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1. Description of the author groups and project goals 

1.1 ClinGen Complex Disease Working Group  
The working group, founded by ClinGen in November 2018, composed of more than thirty experts with 
epidemiological, statistical, disease-domain specific, implementation science, actionability, and ELSI interests in 
polygenic risk score application. Members met twice a month to discuss current research, best practices, and 
limitations within their respective areas of expertise. As a result of these meetings, the workgroup decided to update 
previous genetic risk-score reporting standards 1 to current PRS practices. This aim was finalized at the NHGRI 
Genomic Medicine XII: Genomics and Risk Prediction meeting in May 2019 with input from the external scientific 
community in terms of mission, scope, and long-term objectives of the working group. Current descriptions of 
workgroup members and goals are available at: https://clinicalgenome.org/working-groups/complex-disease/ 

1.2 The Polygenic Score (PGS) Catalog 
The PGS Catalog was founded in 2019 by researchers at the University of Cambridge UK, European Bioinformatics 
Institute (EMBL-EBI) and Baker Institute, and developed as a sister resource to the NHGRI-EBI GWAS Catalog 2,3. 
Its goal is to provide an open database of PGS and relevant metadata, so that published PRS/PGS can be 
distributed, applied, and evaluated in a rigorous and replicable manner in both research and clinical settings. It 
reports key information about how a PGS has been developed (e.g., variant selection and computational methods), 
information about the specific datasets used for PGS development and evaluation (e.g., sample size, ancestry, 
phenotype description), as well as the performance metrics reported during PGS evaluation (e.g., effect sizes, 
covariates, and/or classification metrics). These data are represented in a schema that links the Scores, Samples, 
and Performance Metrics presented in each PGS publication. The PGS Catalog is available at 
www.PGSCatalog.org; additional descriptions of the project, development, methods, full descriptions of the 
representation schema, along with links for PGS submission can be found in the documentation 
(www.pgscatalog.org/about/) and are described in a separate publication about the Catalog. 4 

2. PRS-RS Development Process 

2.1 Framework construction 
The Polygenic Risk Score Reporting Statement (PRS-RS) was developed through the in iterative phases utilizing 
previous standards, expert opinion adaptation of previous genetic risk study reporting standards to fit the 
prototypical steps in PRS development and evaluation. First, the entire expert working group created the initial 
framework draft by adapting previous genetic risk-score reporting standards (GRIPS, 20111) to current PRS 
methodologies. We primarily relied on expert opinion for this initial expansion and incorporated principles guided by 
the PICOT framework 5, which is used to compare heterogeneous clinical trial outcomes, since heterogeneity was 
a major anticipated concern in PRS reporting. Our revisions focused on eliciting the individual components from 
previous standards that experts deemed independently important for transparent interpretation and reproducibility 
of a risk score, especially with regard to any downstream clinical application. We expanded the original GRIPS 
checklist of 25 items to 44 unique items, of which 33 items were needed for both training and validation cohorts. 
The majority of these additions were added to explicitly list discrete elements within an individual GRIPS checklist 
item if those elements were determined by the work group to have significant impact in the interpretation of a PRS 
in terms of either analytic validity, clinical validity, or clinical utility. The PICOT framework did not add items to the 
reporting guidelines, but we did confirm that PICOT concepts were represented in the reporting guideline to facilitate 
downstream applications of comparing heterogeneous outcomes.   

2.2 Testing PRS-RS on existing publications 
We used the PRS-RS checklist to beta test published original research articles on polygenic risk-score development 
or validation as a measure of pragmatism and clarity. Thirty-five papers were initially collected via the snowball 
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sampling search based on their use of the term “polygenic risk score” and their research in human populations in 
preparation for the NHGRI Genomic Medicine XII meeting. Five papers were excluded from the review because 
they were not original articles, did not develop or validate a PRS, duplicated a previous study, or did not use genetic 
loci to construct their risk scores. Included articles spanned a variety of disease domains including Alzheimer’s 
disease, asthma, breast cancer, cerebrovascular event, colon cancer, coronary heart disease, depression, fracture 
risk, Parkinson’s disease, prostate cancer, and schizophrenia. In addition, articles were selected for variety in the 
risk score category (development vs. external validation; diagnostic vs. prognostic). Article references are available 
in the supplement. The majority of papers (25/30) were predicting risk of developing disease with a few 
characterizing prognostic outcomes. Nearly half of the papers (13/30) developed a novel risk score, while the other 
half either externally validated a previously published risk score (9/30) or both developed and externally validated 
the risk score (6/30). Two manuscripts modified a previously published score. The composition of the final published 
risk scores were limited to genetic variables for the majority of papers (25/30), with only five producing an integrated 
risk score.  

Two independent reviewers assessed each article using the draft PRS reporting framework. A 10-person 
volunteer subgroup of the larger working group met bi-weekly to resolve inter-reviewer discrepancies. If the 
subgroup was unable to reach a consensus, one of four expert reviewers from the working group was assigned to 
resolve discrepancies in a third review. This pilot of the reporting guideline on published PRS revealed pragmatic 
areas for revision. Similar items were combined if they did not individually contribute meaningful concepts for PRS 
interpretation. Items were removed if they did not contribute to overall interpretation of the risk-score performance 
or target application. Definitions were expanded and revised to address inconsistencies in inter-reviewer 
interpretation due to heterogeneous and vague reporting in the literature. Items were kept as discrete items if we 
observed substantially missing or insufficiently detailed reports on these items in the literature for transparency. 
When applicable, updated methodology was also included in definitions. Finally, supplemental considerations were 
created to address fringe cases (see Explanation and Considerations below). Proposed reporting guideline 
revisions were ratified in monthly calls with the entire workgroup. This resulted in an initial 33 item reporting guideline 
that organized the reporting items into manuscript sections.   

Papers were curated once again using the 33-item draft reporting guideline. This process revealed that the 
formatting of a reporting guideline by manuscript section created redundancy and confusion. It was decided that 
reformatting the guideline to reflect experimental steps of PRS development and evaluation both streamlined the 
guideline, reducing it to a final 23 items (Table 1), and more clearly illustrated the need for hypothesis-driven 
reporting. This rearrangement was largely guided by harmonization with the PGS catalog, which models these 
experimental steps.  

The majority of papers (25/30) were predicting risk of developing disease with a few characterizing 
prognostic outcomes. Nearly half of the papers (13/30) developed a novel risk score, while the other half either 
externally validated a previously published risk score (9/30) or both developed and externally validated the risk 
score (6/30). Two manuscripts modified a previously published score. The composition of the final published risk 
scores were limited to genetic variables for the majority of papers (25/30), with only five producing an integrated 
risk score. As an example, 10 of these papers were curated with the final 23-item reporting framework in 
Supplemental Table 3.  

2.3 PRS-RS harmonization with PGS Catalog  
For this resource harmonization step, two curators mapped reporting fields from the PGS Catalog onto the final 
PRS-RS guidelines. When possible, similar terminology was adopted between the two resources. A subset of fields 
in the PGS Catalog differ from PRS-RS due to restrictions in preserving integrity of the data infrastructure. The 
analogous ClinGen reporting item to each PGS Catalog field is presented in Supplementary Table 2. 

The goals of the PGS Catalog align with ClinGen with slight differences in how the data is represented in 
the Catalog (link). Overall, there is a good agreement between the PRS-RS and PGS Catalog representation 
schema (field by field mapping outlined in Supplemental Table 2), particularly with respect to how study 
participants are described. The five reporting items in the PRS-RS that are not present in the PGS Catalog include 
descriptions, goals, limitations and intended uses of PRS predictions and implementation that are not essential to 
the Catalog’s goal of indexing available published PGS with the metadata essential for interpretation and 
reproducibility. PRS described using the PRS-RS items contain sufficient detail for their addition to the PGS Catalog, 
as such we recommend that authors describe scores using the PRS-RS and submit them to the PGS Catalog upon 
publication. 
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3. Explanation and Considerations 
Here we include a detailed explanation of PRS-RS items, including considerations specific to each item regarding 
limitations and best practices.  

3.1 Risk Score Background 
This section details the components necessary in framing the development and potential downstream utility of a 
polygenic risk score. Authors should have a clear vision of how this score would be used, including the appropriate 
target population and clinical end outcome. By contextualizing the motivation behind the PRS development and/or 
validation, readers will be better able to judge the appropriateness of relevant statistical methods and study 
population. We recognize that the development and use of a polygenic score can be motivated for a range of 
purposes unrelated to clinical utility. While PRS-RS is written with an eye towards clinical utility, nearly all of the 
fields are applicable to other purposes as well, including gene by environment interactions and shared etiology 
between traits as it is equally important to detail the definitions and methods utilized for proper interpretation. The 
main difference will be the Risk Score Background (Section 3.1), specifically the risk score purpose, and the 
Broader Context of Study and Risk Score (Section 3.5).  
 
Type of study. Manuscripts detailing the development of polygenic risk scores can vary in the stage along the 
pipeline, from effect size estimation to external validation. Authors must be clear in the scope of their manuscript, 
specifically whether effect sizes were estimated directly from individual-level data as part of this manuscript, built 
upon a previously-published genome-wide association study (GWAS), or if the study seeks to externally validate a 
previously-published PRS. If building upon previous GWAS or PRS, authors should include the appropriate 
identifier(s) of data utilized (PMID, GWAS Catalog ID, PGS Catalog ID).  
 
Risk score purpose & predicted clinical end outcome. It is important for authors to determine a priori the ultimate 
target of the risk score, especially in the context of downstream clinical utility. This includes specifying what the risk 
score is intended to predict and the purpose of this risk score, such as risk prediction, diagnostic, prognostic, or 
therapeutic modalities (or a combination). If the model is trained on a different measure than the clinical end 
outcome, authors should justify this discrepancy and provide evidence for the appropriateness of this decision. For 
example, a PRS is developed with the clinical end outcome of type II diabetes diagnosis. However, investigators 
do not have access to T2D diagnoses in their training dataset. Instead, they use HbA1c measures to train their 
PRS, which is then externally validated on a dataset with T2D information. Authors should detail the caveats in 
using HbA1c, a continuous measure of glycemic control, to diagnose individuals based on genetics, including the 
reliability of this measure with respect to demographics (such as race/ethnicity, age, sex, etc.). This may include 
possible population stratification, as individuals without diabetes mellitus have been shown to have different levels 
of HbA1c by self-identified race/ethnicity. 6 Authors should also detail what indicates a “good” prediction for their 
specified outcome and purpose, preferably alongside other clinical risk models and standard practice. By 
contextualizing the PRS within current practice and the state of the field, authors better facilitate the downstream 
evaluation and adoption of their clinical tool. 

3.2 Study Populations 
As with any epidemiological study, it is important to fully understand the study population and its relevance to a 
target population for clinical utility. By fully describing the sample characteristics and how data was handled, authors 
provide valuable insight for the downstream utility of the PRS and how/why performance may differ between 
populations. Many genetic studies involve multiple populations and cohorts along the development and validation 
pipeline and it is important for authors to describe in as much detail as possible each of these samples. This includes 
different cohorts, as well as different stages such as training, validation, and subgroup analyses within the 
manuscript. Variable definitions should be consistent across different cohorts and stages with documented 
harmonization protocols. 
 
Study design and recruitment. The performance, interpretation, and downstream clinical utility of a polygenic risk 
score is highly dependent on the characteristics of its study population. Therefore, it is imperative for authors to 
describe the study design and recruitment processes with as much detail as possible. The study design determines 
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the relevance of the statistical model, and therefore must be described, such as the type of sample (e.g., cohort, 
case control, cross sectional) and recruitment details (e.g. method and years). These characteristics will inform 
whether the predicted clinical end outcome is defined by incidence or prevalence. Additionally, the performance of 
a PRS should not be determined in a case-control study, as the lack of representative samples limits the calculation 
of risk. If a case-control study design is utilized, authors should justify their choice and discuss potential limitations. 
If prevalence is used, authors must describe their reasoning and how that may limit the downstream utility of their 
PRS in determining future risk.  
 
Ancestry. The genetic ancestry of participants has profound consequences for both the performance of a polygenic 
risk score and its appropriateness for downstream clinical utility in various populations. Because of this, authors 
should provide extensive ancestry information to contextualize results, preferably by case/control status, if 
applicable. This should include self-identified race/ethnicity and genetically-determined ancestry. If principal 
components are used to determine genetic ancestry, plots and interpretation should be provided both with and 
without available reference panels (such as the 1000 Genomes Project) to allow comparison with external studies. 
We encourage authors to follow a standardized framework for ancestry as developed by the NHGRI-EBI GWAS 
Catalog 7 at the minimum. Ethnocultural descriptors should provide information about the underlying genetics or if 
epidemiologically relevant. For founder populations, the broader genetic background should also be described. 
Admixed populations should also have the ancestral backgrounds described that contribute to the admixture. If 
ancestry is not known or not able to be disclosed, authors must explicitly state this and the reasons why in the 
discussion as a limitation. Geographic location should not be used as a proxy to infer ancestry information and 
should be explicitly stated as a location, not ancestry.   
 
Age. As many biomedical outcomes are age-dependent, it is important to know the age distribution of the study 
population for PRS development and validation. This should include the mean, standard deviation, and range of 
ages, preferably by case/control status, if applicable. If the intended use of the PRS is for a specific age range, 
authors should provide additional statistics focused on that age range and representation within the sample 
population. If longitudinal data is used, authors should specify the age distribution at the beginning of follow-up, as 
well as any relevant time periods to the predicted outcome of interest with attention to loss-to-follow-up by age. 
 
Sex. As with age, sex can be an important factor to consider in PRS performance. Therefore, the sex distribution 
should be described as both the counts and percentages of the total sample. Authors should state if sex was inferred 
from self-report or genetic information. If applicable, sex distribution should be provided by case/control status. If 
the study explicitly refers to gender instead of sex, details should be provided to differentiate between the definitions 
and how they are relevant to study goals. The limitations of self-report should be addressed, such as how self-
report more accurately reflects gender identity than biological sex assigned or defined at birth. Additional guidance 
can be found in the NIH Policy on Sex as a Biological Variable (https://orwh.od.nih.gov/sex-gender/nih-policy-sex-
biological-variable).   
 
Genetic data acquisition. Authors should detail the method for acquiring genetic information, such as the 
technology (sequencing versus genotyping), as well as information of genome build and technical details of the 
assay. If an array was used with imputation, authors need to explicitly describe the imputation process, including 
population representation on the imputation panel and quality control measures enacted to select SNPs for PRS. 
All imputation quality filters should be reported to exclude low quality imputation SNPs. Authors should also state if 
imputed SNPs included in the PRS were experimentally validated. If data acquisition differed across combined 
samples, these different processes should be described with sample sizes for the subsampled groups. If any of this 
information or relevant parameters were selected from another study, authors should also include relevant 
references (e.g. PMID, GWAS Catalog study ID). 
 
Clinical variable definition(s). Many PRS include variables in the prediction models in addition to the genetic 
variants and their effect sizes. These variables, such as age, sex, race/ethnicity, and measurements of disease 
specific biomarkers/risk factors (e.g. cholesterol, C-reactive protein, insulin resistance)  can have profound influence 
on the performance of a PRS and therefore must be described in detail, preferably with justification for why the 
variable might warrant inclusion in the risk model. This includes the inclusion and exclusion criteria for each variable, 
as well as the data source for that information (e.g. ICD codes, e-phenotyping algorithms, chart review, self report). 
Authors should also indicate whether the variable was included as a dichotomous or continuous measure. Authors 
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should also explicitly state which variables are included in the final risk model as not all variables included in the 
risk model may be retained after model fitting. 
  
Phenotype of interest definition. As previously mentioned in the Risk Score Background section above, it is vital 
for the authors to define the clinical end outcome targeted with the PRS. If this outcome is a clinical feature or 
endpoint within a specific disease, inclusion and exclusion criteria need to be defined, as well as how that 
information was ascertained (similar to clinical variable definitions above). If a dichotomous outcome is utilized, 
numbers of cases and controls should be stated along with their specific inclusion/exclusion criteria, both overall 
and by specific subpopulations or important clinical variables. All data transformations (continuous to binary 
outcomes, normalization) should be detailed to enable reproducibility. For a validation study, authors should 
describe how the predicted outcome may differ from the original phenotype in the score development, as well as a 
justification for the use of the outcome despite these differences. 
 
Missing data. Protocols for the handling of missing data should be detailed for all variables used in the development 
of the PRS, including both genetic and non-genetic factors. If variables were not missing at random, authors should 
include in the discussion how this may limit the interpretation of their final score as to the representativeness of their 
model to the target population. 

3.3 Risk Score Development and Application 
Once readers are well acquainted with the details of how data was created, curated, and cleaned, the next step is 
understanding the statistical methods and measures utilized in the development of the polygenic risk score.  
 
Polygenic risk score construction and estimation. The construction of a PRS often goes through the following 
major steps: (1) variant-level effect size estimation, (2) selection of variants to include in PRS, and (3) pooling of 
variant-level effects, with or without weighting. For each of these steps, authors should describe their methods with 
detail to enable reproducibility. For step 1, authors should describe the statistical model used to estimate effect 
sizes, such as a linear or logistic regression, as well as any covariates included in addition to the genetic effects. 
Training samples and variant selections should be clearly described alongside these computational methods. Other 
common methods may include snpnet, BLUP-based methods, regularized regression (e.g. LASSO/ridge), or 
stepwise regression. Whether the effect size refers to allelic or genotypic risk should be stated, as well as mode of 
inheritance (additive, dominant, recessive, etc.) If a previously published GWAS is used, authors should include the 
full citation including PMID. For the selection of SNPs (step 2), authors should list any thresholds that were used, 
such as P-value thresholds, or functional effects, both for the final model and all tested models. Details for pruning 
using linkage disequilibrium should include the population (reference panel or study population) used to estimate 
LD, as well as the LD threshold (r2, D’). If effect sizes are reweighted from their original estimates (step 3), 
procedures should be well-documented and parameters should be justified given the outcome and study population. 
Such methods may include LDpred, lassosum, meta-scoring approaches, etc.  
 
Risk model type. After the calculation of the polygenic risk score, the continuous distribution must be translated into 
estimated risk for study participants. The two ways to assess an individual's risk are absolute versus relative risk, 
or whether risk is qualified compared to a reference group or whether it is the absolute probability of the event 
occurring. As many PRS are developed with case-control studies, relative risk is often calculated as the risk of one 
strata compared to another. Authors should be explicit when describing this relative risk and in defining the 
reference group. If absolute risk is estimated, authors should be explicit in any assumptions or external data used 
to calculate this measure. As many PRS are developed to determine the risk of a future event, the time period must 
be well defined. If a relative hazards model is used, authors should describe the time period and justify their selection 
with a lens of downstream clinical relevance and utility. If absolute risk is calculated, authors should specify the time 
to event. Any external information, such as disease prevalence and demographics, used to derive absolute risk 
should be described and cited. Authors should be careful not to simply report total length of study. 
 
Integrated Risk model description and fitting. The selection of the final PRS model can be an iterative process, 
selecting different subsets of variants and non-genetic variables to optimize prediction accuracy. The metric used 
to select the optimal model can be dependent on the predicted clinical end outcome (binary, continuous), as well 
as the potential impact on clinical utility such as maximizing sensitivity or specificity. Authors should detail all 
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procedures used to select the final model, including the statistical metric of accuracy and any other factors such as 
minimal sets of SNPs. All metrics should be reported in the main text or supplement for all models compared, 
including calibration and discrimination as applicable. This may include stepwise regression for the integration of 
non-genetic clinical variables. The formulation of the final risk score should be detailed, including how all variables 
are coded (genetic and non-genetic). If race, ethnicity or ancestry (REA) is included in the model, authors should 
specify how this is measured (self-report, genetic) and all statistical methods utilized. When applicable, methods 
appropriate to admixed ancestries (e.g. African American and Hispanic/Latino populations) should be used and 
described in enough detail to reproduce.  

3.4 Risk Score Evaluation 
After a risk score is constructed as detailed in Section 3.3 above, authors must outline the results of these models 
and all procedures utilized to validate the risk score. This includes whether the validation was performed on an 
internal sample or with external validation samples. All performance results should be described for both the 
development and validation samples either in the main text or supplement.  
 
Risk score distribution. The authors should provide a description, preferably with graphical representation, of the 
distribution of the risk score, as well as model fit measures. After individual genotypes are weighted by their effect 
sizes and summed across all sites (either genome-wide or select candidate sites), it is important to inspect the 
continuous distribution output directly from the risk model to check if assumptions are met, such as normality. 
Additionally, it is encouraged for authors to report the risk score distribution by case/control status, if applicable, as 
well as by any relevant variables such as sex, age, and/or race/ethnicity. If an integrated genetic risk model is 
utilized, authors should also describe the distribution of this risk score in addition to the genetics-only model to 
illustrate any differences that would contribute to changes in predictive ability.  
 
Risk score predictive ability. Once the continuous distribution of the risk score is calculated, it must be 
transformed into an individual’s assessment of risk. This can take two forms: relative risk, which is in relation to a 
reference group, and absolute risk, which is in terms of their probability of an outcome. These two measures of risk 
require specific epidemiological and statistical considerations which must be addressed in the previous sections. If 
relative risk is utilized, authors should explicitly state the summary statistics used to estimate relative risk (e.g. 
hazard ratio (HR), odds ratio (OR) and/or regression coefficients (𝛃)). When stating this, authors should state any 
reference levels used (for instance: bottom third polygenic risk vs top third polygenic risk). See So & Sham, 2010 
for details. 8 To this end, authors must fully describe the group definitions (both strata of interest and reference 
group) in terms of the items outlined in section 3.2 Study Populations. This includes the risk score distribution 
stratified by risk groups and general population. Once this delineation has been determined, authors should provide 
enough detail should be included to enable readers to compute measures of risk score predictive ability such as 
sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). For absolute risk 
estimation, authors should describe the incidence/prevalence of the predicted outcome in the general population. 
If measures of risk are adjusted for other variables, these must be explicitly stated and described as per previous 
sections.  
 
Risk score discrimination. Authors should describe and report metrics used to assess the discrimination of the 
risk score and whether any variables were included beyond the risk score in this analysis. This may include common 
metrics such as the area under the receiver operating characteristic curve (AUC/AUROC) or Precision-Recall 
(AUPRC), as well as the Concordance statistics (C-index) for survival models. This should also be presented as a 
visual or graphical display. While discrimination and calibration can be performed within the training set, it is most 
meaningful in an external validation. 
 
Risk score calibration. Authors should describe and report metrics used to assess the calibration of the risk score 
and whether any variables were included beyond the risk score for this analysis. Metrics should be described and 
reported to test calibration for the constructed prediction model. This cannot be done for case-control validation 
cohorts, given the lack of a continuous outcome. 
 
Subgroup analyses. Often authors may test the performance of the developed PRS in a subgroup of the original 
study population. This offers perspective on the performance within subsets of participants as well as adjacent 
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phenotypes. Authors should detail all subgroup analyses with the same level of detail described above for the main 
analysis. This includes all statistical methods used to estimate performance, as well as the risk score distribution, 
predictive ability, discrimination, and calibration. Subgroups should be defined and justified with consideration for 
downstream clinical utility. 

3.5 Broader Context of the Study and PRS 
Lastly, authors should provide a comprehensive and nuanced discussion of the broader context of their PRS, both 
in terms of target populations and possible downstream uses. It is important for authors to recognize potential 
limitations given the study population, availability of data, and/or statistical methods. By explicitly discussing these 
caveats, the PRS can be better contextualized, limiting the possibility of misuse. 
 
Risk model interpretation. Authors should recap their study and summarize the risk score in terms of how well 
(prediction accuracy, discrimination, calibration) their risk score predicts in whom (study populations) and for what 
outcome (predicted end outcome). These definitions should be consistent with the concepts and motivations 
outlined in their introduction. Since many risk scores are developed with an eye towards downstream clinical utility, 
it is important for authors to contextualize their findings in comparison to conventional clinical risk models. These 
conventional risk models may include demographic (age, sex), disease-specific risk factors, and/or family history of 
disease. Authors should describe the performance of both the PRS and clinical risk score (such as AUC), as well 
as the performance of the risk scores combined if possible. Common comparisons that would compare the 
published PRS to standard-of-care in the field may be comparing the PRS to a family history of disease or known 
Mendelian variants with high penetrance. In all cases, the implications of these improvements should be outlined, 
such as reclassification metrics or the difference in proportion of risk/phenotypic variance explained.  
 
Limitations. Authors must outline all limitations to their studies, including study design restrictions, ascertainment 
biases, the distribution of participant-level traits (ancestry, age, comorbidities), accuracy/specificity of phenotype 
data, and any statistical considerations. By discussing these limitations, authors will provide insight on the 
interpretation of the risk score, including both within the study population and to other target populations. Authors 
should include a discussion of any missing data or unknown reporting items from previous sections. Many of these 
limitations will likely pertain to the samples used in the development and validation of a PRS. While there should be 
no overlap between stages, independence is not always guaranteed due to large-scale consortiums combining 
different iterations of smaller studies. If there is any overlap this should be quantified and implications for 
interpretation should be outlined. The use of multi-center multi-study collaborations comes with some inherent 
caveats, including heterogeneity between studies in terms of study and participant-level traits. Authors must explain 
how this affects the confidence in prediction and how it influenced the methods utilized in the study, as well as any 
other caveats relevant to interpretation. For example, if data acquisition differs across the combined samples, 
explicitly state this. Additional common weaknesses in study design will heavily influence the estimation of relative 
and absolute risk. These may include biases in sample ascertainment due to recruitment method (e.g. convenience 
sampling) and recruitment setting (clinic vs. research vs. healthy populations). This is especially true if these 
methods impact disease prevalence metrics or the possibility of measuring secondary outcomes. Differences 
between study and target populations should be discussed, particularly in respect to these biases. 
 
Generalizability. In addition to contextualizing the model within a risk model interpretation and recognizing its 
limitations, authors should discuss the generalizability beyond the study populations included in the development 
and validation of the PRS. Discussion should include additional populations and/or settings. If the risk score has 
been externally validated, authors should consider differences in performance with respect to ancestry, age, or 
other variables. Specific points should be made regarding the transportability of the PRS to other genetic ancestry 
groups, especially if the ancestry is not known or able to be disclosed within the study populations. Lastly, the 
discussion around generalizability should include whether previous findings were validated, such as previous 
GWAS or candidate gene studies. This content will further contextualize the PRS within the previously published 
body of work and the larger clinical field. 
 
Risk score intended uses. While every PRS may not have an intended clinical purpose or immediate clinical utility, 
authors should discuss if there is or what the downstream clinical purpose would be for their developed PRS. If 
there is an intended clinical purpose, authors must discuss the “clinical readiness” and the necessary next steps 
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with respect to the interpretation, limitations, and generalizability of the model. Actionability should only be 
suggested and discussed if the study was set up appropriately with the relevant clinical population as the target of 
the specific PRS. The predictive ability of the model should be benchmarked against current standard of care or 
other published work (such as existing PRS) on predicting the clinical outcome of interest. This incremental value 
on top of established risk models for the disease assessed (e.g., Gail Model, 10-year CHD risk ACC/AHA pooled 
cohort equations). Additionally, authors should discuss meaningful risk reclassification, such as meeting specific 
treatment thresholds. If no clinical purpose is intended, authors should discuss the reasons prohibiting this use. 

3.6 Data transparency and availability. 
Over the past several years, there has been a movement towards widespread data sharing with an emphasis on 
transparency and reproducibility. The ability of outside researchers to reproduce a PRS is vital for benchmarking 
against previously established risk assessments as well as future risk scores yet to be developed. Therefore, 
authors should supply sufficient information to calculate the PRS and/or risk model on external samples. For genetic 
variation, this would include information about the individual variants (e.g. rsID, chromosomal coordinates, effect 
allele, genome build, and effect weight with units), as well as the method used to combine these variant-level 
weights. This information should be shared in a publicly available database, such as the PGS Catalog 4 for findability 
and to promote re-use and comparison with other established scores. If other variables in addition to genetic 
variants are included in an integrated risk model, these effect sizes and data dictionary fields (including how 
variables are coded) should also be provided to ensure consistency.  
 Any risk scores that are intended for downstream clinical use should strive to meet stringent validation 
requirements as outlined in Roy et al (2018). 9. Most notably this should include an evaluation of sensitivity, 
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samples that are publicly available. Lastly, authors should clearly indicate how to find and access all of the data 
mentioned above.   
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