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Supplementary Figures 
	

	

Supplementary	Figure	1:	The	empirical	serial	interval	distribution	from	the	five	datasets	
shown	with	different	colours.	The	solid	black	line	shows	a	lognormal	distribution	with	the	
same	mean=5.1	and	SD=3.8	as	the	empirical	distribution,	scaled	to	match	the	total	number	
of	counts	binned	in	the	histogram.	
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Supplementary	Figure	2:	maximum-likelihood	generation	time	distributions	for	different	
shapes	(functional	forms).	All	distributions	were	inferred	from	the	full	dataset	(Ferretti	&	
Wymant	et	al	+	Xia	et	al	+	He	et	al	+	Cheng	et	al).	Shapes	with	𝛥𝐴𝐼𝐶 < 1	(Weibull,	Gompertz	
and	 log-logistic)	are	shown	with	thicker	 lines.	Two	more	shapes	were	tested	but	are	not	
shown	due	to	poor	fits	(see	Supplementary	Table	1).	The	pointwise	95%	CI	for	the	best	fit	
distribution	(Weibull)	is	shown	in	grey.		
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Supplementary	 Figure	 3:	 maximum-likelihood	 distributions	 for	 TOST	 using	 different	
shapes	(functional	forms).	All	distributions	were	inferred	from	the	full	dataset	(Ferretti	&	
Wymant	et	al	+	Xia	et	al	+	He	et	al	+	Cheng	et	al).	Shapes	with	𝛥𝐴𝐼𝐶 < 1	(Student’s	t,	skew-
logistic)	are	shown	with	thicker	lines.	Two	more	shapes	were	tested	but	are	not	shown	due	
to	 poor	 fits	 (see	 Supplementary	 Table	 YYY).	 The	 pointwise	 95%	 CI	 for	 the	 best-fitting	
distribution	(Student’s	t)	is	shown	in	grey.	Note	that	this	distribution	should	be	interpreted	
as	an	average	over	all	incubation	periods;	for	a	single	individual,	their	infectiousness	cannot	
precede	 the	 time	 they	 were	 infected,	 i.e.	 infectiousness	 is	 truncated	where	 TOST	 equals	
minus	the	incubation	period.	
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Supplementary	 Figure	 4:	 relation	 between	 the	 empirical	 serial	 interval	 and	 the	 lower	
bound	on	the	incubation	period	of	the	source,	i.e.	the	time	between	the	last	day	of	exposure	
(if	 known)	and	 the	day	of	 onset	of	 symptoms.	Robust	 linear	 regressions	 (via	 iterated	 re-
weighted	least	squares	using	the	MASS	package	in	R)	are	shown	as	dashed	lines.	Pearson’s	
correlation	across	both	datasets	r=-0.26	(p=0.044).	
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Supplementary	Figure	5:	comparison	between	different	distributions	of	TOST	inferred	for	
the	 full	dataset	(Ferretti	&	Wymant	et	al	+	Xia	 et	al	+	He	et	al	+	Cheng	et	al).	The	“full”	
distribution	is	the	same	as	the	best-fit	curve	in	Figure	1A	and	Supplementary	Figure	3.	The	
“truncated”	distribution	corresponds	to	the	best	fit	when	infectiousness	is	truncated	before	
a	time	-ti	,	where	ti	is	the	length	of	the	incubation	period.	The	“alternative”	best	fit	is	inferred	
using	the	alternative	distribution	of	the	incubation	period	ti	(see	Methods).	The	other	curves	
show	the	distributions	for	the	incubation	period-dependent	fits	(Figure	3B),	assuming	that	
either	it	is	only	the	shape	that	depends	on	the	incubation	period,	or	both	shape	and	absolute	
infectiousness.	 The	 curves	 in	 red	 represent	 the	 shapes	 for	 the	 mean	 incubation	 period	
ti=5.42,	while	the	curves	in	blue	represent	the	distribution	of	TOST	averaged	over	all	possible	
incubation	periods.	
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Supplementary	Figure	6:	distribution	of	dates	of	exposure	in	relation	to	onset	of	symptoms	
for	the	contact	pairs	in	Cheng	et	al.	
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Supplementary	Figure	7:	comparison	between	timing	of	transmission	and	infectiousness.	
Continuous	lines:	best	fit	of	infectiousness	profile	based	on	either	transmission	pairs	only	as	
before,	or	both	transmission	pairs	and	case-contact	pairs	with	no	transmission.	The	grey	
area	illustrates	the	pointwise	95%	CI	for	the	distribution	of	TOST	previously	inferred	from	
transmission	pairs	only	(Figure	1	and	Supplementary	Figure	3).	Dashed	lines:	probability	of	
detecting	viable	virus	for	a	given	time	from	onset	of	symptoms	(curve	from	LOESS	of	the	
data	points	shown	in	the	same	color).	Dashed-dotted	lines:	mean	viral	load	for	a	given	time	
from	onset	of	symptoms,	relative	to	the	maximum	viral	load	inferred	from	the	same	dataset	
(curve	from	LOESS	of	the	data	points	shown	in	the	same	color).	
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Supplementary	 Figure	 8:	 fraction	 of	 transmissions	 occurring	more	 than	 2	 days	 before	
onset	of	 symptoms,	and	 that	would	 therefore	be	missed	by	 tracing	 contacts	 from	2	days	
before	onset	of	symptoms.	

 

 
	

Supplementary Tables 
	

AIC:	 Weibull	Gompertz	log-logistic	gamma	generalised	Beta'	 Frechet	lognormal	 inverse	Levy	
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gamma	 gamm
a	

Ferretti	 129	 126.8	 132.4	 131.9	 129.4	
133.
9	 135.1	 134.7	 138.8	 183.7	

Xia	 259.5	 259.6	 258.9	 259.1	 260.9	
260.
6	 260.4	 258.9	 258.6	 298.9	

Ferretti+Xia	389.9	 387.6	 392.1	 392.8	 390.8	
394.
8	 395.4	 395.6	 400.4	 481.6	

Ferretti+Xia
+He+Cheng	 1045.9	 1046.5	 1046.9	 1047	 1047.9	 1049	1049.5	 1049.5	 1055	 1215.1	

Supplementary	Table	1:	values	of	AIC	for	the	ML	fit	of	the	generation	time	distribution	for	
different	datasets	and	functional	forms.	The	best	value	for	each	dataset	is	shown	in	red.	

	 		 		 		 		 		 	

Shape	 AIC	 Parameters	 R	example	implementation	

Weibull	 1045.94	 shape	=	3.2862,	
scale	=	6.1244	

dweibull(x, shape, scale) 

Gompertz	 1046.49	 a	=	0.0083,	b	=	0.7175	 extraDistr::dgompertz(x, a, b) 

log-logistic	 1046.91	 a	=	5.2024,	b	=	4.8918	 z <- (x / a)^b; return((x > 0) * z * b / (x 
+ 1e-10) / (1 + z)^2) 

gamma	 1047	 shape	=	6.8004,	
rate	=	1.2344	

dgamma(x, shape, rate) 

generalised
gamma	

1047.93	 mu	 =	 1.8064,	 sigma	 =	
0.3098,	Q	=	0.9583	

(x > 0)*flexsurv::dgengamma(x, mu, sigma, Q) 

beta’	 1049.01	 shape1	=	6.7959,	
shape2	=	14347.2705,	
scale	=	11628.6973	

extraDistr::dbetapr(x, shape1, shape2, 
scale) 

Frechet	 1049.53	 lambda	 =	 46.9561,	mu	 =	 -
78.7973,	sigma	=	83.2902	

extraDistr::dfrechet(x, lambda, mu, sigma) 

lognormal	 1049.53	 meanlog	=	1.6242,	
sdlog	=	0.405	

dlnorm(x, meanlog, sdlog) 



	

11	

inverse	
gamma	

1055.01	 shape	=	6.1609,	
rate	=	28.3546	

(x > 0) * dgamma(1 / x, shape, rate) / (x + 
1e-10)^2 

Levy	 1215.15	 s	=	2.291	 rmutil::dlevy(pmax(x, 0 + 1e-3), m = 0, s) * 
(x > 0) 

Supplementary	Table	2:	different	shapes	(functional	forms)	considered	for	the	generation	
time	distribution,	their	AIC	values,	their	maximum-likelihood	parameter	values,	and	the	R	
code	we	 used	 for	 implementing	 the	 distribution	 (to	 clarify	 any	 ambiguity	 in	 parameter	
definition).	Shapes	are	ordered	by	AIC	values	for	the	full	dataset:	the	best	fits	are	at	the	top.		

	

AIC:	 Student's	t	 skew-logistic	 normal	 skew-normal	 Cauchy	

Ferretti	 114.9	 119.7	 121.4	 120.4	 112.9	

Xia	 249.1	 248.8	 247.6	 249.1	 248.2	

Ferretti+Xia	 366.3	 368.3	 368.8	 369.9	 365.2	

Ferretti+Xia+He+Cheng	 1039.1	 1039.7	 1043	 1044.6	 1046.5	

Supplementary	Table	3:	values	of	AIC	for	the	ML	fit	of	the	TOST	distribution	for	different	
datasets	and	functional	forms.	The	best	value	for	each	dataset	is	shown	in	red.	

	 		 		 		 		 		 	

Shape	 AIC	 Parameters	 R	example	implementation	

Student’s	t	 1039.07	 shift	 =	 -0.0747,	 scale	 =	
1.8567,	df	=	3.3454	

dt((x - shift) / scale, df) / scale 

skew-logistic	 1039.72	 mu	=	-0.2657,	
sd	=	1.5235,	
a	=	1.1248	

a * exp(-(x - mu) / sd) / 
(1 + exp(-(x - mu) / sd))^(a + 1) / sd 

normal	 1042.97	 mean	=	0.0486,	
sd	=	2.7315	

dnorm(x, mean, sd) 

skew-normal	 1044.61	 xi	 =	 1.7442,	 omega	 =	
3.1957,	alpha	=	-0.8949	

dsn(x, xi, omega, alpha) 

Cauchy	 1046.52	 location	=	-0.2438,	
scale	=	0.8294	

dcauchy(x, location, scale) 
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Supplementary	 Table	 4:	 different	 shapes	 (functional	 forms)	 considered	 for	 the	
distribution	for	TOST,	their	AIC	values,	their	maximum-likelihood	parameter	values,	and	the	
R	code	we	used	for	implementing	the	distribution	(to	clarify	any	ambiguity	in	parameter	
definition).	Shapes	are	ordered	by	AIC	values	for	the	full	dataset:	the	best	fits	are	at	the	top.		

	

	
AIC:	 Rescaling	with	incubation	period	 Datasets	

distribution	
independent	
of	incubation	
period	

rescaled	
side	

with	
respect	
to	

type	 of	
scaling	

normalised	
for	 each	
incubation	
period	 Ferretti	Xia	

Ferretti
+Xia	

Ferretti+Xia
+He+Cheng	

generation	
time	 -	 -	 -	 -	 126.8	 258.6	 387.6	 1045.9	

TOST	 -	 -	 -	 -	 112.9	 247.6	 365.2	 1039.1	

TOST*	 -	 -	 -	 -	 114.5	 258.7	 378.5	 1074.7	

TOST**	 -	 -	 -	 -	 111.4	 246.6	 361.3	 1030.2	

joint	 both	 OS	 linear	 yes	 113.7	 237.3	 356.0	 1021.3	

joint	 left/right	loc.par.	 linear	 yes	 113.6	 240.2	 358.1	 1022.5	

joint	 left/right	mixed	 nonlinear	yes	 115.4	 241.6	 360.0	 1025.3	

joint	 left	only	 OS	 linear	 yes	 111.5	 237.3	 351.2	 1014.7	

joint	 left	only	 loc.par.	 linear	 yes	 111.4	 238.8	 352.0	 1017.5	

joint	 left	only	 mixed	 linear	 yes	 113.4	 239.3	 353.2	 1016.7	

joint	 left	only	 OS	 nonlinear	yes	 115.3	 239.9	 353.2	 1018.6	

joint	 left	only	 OS	 linear	 no	 114.1	 212.8	 340.0	 1005.0	

joint	 left	only	 loc.par.	 linear	 no	 114.7	 218.4	 342.1	 1007.8	

joint	 left	only	 mixed	 linear	 no	 116.1	 207.2	 342.0	 1007.0	

joint	 left	only	 OS	 nonlinear	no	 115.4	 191.6	 341.7	 1009.0	

*	using	alternative	incubation	period	distribution	

**	truncated	before	time	of	infection	
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Supplementary	Table	5:	best	AIC	values	for	different	models	and	datasets.	The	models	are	
described	in	Supplementary	Methods.	‘OS’	=	onset	of	symptoms;	‘joint’	=	joint	distribution	of	
TOST	and	incubation	period;	 ‘loc.par.’	=	location	parameter	of	 the	distribution;	 ‘mixed’	=	
rescaling	 with	 respect	 to	 a	 parameter	 interpolating	 between	 the	 OST	 and	 the	 location	
parameter	of	the	distribution.	The	model	corresponding	to	the	fit	considered	in	Figure	3	and	
in	the	analyses	of	pre-symptomatic	and	early	symptomatic	transmission	is	outlined	in	red.	

	

Correlations:	 Ferretti	 Xia	 Ferretti+Xia	 Ferretti+Xia+He+Cheng	

incubation	period	vs	
generation	time	 0.97	 0.98	 0.96	 0.69	

incubation	period	vs	
TOST	 -0.15	 -0.64	 -0.26	 -0.38	

generation	time	vs	
TOST	 0.09	 -0.48	 0.01	 0.40	

Supplementary	Table	6:	 correlations	between	 incubation	period,	TOST	and	generation	
time,	 inferred	 from	linear	rescaling	of	pre-symptomatic	TOST	with	respect	 to	 incubation	
period	and	for	different	datasets.		

	

Supplementary Methods 

Modelling dependence between TOST distribution and incubation period 

Even	 if	 TOST	 is	 the	main	 determinant	 of	 the	peak	 of	 infectiousness,	 the	width	 of	 the	
distribution	could	still	depend	on	the	 incubation	period.	To	obtain	a	 joint	distribution	
which	would	model	this,	we	consider	a	distribution	𝑤()*((𝑡|𝜇)	of	TOST,	where	𝜇	 is	the	
location	parameter	of	the	distribution	(i.e.	the	parameter	that	controls	the	shift	from	a	
centered	distribution)	and	we	rescale	it	in	several	possible	ways.		

The	most	general	form	for	rescaling	on	both	sides	is	

𝑤(𝑡|𝑡0) ∝ 𝑤()*((𝑐𝜇 + (𝑡 − 𝑐𝜇)/𝑠|𝜇)	, 𝑠 = (𝑘 + 𝑡0/5.42)/(𝑘 + 1)	

where	𝑐is	a	parameter	that	 interpolates	between	0	(corresponding	to	a	rescaling	with	
respect	 to	 onset	 of	 symptoms)	 and	 1	 (corresponding	 to	 a	 rescaling	 with	 respect	 to	
location	parameter),	and	𝑘	is	a	positive	parameter	that	controls	the	nonlinearity	of	the	
rescaling	(𝑘 = 0	corresponds	to	a	linear	scaling).	

The	most	general	form	for	rescaling	on	the	left	side	is	

𝑤(𝑡|𝑡0) ∝ [1 − 𝜃(𝑡 − 𝑐𝜇)]𝑤()*((𝑐𝜇 + (𝑡 − 𝑐𝜇)/𝑠|𝜇) 	+ 𝜃(𝑡 − 𝑐𝜇)𝑤()*((𝑡|𝜇)	,
𝑠 = (𝑘 + (𝑡0/5.42)C)/(𝑘 + 1)	

where𝛾is	another	positive	parameter	that	controls	the	exponent	for	the	nonlinearity	of	
the	rescaling	(𝛾 = 1, 𝑘 = 0	corresponds	to	a	linear	scaling).	
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Transmission versus infectiousness for symptomatic individuals 

The	right	tail	for	the	distribution	of	transmissions	is	subject	to	several	epidemiological	
biases,	since	both	interventions	and	self-isolation	reduce	it.	The	distribution	of	exposure	
events	 in	 relation	 to	symptom	onset	 is	 illustrated	 in	Supplementary	Figure	6	and	can	
correct	some	of	the	abovementioned	epidemiological	biases.	The	distribution	of	exposure	
events	 of	 traced	 contacts	 is	 biased	 towards	 the	 likely	 period	 of	 transmission,	 being	
affected	both	by	isolation	behaviour	and	by	the	protocols	for	contact	tracing.	However	it	
extends	to	later	times	compared	to	our	infectiousness	profile	and	it	is	informative	about	
potential	biases	in	our	analysis.		

We	therefore	included	in	our	analysis	the	case-contact	pairs	from	Cheng	et	al	with	known	
dates	of	exposure	 in	which	no	transmission	occurred,	adding	their	contribution	to	the	
likelihood	as	described	in	the	Methods.		

We	also	considered	both	tails	of	the	distribution	separately	to	allow	for	a	wider	range	of	
shapes	 of	 infectiousness	 with	 possibly	 marked	 asymmetry	 between	 pre-	 and	 post-
symptomatic	periods.	We	require	the	resulting	distribution	to	be	continuous.	This	means	
that	 the	 two	 curves	 are	 centered,	 rescaled	 to	 their	 value	 at	 the	 peak,	 combined,	 then	
shifted	by	a	 single	 location	parameter	and	normalised	by	 the	 integral	of	 the	 resulting	
curve	in	order	to	obtain	a	probability	density.		

Finally,	 before	 combining	 the	 distributions,	 we	 included	 a	 multiplicative	 power-law	
factor	1/(1+ 𝑡)E 	in	the	right	side	of	the	curve,	in	order	to	model	an	additional	decay	in	
the	 right	 tail	 of	 the	 distribution,	 induced	 by	 interventions.	 We	 consider	 a	 different	
parameter	for	exponent𝛼for	each	dataset,	to	allow	for	different	epidemiological	biases	
among	datasets.		

Hence,	if	𝑤GHI((𝑡),𝑤J0KL((𝑡)	are	the	centered	distributions,	the	final	model	is	given	by	

𝑤(𝑡)

=
(1 − 𝜃(𝑡 − 𝜇))𝑤GHI((𝑡 − 𝜇)/𝑤GHI((0) + 𝜃(𝑡 − 𝜇)(1 + 𝑡 − 𝜇)ME𝑤J0KL((𝑡 − 𝜇)/𝑤J0KL((0)

∫ 𝑑𝑥	𝑤GHI((𝑥)/𝑤GHI((0)
Q
MR + ∫ 𝑑𝑥	(1 + 𝑥)ME𝑤J0KL((𝑥)/𝑤J0KL((0)

R
Q

	

The	best	fit	shown	in	Supplementary	Figure	7	has	𝛼 ≈ 0	for	all	datasets.	Note	that	this	
does	not	mean	that	interventions	could	not	be	influencing	on	the	timing	of	symptomatic	
transmissions,	but	rather	that	they	influence	it	in	the	same	way	across	all	datasets.	


