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Supplementary Methods 
 

1. Choice of fixed parameter values 
Total target cell numbers in the URT and the LRT in the absence of infection (𝑇!,# and	𝑇$,#, 
respectively) 
In the URT, it has been estimated that there are 4×108 epithelial cells (1). Approximately 1% of 
these cells express both angiotensin-converting enzyme 2 (ACE2) and the type II transmembrane 
serine protease TMPRSS2 based on single-cell RNAseq experiments (2, 3). These two proteins 
are the receptor and the protease needed for SARS-CoV-2 binding and fusion with the cell 
membrane leading to viral entry into the cell (4). Thus, we assume the initial number of target 
cells in the URT, 𝑇!,# =4×106 .  
 
In the LRT, cells that express both ACE2 and TMPRSS2 are mostly lung epithelial cells. The 
fraction of lung epithelial cells expressing ACE2 and TMPRSS2 is also about 1% (2, 3). It is 
estimated that there are approximately 1×1010 bronchial epithelial cells (5), 4×1010 alveolar type I 
cells, and 7×1010 alveolar type II cells in a human adult (6, 7). We thus calculate the total number 
of lung epithelial cells expressing ACE2 and TMPRSS2 as 1%×(1+4+7)×1010=1.2×109 cells. 
There are 5 lobes in the two lungs and the trachea is connected to two lobes, i.e. the upper lobes. 
We assume that initially only target cells in the upper lobes are available for infection.  Thus, we 
approximate the initial number of target cells in the LRT, 𝑇$,#, as  𝑇$,#=2/5×1.2×109=4.8×108 
cells. Note that in the extended target cell model and the full model, we allow more target cells to 
become available for infection as infection proceeds. 
 
Hou et al. recently reported that the number of cells that are susceptible to SARS-CoV-2 
infection may be larger than that estimated based on gene expression measured using single-cell 
RNAseq, and that there exists a decreasing gradient of susceptible cells from the URT to the 
LRT (8). Therefore, there exists uncertainty in the number of target cells estimated above. 
However, because for a standard viral dynamic model the number of initial target cells and the 
virus production rate are unidentifiable and only their product is identifiable (9), an increase 
(decrease) in the initial number of target cells will lead to corresponding decrease (increase) in 
the estimate of the virus production rate but not in the estimate of other parameters such as R0 
(see Eqns [4] and [5]).  
 
Initial number of infected cells, 𝐼!,# 
Evidence strongly suggests that the URT is the initial site of infection (8, 10). Thus, we assume 
that one cell in the URT is infected at the start of infection, i.e. 𝐼!,# = 1 cell. This approach is 
similar to that in Ref. (11) as we use it because in our model, we do not track the number of 
viruses in the URT (instead, we track viruses in a swab, 𝑉%). As shown in Smith et al. (11), this 
assumption does not change the dynamics of the model significantly as any initial viral particles 
that succeed in initiating infection must infect one or more cells (rapidly) before being cleared. In 
sensitivity analysis, we test 𝐼!,# = 10 cells. 
 
Virus clearance rate, c 
We set c=10/day, because in vivo viral clearance is usually fast in many infections, including for 
respiratory infections such as influenza viruses (11) (1, 12). We have used this value of c in a 
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previous model of URT infection by SARS-CoV-2 (13). In sensitivity analyses, we set c= 5 or 
20/day. 
 
Eclipse period, 1/𝑘! and 1/𝑘$ 
For simplicity, we assume that the mean duration of the eclipse period of infected cells is the 
same for cells in the URT and the LRT, i.e. 𝑘! = 𝑘$ , because this should be a property of 
intracellular infection. We set 𝑘! = 𝑘$ = 4 /day (i.e. !

&!
= !

&"
 =6 hours) according to cell culture 

experiments suggesting infected cells start to produce virus between 4-8 hours post infection (14). 
In sensitivity analyses, we set !

&!
= !

&"
=4 or 8 hours, with the 4 hour choice motivated by the 

experiments in Hou et al. (8) that showed viral titers of 104 PFU/ml in vitro at 6 hour post 
infection, the earliest time point sampled.  
 
The rate of virus transport from the URT to the LRT, Γ 
Hou et al. provided evidence supporting the idea that virus is seeded to the LRT through the oral-
lung aspiration axis (8). Since aspiration is generally an infrequent event, we assume the average 
rate of virus transport from the URT and the LRT is low (also see next section for further 
experimental support), although the precise value has not been quantified. We set Γ = 0.01/day. 
In sensitivity analyses, we vary this parameter by two orders of magnitude, letting Γ = 0.001 or 
0.1/day. 
 

2. Simplification of the target cell limited model 
We reduced the number of parameters in the target cell limited model by making biologically 
reasonable simplifications. We first derive the ODEs for 𝑉% and 𝑉' to replace the expressions for 
𝑉! and 𝑉$  as 

𝑑𝑉%
𝑑𝑡 = 𝑓!

𝑑𝑉!
𝑑𝑡 = 𝑓!𝑝!𝐼! − (𝑐	 + 𝑔!$)𝑉% +

𝑓!
𝑓$
𝑔$!𝑉' 

𝑑𝑉'
𝑑𝑡 = 𝑓$

𝑑𝑉$
𝑑𝑡 = 𝑓$𝑝$𝐼$ − (𝑐 + 𝑔$!)𝑉' +

𝑓$
𝑓!
𝑔!$𝑉% 

[S1] 

 
In what follows, we assume that 𝑔!$ ≪ 𝑐. This is a reasonable assumption because we expect 
viral transfer to the LRT to be slow (15, 16), and viral clearance is typically fast. Further, in 
previous studies (10, 17), full genome sequencing was done for all patients. In one patient a 
G4664A mutation was observed in a throat swab, while a sputum sample from the same day still 
showed the original allele 4664G, consistent with slow transport into the LRT. Under this 
assumption, we have 𝑐 + 𝑔!$ ≈ 𝑐. Thus, ()#

(*
≈ 𝑓!𝑝!𝐼! − 𝑐𝑉% +

+!
+"
𝑔$!𝑉' . There is no evidence 

the viral load dynamics in the LRT strongly affects dynamics in the URT. For example, in 
general viral load in the URT continues to decrease after its peak even when the viral load in the 
LRT is at its peak and stays elevated. If we set 𝑔$! = 0, the ODEs for 𝑉% and 𝑉' become 

𝑑𝑉%
𝑑𝑡 = 𝑓!𝑝!𝐼! − 𝑐𝑉% 

𝑑𝑉'
𝑑𝑡 = 𝑓$𝑝$𝐼$ − 𝑐𝑉' +

𝑓$
𝑓!
𝑔!$𝑉% 

[S2] 
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To formally test the validity of assuming 𝑔$! = 0, we fitted a model that does not assume  𝑔$! =
0 to the data collected before day 14 post infection in Wolfel et al. (10). This estimation 
indicated 𝑔$!	to be approximately 10-5, justifying the assumption that 𝑔$!=0. In addition, this 
model is not preferred over the model with 𝑔$! = 0 based on its AIC score (388.6 vs. 388.0; see 
Table S8).  
 
For consistency of units, we also let 𝜋% = 𝑓!𝑝! , 𝜋' = 𝑓$𝑝$ , 𝛽% =

,!
+!

, 𝛽' =
,"
+"

 and Γ = +"
+!
𝑔!$ , 

leading to the ODEs shown in the main text. 
 

3. Models describing long term dynamics 
In our analyses of the long-term data, i.e. data beyond 14 days post infection, we consider four 
alternative processes in addition to target cell limitation. In these models, we add in turn an 
innate immunity component, proliferation of target cells and the possibility of extra target cells 
in the lungs. Because adaptive immune responses are likely to develop and become effective by 
about 2 weeks post infection, we incorporated the impact of adaptive immunity into all of these 
models as described below. 
 
Modeling the adaptive immune response 
We model the impact of adaptive immune responses similar to Pawelek et al. (12). Adaptive 
immune responses, such as T cell responses, are likely to develop and become effective by about 
2 weeks post infection (18, 19). We assumed that the rates of infected cell killing in both the 
URT and the LRT increase after day 14 post infection and thus use the equations below 
describing 𝛿!(𝑡) and 𝛿$(𝑡): 

𝛿-(𝑡) = =
𝛿-,# 𝑡 < 14	days

𝛿-,#𝑒.(*0!1) 𝑡 ≥ 14	days
 , i = 1, 2, [S3] 

where 𝑤 is the rate of exponential increase in the killing rate of infected cells. In reality, the 
death rate does not continue to increase exponentially, but we assume that it is a good 
approximation for the time frame of our data set. Antibody responses are also expected to 
develop over the same time scale (20) and could contribute to increased infected cell death and to 
viral neutralization, a process that also would lead to fewer infected cells.  Here due to the lack 
of explicit data on the immune response in the set of infected individuals we study (10), the total 
adaptive immune response is summarized by the change in 𝛿- given above. 
 
Innate immunity model 
The type-I interferon response can play an important role in protecting target cells from 
becoming infected (21). We extend the TCL model with adaptive immunity by including a type-I 
interferon response (a major part of the innate immune response) following the framework 
presented in previous models for influenza infection dynamics (1, 12, 22). In addition to the 
compartments in the TCL model, this model keeps track of type I interferon (F) and cells 
refractory to infection (R). Interferon is produced from infected cells and binds to interferon 
receptors on target cells stimulating an antiviral response that can make cells refractory to viral 
infection (R). Such cells are said to be in an antiviral state (21).  
 
The ODEs for target cells, refractory cells and interferon in the innate immunity model are  
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𝑑𝑇!
𝑑𝑡 = −𝛽%𝑉%𝑇! − 𝜙!𝐹!𝑇! + 𝜌!𝑅! 

𝑑𝑅
𝑑𝑡 = 𝜙!𝐹!𝑇! − 𝜌!𝑅! 
𝑑𝐹!
𝑑𝑡 = 𝑠!𝐼! − 𝜇!𝐹! 

𝑑𝑇$
𝑑𝑡 = −𝛽'𝑉'𝑇$ − 𝜙$𝐹$𝑇$ + 𝜌$𝑅$ 

𝑑𝑅$
𝑑𝑡 = 𝜙$𝐹$𝑇$ − 𝜌$𝑅$ 
𝑑𝐹$
𝑑𝑡 = 𝑠$𝐼$ − 𝜇$𝐹$ 

[S4] 

ODEs for other compartments are the same as in the TCL model, with di(t) as above.  
 
In this model, the impact of the innate immune response is to convert target cells into refractory 
cells at rate 𝜙!𝐹!𝑇!		in	the	URT, where 𝜙! is a rate constant. Refractory cells can become target 
cells again at rate 𝜌!. Interferon is produced and cleared at rates 𝑠! and 𝜇!, respectively. The 
innate immune response in the LRT follows the same structure as in the URT.  
 
To minimize the number of unknown parameters, we simplify the model by making the quasi-
steady-state assumption that the interferon dynamics are much faster than the dynamics of 
infected cells and assume that (4!

(*
= 0 . Thus 𝑠!𝐼! = 𝜇!𝐹!  or 𝐹! =

5!
6!
𝐼! . Making the same 

assumption for the interferon dynamics in the LRT, we get 𝐹$ =
5"
6"
𝐼$. This allows us to use a 

model that does not explicitly keep track of 𝐹! and 𝐹$, for which there is no information.  
 
Let Φ! = 𝜙 5!

6!
  and Φ$ = 𝜙$

5"
6"

, so that the ODEs for the innate immunity model become, with 
𝛿-(𝑡) given by [S3] above: 

𝑑𝑇!
𝑑𝑡 = −𝛽%𝑉%𝑇! −Φ!𝐼!𝑇! + 𝜌!𝑅! 

𝑑𝑅
𝑑𝑡 = Φ!𝐼!𝑇! − 𝜌!𝑅! 
𝑑𝐸!
𝑑𝑡 = 𝛽%𝑉%𝑇! − 𝑘!𝐸! 
𝑑𝐼!
𝑑𝑡 = 𝑘!𝐸! − 	𝛿!(𝑡)𝐼! 
𝑑𝑉%
𝑑𝑡 = 𝜋%𝐼! − 𝑐𝑉% 

𝑑𝑇$
𝑑𝑡 = −𝛽'𝑉'𝑇$ −Φ$𝐼$𝑇$ + 𝜌$𝑅$ 

𝑑𝑅$
𝑑𝑡 = Φ$𝐼$𝑇$ − 𝜌$𝑅$ 
𝑑𝐸$
𝑑𝑡 = 𝛽'𝑉'𝑇$ − 𝑘$𝐸$ 
𝑑𝐼$
𝑑𝑡 = 𝑘$𝐸$ − 	𝛿$(𝑡)𝐼$ 

[S5] 
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𝑑𝑉'
𝑑𝑡 = 𝜋'𝐼$ − 𝑐𝑉' + Γ𝑉% 

 
Target cell proliferation model 
In this model, we assume that cells in the lungs can proliferate. We model proliferation of target 
cells in the LRT by adding a term 𝑞 W1 − %"78"79"

%",%
X 𝑇$, where q is a rate constant for proliferation. 

Then the ODE for 𝑇$ becomes 
(%"
(*
= 𝑞 W1 − %"78"79"

%",%
X𝑇$ − 𝛽'𝑉'𝑇$,  [S6] 

 
Extended target cell model 
This model has the same structure as the TCL model with adaptive immune response, except that 
we assume new target cells (𝑇:) appear in the LRT at time 𝑡%, i.e. we increase 𝑇$ by 𝑇: at time 
𝑡% in the model. This can arise from the spatial spread of infection in the lungs. As infection 
progresses, spread of the virus into new areas of the lungs can cause new target cells to become 
available for infection. Here because of limited data we chose to model this by a simple increase 
in the number of target cells, i.e. in the variable 𝑇$, at time 𝑡%   rather than by employing an 
explicitly spatial model. 
 
The combined model 
In the combined model, we combine the innate immunity model and the extended target cells 
model. 
 
 

4. Parameter fitting  
We take two approaches for model fitting. First, when fitting models to data collected up to day 
14 post infection, we use a population approach, based on non-linear mixed effect modeling, to 
fit the model to data from 8 patients in URT and LRT, simultaneously. We allow random effects 
on the fitted parameters. We tested the incubation period 𝜏 as a continuous covariate for each 
fitted parameter. More specifically, for a lognormally distributed population parameter θ the 
median value for this parameter for individuals with incubation period 𝜏  is given by �̅� =
𝜃;<;𝑒=&𝜏 where the population parameter value 𝜃;<; and the covariate coefficient 𝜎>, as well as 
the variance of 𝜃;<; , are to be estimated. All estimations were performed using Monolix 
(Monolix Suite 2018R1, Antony, France: Lixoft SAS, 2018. lixoft.com/products/monolix/). 
 
Second, when fitting models to long-term time series involving all data collected up to day 31 
post infection, we fit the model to data from each patient separately. This approach is taken due 
to the substantial variability in the long-term viral dynamics among individuals, which precludes 
us to assume they are a sample from a homogeneous population. To estimate parameter values, 
we first calculate the residual sum of squares (RSS) between the simulated viral load and the 
measured viral load, both on a log10 scale. Using log for viral load data is standard, because the 
error is typically multiplicative. For censored data points, i.e. data points that are below the limit 
of detection (LoD; as defined in (10)), we calculate the RSS in the same way as in Ref. (23). If 
the simulated viral load at a particular time point is below the LoD, the error for this data point is 
0, i.e. both simulated viral load and data are below LoD; if the simulated viral load is above LoD, 
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we calculate the error between the simulated viral load and the LoD. Parameter estimations were 
performed by minimizing the RSS. The fitting is performed using the ‘optim’ package in R (R 
Core Team (2013). R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. URL http://www.R-project.org/).  
 

5. Uncertainty analysis 
Uncertainty analysis of the best model describing the long-term time series, i.e. the extended 
target cell model, has been assessed by analyzing structural and practical parameter 
identifiability. For that we calculated for every model parameter 95% confidence intervals with 
the profile likelihood method (PLE) in the Data2Dynamics environment in Matlab Release 
2016b (The Mathworks). A parameter is identifiable if the 95% confidence interval (or the 
parameter profile) is finite (24, 25). The results of this analysis are presented in Table S7.  
 

6. Modeling the impact of therapeutics 
We consider two classes of therapeutics, 1) those that reduce virus production from infected cells, 
such as the nucleotide analog remdesivir (26), and 2) those that inhibit/block virus entry into 
target cells, such as entry inhibitors and neutralizing antibody-based therapies. For the first type 
of antivirals, we modify the ODEs by replacing the virus production parameters, 𝜋% and 𝜋' by 
(1 − 𝜖;)𝜋%  and (1 − 𝜖;)𝜋', respectively, where 𝜖; is the drug efficacy and ranges between 0 
and 1. For the second type of antiviral, we modify the ODEs by replacing the parameters 𝛽% and 
𝛽'	in the target cell compartments and eclipse cell compartments by (1 − 𝜖,)𝛽%and (1 − 𝜖,)𝛽', 
respectively, where 𝜖, is the drug efficacy and ranges between 0 and 1. If the two types of drugs 
are given together as combination therapy, then both modifications are simultaneously 
introduced. Within this framework, we quantify the effect of therapy on the viral dynamics in the 
URT and specifically on the infectiousness of the person, using our model in the main text. We 
also analyze the effect of therapy in the LRT. 
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Supplementary Figures 
 
 

 
Figure S1. Correlations between viral kinetics characteristics in the URT (x-axis) and the 
LRT (y-axis). The characteristics shown are (A) R0, (B) time from infection to viral load (VL) 
peak and (C) time from symptom onset to viral load peak. 
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Figure S2. Regression analyses of the relationship between the duration of the incubation 
period and estimated parameters characterizing viral dynamics. The estimated parameters 
include the times from infection to viral peak in the URT and the LRT (A and B, respectively), 
and R0 values in the URT and LRT (C and D, respectively). 
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Figure S3. The relationship between the number of seasonal coronaviruses in exhaled 
breath and the viral load in throat swabs. All datasets are from Ref. (27). The number of total 
viruses (i.e. viruses in respiratory droplets plus aerosols) in exhaled breath (panel A), in 
respiratory droplets (panel B) and in aerosols (panel C) are plotted against the viral load in throat 
swabs. Symbols denote individuals from whom samples were taken. The data points below the 
limit of detection were not included. Solid lines show the best-fit using a Michaelis-Menten 
function, i.e. 𝑦 = 𝑉?

@
@7A'

, where x and y denote the viral load shown on the x- and y-axis, 
respectively and Vm and Km are constants; whereas the dotted lines show the best-fit using a 
linear function, i.e. 𝑦 = 𝑎𝑥. Across the three panels, the Michaelis-Menten function fits the data 
significantly better. Note that the conclusion that the number of exhaled viruses saturates when 
viral load is high remains the same when we include data points below the limit of detection in 
our fitting.   
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Figure S4. The probability of transmission for a typical contact over time predicted for 
each individual using the probabilistic model linking viral load to infectiousness. We set 
𝜃 = 0.05 and 𝐾? =105 (purple) or 106 RNA copies (cyan). 95% of the total infectiousness 
probability occurs above the dashed horizontal lines. The mean durations of infectiousness 
across all individuals are 5.7 days and 4.3 days for 𝐾? = 10B and 101 RNA copies, respectively. 
The infectious periods last on average 5.6 and 4.6 days post symptom onset for 𝐾? = 10B and 
101 RNA copies, respectively. Notation is the same as in Fig. 3 in the main text. 
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Figure S5. Consistency between the area under the logarithm of the viral load curve, i.e. 
AUClog, and the probability model using Km=103 (A and B) or Km=104 RNA copies (C and 
D). (A and C) Regression of and correlations between the area under the curve of infectiousness 
from the probability model, p(t), and AUClog calculated from the model fit to the URT viral load 
for the 8 individuals shown in Fig. 1. (B and D) Regression of and correlations between the 
percentage of presymptomatic transmission predicted by AUClog calculated from the model fit 
and by the AUC of the infectiousness curve. The formula defining the regression line is shown in 
the bottom-right corner of the plots.   
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Figure S6. The probability of transmission for a typical contact over time predicted for 
each individual using the model linking viral load to infectiousness. We set 𝜃 = 0.1 (instead 
of 0.05 as in the main text) and 𝐾? =103 (blue) or 104 (green) RNA copies. As in Fig. 3 in the 
main text, 95% of the total infectiousness probability occurs above the dashed horizontal lines. 
The mean durations of infectiousness across all individuals are 9.2 days and 7.5 days for 𝐾? =
10B and 101 RNA copies, respectively. The infectious periods last on average 7.8 and 6.7 days 
post symptom onset for 𝐾? = 10B and 101 RNA copies, respectively. Other notation is the same 
as in Fig. 3 in the main text. 
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Figure S7. The probability of transmission for a typical contact over time predicted for 
each individual using the model linking viral load to infectiousness. We set 𝜃 = 0.01 (instead 
of 0.05 as in the main text) and 𝐾? =103 (blue) or 104 (green) RNA copies. As in Fig. 3 in the 
main text, 95% of the total infectiousness probability occurs above the dashed horizontal lines. 
The mean durations of infectiousness across all individuals are 9.2 days and 7.4 days for 𝐾? =
10B and 101 RNA copies, respectively. The infectious periods last on average 7.8 and 6.7 days 
post symptom onset for 𝐾? = 10B and 101 RNA copies, respectively. Other notation is the same 
as in Fig. 3 in the main text. 
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Figure S8. Data (symbols) and simulations (lines) of the target cell proliferation model 
using best-fit parameter values for each individual. Red and blue denote viral load kinetics in 
the URT and the LRT, respectively. Symbols show the data from throat swabs (red squares) and 
the sputum samples (blue ’x’s) as reported in Ref. (10). The dashed black lines show the limit of 
detection, and closed dots indicate data below the limit of detection. 
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Figure S9. Data (symbols) and simulations (lines) of the target cell limited (TCL) model 
using best-fit parameter values for each individual. Red and blue denote viral load kinetics in 
the URT and the LRT, respectively. Symbols show the data from throat swabs (red squares) and 
the sputum samples (blue ’x’s) as reported in Ref. (10). The dashed black lines show the limit of 
detection, and closed dots indicate data below the limit of detection. 
  



 
 

19 

 
Figure S10. Data (symbols) and simulations (lines) of the innate immunity model using 
best-fit parameter values for each individual. Red and blue denote viral load kinetics in the 
URT and the LRT, respectively. Symbols show the data from throat swabs (red squares) and the 
sputum samples (blue ’x’s) as reported in Ref. (10). The dashed black lines show the limit of 
detection, and closed dots indicate data below the limit of detection. 
 
 



 
 

20 

 
Figure S11. Data (symbols) and simulations (lines) of the combined model using best-fit 
parameter values for each individual. Red and blue denote viral load kinetics in the URT and 
the LRT, respectively. Symbols show the data from throat swabs (red squares) and the sputum 
samples (blue ’x’s) as reported in Ref. (10). The dashed black lines show the limit of detection, 
and closed dots indicate data below the limit of detection. 
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Figure S12. Simulated impact on AUClog or AUC in the URT of a potential therapeutic 
that blocks viral production. The area under the log viral load curve (AUClog; panels A, B and 
C) and the area under the viral load curve (AUC; panels D, E and F) are used to summarize the 
viral dynamics. AUClog or AUC values are normalized to the values obtained assuming drug 
efficacy of 0. We assumed that a therapeutic that blocks viral production is administered at the 
day of symptom onset (left panels), day 2 post symptom onset (middle panels) and day 5 post 
symptom onset (right panels). Each line represents simulations of the extended target cell model 
for an individual using their best-fit parameter values.  
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Figure S13. Simulated impact on AUClog or AUC in the URT of a potential therapeutic 
that blocks viral entry. The area under the log viral load curve (AUClog; panels A, B and C) 
and the area under the viral load curve (AUC; panels D, E and F) are used to summarize the viral 
dynamics. AUClog or AUC values are normalized to the values obtained assuming drug efficacy 
of 0. We assumed that a therapeutic that blocks viral production is administered at the day of 
symptom onset (left panels), day 2 post symptom onset (middle panels) and day 5 post symptom 
onset (right panels). Each line represents simulations of the extended target cell model for an 
individual using their best-fit parameter values. 
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Figure S14. Simulated impact on AUClog or AUC in the URT of a potential combination 
therapy. The area under the log viral load curve (AUClog; panels A, B and C) and the area 
under the viral load curve (AUC; panels D, E and F) are used to summarize the viral dynamics. 
AUClog or AUC values are normalized to the values obtained assuming drug efficacy of 0. We 
assumed that a therapeutic that blocks viral production is administered at the day of symptom 
onset (left panels), day 2 post symptom onset (middle panels) and day 5 post symptom onset 
(right panels). Each line represents simulations of the extended target cell model for an 
individual using their best-fit parameter values. 
 
  
 
  



 
 

24 

 

 
Figure S15. The impact of therapeutics on the viral load dynamics in the LRT when it is 
administered at symptom onset. Time course simulations of the extended target cell model 
using best-fit parameters for each patient. We assumed that the efficacy of the therapeutic to be 0 
(solid line), 50% (dashed line) and 90% (dotted line).   
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Figure S16. The impact of therapeutics on the viral load dynamics in the LRT when it is 
administered at day 8 post symptom onset. Time course simulations of the extended target cell 
model using best-fit parameters for each patient. We assumed that the efficacy of the therapeutic 
to be 0 (solid line), 50% (dashed line) and 90% (dotted line).   
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Supplementary Tables 
 
 
Table S1. Comparison of models including “the incubation period” as a continuous 
covariate for model parameters using AIC scores. The parameter that covaries with the 
incubation period is listed in the model column. 
Model (parameter that covaries 

with time to symptom onset) 
AIC 

No covariate 399.6 
𝛽%  388.0* 
𝛿  392.7 
𝜋%  388.5* 
𝛽&  400.4 
𝛿$  400.1 
𝜋&  400.7 

*Two models that are significantly better at explaining early data points (i.e. before 14 days of infection) 
than other models based on their AIC scores.  
 
Table S2. Best-fit individual parameter values of the target cell limited model with “the 
incubation period” as a continuous covariate for parameter 𝛽% . SD denotes standard 
deviation. 
Panel 
(ID)* 

𝜷𝑻 
(10-8 /swab/day) 

𝜹𝟏 
(/day) 

𝛑𝐓 
(/day) 

𝜷𝑺 
(10-8 /mL/day) 

𝜹𝟐 
(/day) 

𝛑𝐒 
(/day) 

A (1) 85.15 2.48 50.93 69.78 0.55 0.41 
B (2) 51.95 2.31 50.99 68.86 0.54 0.35 
C (3) 138.61 2.38 51.07 179.73 0.81 0.37 
D (4) 53.08 2.44 53.34 95.9 0.71 0.37 
E (7) 51.35 1.98 49.8 70.67 0.53 0.34 
F (8) 51.77 2.06 50.15 75.3 0.49 0.37 
G (10) 100.01 0.82 50.84 96.11 0.42 0.38 
H (14) 44.46 2.15 51.83 168.57 1.62 0.4 
Mean 72 2.1 51.1 103.1 0.7 0.4 
SD 33 0.5 1.1 45.3 0.4 0.02 
* Panels correspond to the panels shown in Fig. 1. ID numbers are according to the ID of the patients 
reported in Ref. (17). 
 
 
Table S3. Estimated population parameters by fitting the TCL model with different fixed 
parameter values.  

Model* 𝜷𝑻 (10-7 

swab 
/copy/day) 

𝜎, 𝜹 
(/day) 

𝝅𝑻 
(/swab/day) 

𝜷𝑺 (10-7 

sample 
/copy/day) 

𝜹𝟐 
(/day) 

𝝅𝑺 
(/sample/day) 

Baseline 
Model 19.3 -0.3 1.9 6.6 65.5 0.6 0.4 
𝑰𝟎 = 𝟏𝟎 cells 18.7 -0.3 1.8 5.7 56.5 0.6 0.4 
𝒄 = 𝟓/day 49.8 -0.4 1.8 8.5 85 0.6 0.2 
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𝒄 = 𝟐𝟎/day 13.7 -0.3 1.9 7.9 79.4 0.5 0.7 
𝒌 = 𝟑/day 40.1 -0.4 1.9 7.2 71.8 0.7 0.4 
𝒌 = 𝟔/day 19.4 -0.3 1.8 6.9 68.7 0.6 0.3 
𝚪 = 𝟎. 𝟎𝟎𝟏 
/day 26.1 -0.3 1.8 6.6 65.9 0.7 0.6 

𝚪 = 𝟎. 𝟏 /day 16.5 -0.3 2 0.7 6.7 1.6 1.6 
* In each model, the fixed parameter values are set to the same values as in the baseline model except for the 
parameters stated. 
 
Table S4. Model outputs from sensitivity analyses of the TCL model. The times to viral peak 
(VL) and the reproductive numbers are the mean values of the values calculated using estimated 
individual parameter values in the population fitting approach. 

Model 
Time from infection 
to VL peak (days) 

Time from symptom 
onset to VL peak 

(days) 𝑹𝟎,𝑼𝑹𝑻 𝑹𝟎,𝑳𝑹𝑻 AIC 
score 

URT LRT URT LRT 
Baseline Model 5.2 5.4 1.9 2 8.5 27.5 388 
𝑰𝟎 = 𝟏𝟎 cells 5 5.6 1.6 2.2 7 21.8 389.8 
𝒄 = 𝟓/day 5.5 5.8 2.1 2.4 5.4 17.9 389 
𝒄 = 𝟐𝟎/day 5.1 4.7 1.7 1.4 14.6 68.1 389.6 
𝒌 = 𝟑/day 5.2 5.7 1.8 2.3 11.1 30.5 391.8 
𝒌 = 𝟔/day 5.3 5.5 1.9 2.1 6.9 23.4 387.6 
𝚪 = 𝟎. 𝟎𝟎𝟏/day 5.3 5.3 1.9 2 8.3 42.8 390 
𝚪 = 𝟎. 𝟏/day 5.4 7 2 3.7 7.9 5.3 389.9 
 
 
Table S5. Model selection using AIC scores. The lower the AIC score the better the model. 

Panel 
(ID) 

TCL 
model 

Innate immunity 
model 

Proliferation 
model 

Extended target cell 
model 

Combined 
model 

A (1) 22.6 3.6 15.8 9.3 3.2 
B (2) -6.3 -7 -10.5 -11.2 -7.3 
C (3) -22.5 -21.7 -22.1 -26.1 -21.3 
D (4) -21.5 -15.5 -19.8 -34.4 -29.8 
E (7) 18.6 24.3 12.3 14.7 18.4 
F (8) 6.8 1 -2.9 -6.9 -3.5 

G (10) 32.1 29.2 27.0 28 30.5 
H (14) -12.1 -5 -10.1 -10.1 -4 
I (16) 1.5 7.3 2.8 -1.5 8.2 
Total 19.1 16.2 -7.5 -38.3* -5.6 

*The extended target cell model has the lowest overall AIC scores among all the models.  
 
 
Table S6. Parameter values of the best fit of the extended target cell model to the full 
dataset. SD denotes standard deviation. 

Panel 
(ID)* 

𝜷𝟏 
(10-6 

/swab/day) 

𝜹𝟏,𝟎 
(/day) 

𝛑𝟏 
(/day) 

𝜷𝟐 
(10-7 

/mL/day) 

𝜹𝟐,𝟎 
(/day) 

𝛑𝟐 
(/day) 

𝒕𝑻 
(day) 

Log10 
𝑻𝑵 

(cells)  

𝒘 
(/day) 

A (1) 21.45 0.86 3.68 0.17 2.2 10.89 14.7 8.21 0.06 
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B (2) 1.31 1.82 15.53 0.8 2.18 2.46 15 8.44 0.18 
C (3) 13.35 1.16 11.61 2.63 4.17 1.67 6.5 7.92 0 
D (4) 2.4 3.55 11.53 1.35 1.6 1.7 15.7 10.99 2.4 
E (7) 1.41 1.42 12.47 1.06 2.17 1.08 22 8.21 0 
F (8) 6.94 0.76 5.89 0.17 3.33 10.34 17.3 8.79 0.15 
G (10) 18.21 0.38 8.74 9.19 0.41 0.15 17.85 9 0.22 
H (14) 5.12 3.53 4.5 4.9 2.04 1.64 8.3 6.89 1.89 
I (16) 1.53 4.06 9.65 0.29 3.96 8.15 17.11 9.47 0.66 
Mean 7.97 1.95 9.29 2.28 2.45 4.23 14.94 8.66 0.62 
SD 7.78 1.39 3.97 3.00 1.19 4.28 4.80 1.14 0.9 

* Panels correspond to the panels shown in Fig. 4. ID numbers are according to the ID of the patients 
reported in Ref. (17). 
 
Table S7. Uncertainty analysis for the extended target cell model. The two numbers in each 
entry are the lower and upper bounds of the confidence intervals for the best-fit parameters. ‘-
‘ denotes parameters that cannot be reliably identified. 

Panel 
(ID) 

𝜷𝟏 
(10-6 

/swab/day) 

𝜹𝟏,𝟎 
(/day) 

𝛑𝟏 
(/day) 

𝜷𝟐 
(10-7 

/mL/day) 

𝜹𝟐,𝟎 
(/day) 

𝛑𝟐 
(/day) 

𝒕𝑻 
(day) 

Log10 
𝑻𝑵 

(cells)  

𝒘 
(/day) 

A (1) 
5.3, 

206.5 
0.5, 
1.2 

0.4, 
5.7 

0.02, 
1.2 

1.2, 
4.6 

2.0, 
145.9 

12.2, 
16.6 

7.6, 
8.7 

0, 
0.3 

B (2) 
0.03, 
4.5 

1.1, 
10.0 

4.1, 
1021 

0.1, 
2.8 

1.0, 
7.4 

0.5, 
15.1 

13.0, 
16.4 

7.7, 
8.9 

0, 
0.3 

C (3) 
2.3, 

- 
0.8, 
1.5 

0.2, 
227.8 

1.6, 
78.6 

1.0, 
10.0 

0.2, 
7.5 

4.2, 
7.6 

6.1, 
8.3 

0, 
0.1 

D (4) 
0.003, 
29.0 

0.7, 
10.0 

1.5, 
- 

0.03, 
4.1 

0.8, 
1.8 - 

14.9, 
15.9 

9.8, 
13.9 

0.5, 
10 

E (7) 
0.2, 
9.8 

0.6, 
1.3 

1.6, 
113.1 

0.7, 
2.0 

1.1, 
6.5 

0.8, 
1.4 

15.9, 
29.1 

7.8, 
8.3 

0, 
0.1 

F (8) 
0.9, 

- 
0.5, 
1.0 

0.1, 
111.3 

0.06, 
1.1 

1.2, 
10 - 

15.5, 
18.9 

8.1, 
9.0 

0, 
0.3 

G (10) - 
0.3, 
0.5 - - 

0.3, 
0.7 

0.1, 
75.0 

18.5, 
19.7 

5.4, 
10.1 

0.1, 
0.25 

H (14) 
0.9, 
25.9 

1.1, 
36.7 

0.6, 
56.2 - 

0.9, 
10 

0.3, 
10.6 

3.6, 
30 

0, 
8.0 

0.2, 
10 

I (16)* - - - - - - - - - 
* Parameters for patient 16 cannot be identified due to the small number of data points. 
 
Table S8. Model fitting suggests 𝒈𝟐𝟏  is approximately 0. Estimated population parameter 
values and summary of model outputs by fitting the TCL model (without setting 𝑔$! = 0) to data 
up to 14 days of infection. The AIC score of the model is 388.6. 
Parameter Description Estimated value (population 

estimate) 
𝛽% (random effects) Infectivity parameter (URT) 1.92e-6 swab/copy/day 

𝜎, Covariate coefficient of time to 
symptom onset on 𝛽% 

-0.36 

𝛿 (random effects) Death rate of infected cells (URT) 2.0 /day 
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𝜋% (random effects) Composite parameter for virus 
production and sampling (URT) 

62.9 /swab/day 

𝛽& (random effects) Infectivity parameter (LRT) 8.1e-7 sample/copy/day 
𝛿$ (random effects) Death rate of infected cells (LRT) 0.56 /day 
𝜋& (random effects) Composite parameter for virus 

production and sampling (LRT) 
0.33 /sample/day 

𝑔$! (fixed effect) Transport rate from the LRT to the 
URT 

7.8e-5 /day 

 
 
 
 
 


