Skip to main content

Advertisement

Log in

FDG uptake in cervical lymph nodes in children without head and neck cancer

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

A Correction to this article was published on 13 December 2017

This article has been updated

Abstract

Background

Reactive cervical lymphadenopathy is common in children and may demonstrate increased 18F–fluoro-deoxyglucose (18F–FDG) uptake on positron emission tomography/computed tomography (PET/CT).

Objective

We sought to evaluate the frequency and significance of 18F–FDG uptake by neck lymph nodes in children with no history of head and neck cancer.

Materials and methods

The charts of 244 patients (114 female, mean age: 10.4 years) with a variety of tumors such as lymphoma and post-transplant lymphoproliferative diseases (PTLD), but no head and neck cancers, who had undergone 18F–FDG PET/CT were reviewed retrospectively. Using the maximum standardized uptake value (SUVmax), increased 18F–FDG uptake by neck lymph nodes was recorded and compared with the final diagnosis based on follow-up studies or biopsy results.

Results

Neck lymph node uptake was identified in 70/244 (28.6%) of the patients. In 38 patients, the lymph nodes were benign. In eight patients, the lymph nodes were malignant (seven PTLD and one lymphoma). In 24 patients, we were not able to confirm the final diagnosis. Seven out of the eight malignant lymph nodes were positive for PTLD. The mean SUVmax was significantly higher in malignant lesions (4.2) compared with benign lesions (2.1) (P = 0.00049).

Conclusion

18F–FDG uptake in neck lymph nodes is common in children and is frequently due to reactive lymph nodes, especially when the SUVmax is <3.2. The frequency of malignant cervical lymph nodes is higher in PTLD patients compared with other groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 13 December 2017

    The original version of this article unfortunately contained a mistake. Author name Alaa Bakkari was incorrect. The correct spelling is given above.

References

  1. Depas G, De Barsy C, Jerusalem G et al (2005) 18F-FDG PET in children with lymphomas. Eur J Nucl Med Mol Imaging 32:31–38

    Article  PubMed  Google Scholar 

  2. Hudson MM, Krasin MJ, Kaste SC (2004) PET imaging in pediatric Hodgkin's lymphoma. Pediatr Radiol 34:190–198

    Article  PubMed  Google Scholar 

  3. Ricard F, Cimarelli S, Deshayes E et al (2011) Additional benefit of F-18 FDG PET/CT in the staging and follow-up of pediatric rhabdomyosarcoma. Clin Nucl Med 36:672–677

    Article  PubMed  Google Scholar 

  4. Tateishi U, Hosono A, Makimoto A et al (2007) Accuracy of 18F fluorodeoxyglucose positron emission tomography/computed tomography in staging of pediatric sarcomas. J Pediatr Hematol Oncol 29:608–612

    Article  PubMed  Google Scholar 

  5. Uslu L, Donig J, Link M et al (2015) Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med 56:274–286

    Article  PubMed  Google Scholar 

  6. Tatsumi M, Miller JH, Wahl RL (2007) 18F-FDG PET/CT in evaluating non-CNS pediatric malignancies. J Nucl Med 48:1923–1931

    Article  PubMed  Google Scholar 

  7. Lucignani G, Paganelli G, Bombardieri E (2004) The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective. Nucl Med Commun 25:651–656

    Article  CAS  PubMed  Google Scholar 

  8. O'Hara SM, Donnelly LF, Coleman RE (1999) Pediatric body applications of FDG PET. AJR Am J Roentgenol 172:1019–1024

    Article  PubMed  Google Scholar 

  9. Pentenero M, Cistaro A, Brusa M et al (2008) Accuracy of 18F-FDG-PET/CT for staging of oral squamous cell carcinoma. Head Neck 30:1488–1496

    Article  PubMed  Google Scholar 

  10. Abouzied MM, Crawford ES, Nabi HA (2005) 18F-FDG imaging: pitfalls and artifacts. J Nucl Med Technol 33:145–155 quiz 162-143

    PubMed  Google Scholar 

  11. Restrepo R, Oneto J, Lopez K et al (2009) Head and neck lymph nodes in children: the spectrum from normal to abnormal. Pediatr Radiol 39:836–846

    Article  PubMed  Google Scholar 

  12. Shammas A, Lim R, Charron M (2009) Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics 29:1467–1486

    Article  PubMed  Google Scholar 

  13. Sathiakumar C, Som S, Eberl S et al (2010) NEMA NU 2-2001 performance testing of a Philips Gemini GXL PET/CT scanner. Australas Phys Eng Sci Med 33:199–209

    Article  PubMed  Google Scholar 

  14. Leung AK, Robson WL (2004) Childhood cervical lymphadenopathy. J Pediatr Health Care 18:3–7

    Article  PubMed  Google Scholar 

  15. Ludwig BJ, Wang J, Nadgir RN et al (2012) Imaging of cervical lymphadenopathy in children and young adults. AJR Am J Roentgenol 199:1105–1113

    Article  PubMed  Google Scholar 

  16. Mohseni S, Shojaiefard A, Khorgami Z et al (2014) Peripheral lymphadenopathy: approach and diagnostic tools. Iran J Med Sci 39:158–170

    PubMed  PubMed Central  Google Scholar 

  17. Kojima M, Nakamura S, Shimizu K et al (2005) Reactive lymphoid hyperplasia of the lymph nodes with giant follicles: a clinicopathologic study of 14 Japanese cases, with special reference to Epstein-Barr virus infection. Int J Surg Pathol 13:267–272

    Article  PubMed  Google Scholar 

  18. Kim JE, Lee EK, Lee JM et al (2014) Kikuchi-Fujimoto disease mimicking malignant lymphoma with 2-[(18)F]fluoro-2-deoxy-D-glucose PET/CT in children. Korean J Pediatr 57:226–231

    Article  PubMed  PubMed Central  Google Scholar 

  19. Curiel R, Akin EA, Beaulieu G et al (2011) PET/CT imaging in systemic lupus erythematosus. Ann N Y Acad Sci 1228:71–80

    Article  PubMed  Google Scholar 

  20. Fey GL, Jolles PR, Buckley LM et al (2004) 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography uptake in systemic lupus erythematosus-associated adenopathy. Mol Imaging Biol 6:7–11

    Article  PubMed  Google Scholar 

  21. Lee DH, Baek HJ, Kook H et al (2014) Clinical value of fine needle aspiration cytology in pediatric cervical lymphadenopathy patients under 12-years-of-age. Int J Pediatr Otorhinolaryngol 78:79–81

    Article  PubMed  Google Scholar 

  22. Niedzielska G, Kotowski M, Niedzielski A et al (2007) Cervical lymphadenopathy in children--incidence and diagnostic management. Int J Pediatr Otorhinolaryngol 71:51–56

    Article  PubMed  Google Scholar 

  23. Castelijns JA, Leemans CR (2002) Detection of residual disease of lymph node metastases in the neck, which is treated by (chemo)radiation. AJNR Am J Neuroradiol 23:1618–1619

    CAS  PubMed  Google Scholar 

  24. Curtin HD, Ishwaran H, Mancuso AA et al (1998) Comparison of CT and MR imaging in staging of neck metastases. Radiology 207:123–130

    Article  CAS  PubMed  Google Scholar 

  25. Som PM, Curtin HD, Mancuso AA (1999) An imaging-based classification for the cervical nodes designed as an adjunct to recent clinically based nodal classifications. Arch Otolaryngol Head Neck Surg 125:388–396

    Article  CAS  PubMed  Google Scholar 

  26. Hoang JK, Vanka J, Ludwig BJ et al (2013) Evaluation of cervical lymph nodes in head and neck cancer with CT and MRI: tips, traps, and a systematic approach. AJR Am J Roentgenol 200:W17–W25

    Article  PubMed  Google Scholar 

  27. Parisi E, Glick M (2005) Cervical lymphadenopathy in the dental patient: a review of clinical approach. Quintessence Int 36:423–436

    PubMed  Google Scholar 

  28. Connor SE, Olliff JF (2000) Imaging of malignant cervical lymphadenopathy. Dentomaxillofac Radiol 29:133–143

    Article  CAS  PubMed  Google Scholar 

  29. Borhani AA, Hosseinzadeh K, Almusa O et al (2009) Imaging of posttransplantation lymphoproliferative disorder after solid organ transplantation. Radiographics 29:981–1000

    Article  PubMed  Google Scholar 

  30. Takehana CS, Twist CJ, Mosci C et al (2014) (18)F-FDG PET/CT in the management of patients with post-transplant lymphoproliferative disorder. Nucl Med Commun 35:276–281

    Article  PubMed  Google Scholar 

  31. Halula SE, Leino DG, Patel MN et al (2015) Isolated upper extremity posttransplant lymphoproliferative disorder in a child. Case Rep Radiol 2015:813989

    PubMed  PubMed Central  Google Scholar 

  32. Marom EM, McAdams HP, Butnor KJ et al (2004) Positron emission tomography with fluoro-2-deoxy-D-glucose (FDG-PET) in the staging of post transplant lymphoproliferative disorder in lung transplant recipients. J Thorac Imaging 19:74–78

    Article  PubMed  Google Scholar 

  33. Panagiotidis E, Quigley AM, Pencharz D et al (2014) (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in diagnosis of post-transplant lymphoproliferative disorder. Leuk Lymphoma 55:515–519

    Article  PubMed  Google Scholar 

  34. Vali R, Punnett A, Bajno L et al (2015) The value of (18) F-FDG PET in pediatric patients with post-transplant lymphoproliferative disorder at initial diagnosis. Pediatr Transplant 19:932–939

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Vali.

Ethics declarations

Conflicts of interest

None.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s00247-017-4049-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vali, R., Bakari, A.A., Marie, E. et al. FDG uptake in cervical lymph nodes in children without head and neck cancer. Pediatr Radiol 47, 860–867 (2017). https://doi.org/10.1007/s00247-017-3835-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-017-3835-8

Keywords

Navigation