://www.disconnectedmind.ed.ac.uk/) funded by Age UK and the UK Medical Research Council. JMW was supported by the Scottish Funding Council (SFC) through the SINAPSE Collaboration (Scottish Imaging Network. A Platform for Scientific Excellence, http://www.sinapse.ac.uk). MCVH is also supported by Row Fogo Charitable Trust. We thank the radiographers and administrative staff of the Brain Research Imaging Centre, Edinburgh, (http://www.bric.ed.ac.uk/), part of the SINAPSE Collaboration (http://www.sinapse.ac.uk/), where the subjects were scanned and the imaging data were analysed. We thank the Lothian Birth Cohort 1936 team for data collection and data entry; the nurses and other staff at the Wellcome Trust Clinical Research Facility (http://www.wtcrf.ed.ac.uk/) and the staff at Lothian Health Board. The work was undertaken within The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology (http://www.ccace.ed.ac.uk/), part of the cross council Lifelong Health and Wellbeing Initiative (G0700704/84698). Funding from the Biotechnology and Biological Sciences Research Council (BBSRC), Engineering and Physical Sciences Research Council (EPSRC), Economic and Social Research Council (ESRC) and Medical Research Council (MRC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin S. Aribisala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aribisala, B.S., Valdés Hernández, M.C., Royle, N.A. et al. Brain atrophy associations with white matter lesions in the ageing brain: the Lothian Birth Cohort 1936. Eur Radiol 23, 1084–1092 (2013). https://doi.org/10.1007/s00330-012-2677-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2677-x

Keywords

Navigation