Results

Analytical Solution for the Posterior Distribution of τ_{s} and τ_{1}

We specified a Bernoulli likelihood and a beta-distributed prior on τ_{s} and τ_{l}. Therefore, the posterior distributions of τ_{s} and τ_{1} satisfy a conjugate-prior relationship and can be solved analytically as beta distributions.

The prior distribution for τ_{s} is a beta distribution with hyperparameters $\alpha_{\mathrm{s}}=12$ and $\beta_{\mathrm{s}}=$ 3 , and the prior distribution for τ_{1} is a beta distribution with hyperparameters $\alpha_{1}=3$ and $\beta_{1}=12$.

Following the conjugate-prior relationship, the posterior distribution for τ_{s} is calculated as a beta distribution with hyperparameters,

$$
\begin{equation*}
\hat{\alpha}_{s}=\alpha_{s}+\sum_{n_{\text {founders }}} \mathbb{I} \text { (report travel) } \tag{S1}
\end{equation*}
$$

$$
\begin{equation*}
\hat{\beta}_{s}=\beta_{s}+\left(n_{\text {founders }}-\sum_{n_{\text {founders }}} \mathbb{I}(\text { report travel })\right) \tag{S2}
\end{equation*}
$$

The summation in eq. (S1) is the number of cases that reported travel and are inferred by the algorithm to be imported cases. Similarly, the second term in eq. (S2) is the number of cases inferred by the algorithm to be imported cases that did not report travel. The posterior distribution for τ_{1} is similarly described by a beta distribution with hyperparameters,

$$
\begin{equation*}
\hat{\alpha}_{l}=\alpha_{l}+\sum_{n_{\text {local }}} \mathbb{I}(\text { report travel }) \tag{S3}
\end{equation*}
$$

$$
\begin{equation*}
\hat{\beta}_{l}=\beta_{l}+\left(n_{\text {local }}-\sum_{n_{\text {local }}} \mathbb{I}(\text { report travel })\right) \tag{S4}
\end{equation*}
$$

In eq. (S3), the summation is the number of cases that reported travel and were inferred by the algorithm to be locally acquired. Similarly, the second term in eq. (S4) is the number of cases inferred by the algorithm to be locally acquired that did not report travel.

We then compared the prior distributions, the posterior distributions obtained from the MC3 sampling algorithm, and the posterior distribution obtained using the analytical solutions in eqs. (S1-S4) for τ_{s} and τ_{1} inferred from the Eswatini surveillance data. Because each case had a posterior probability of being imported or locally acquired but eqs. (S1-S4) required a binary classification, we classified a case as imported if the posterior probability of being imported exceeded 0.25 . This threshold was arbitrarily defined, but the purpose of this exercise is purely illustrative.

Under both inference settings in which the accuracy of the travel histories was inferred, we observed good agreement between the analytical and numerical posterior distributions for τ_{s} and τ_{1}. Whether or not the posterior distribution deviated from the prior distribution depended upon the number of cases that were classified as imported or locally acquired. When there are more cases classified as imported, the strength of the data predominated in eqs. (S1-S2), and the posterior distribution of τ_{s} deviated from the prior distribution. By contrast, when most cases are locally acquired, the posterior distribution of τ_{s} resembled the prior distribution. This is consistent with the posterior distributions that we observed when we used spatial and temporal data and estimated the accuracy of the travel history versus when we used temporal data and
estimated the accuracy of the travel history. Using the former, we estimated 5.2% of the cases as imported, which was sufficient to shift the posterior distribution of τ_{s} away from the prior distribution (S5 Fig). Using the latter, we only estimated 0.13% of cases as imported. This small number of imported cases implied that the posterior distribution of τ_{s} resembled the prior distribution (S6 Fig).

S5 Fig. Comparison of the prior and posteriors of τ_{s} and τ_{1} from the Eswatini surveillance data using spatial and temporal data and estimating the accuracy of the travel history. The prior (gray shape), the analytical posterior distribution (black line), and the numerical posterior distribution from MC3 (green histogram) are plotted for τ_{s} and τ_{1}.

S6 Fig. Comparison of the prior and posteriors of τ_{s} and $\tau_{\boldsymbol{I}}$ from the Eswatini surveillance

 data using temporal data and estimating the accuracy of the travel history. The prior (gray shape), the analytical posterior distribution (black line), and the numerical posterior distribution from MC3 (pink histogram) are plotted for τ_{s} and τ_{1}.The derivation of the analytical solution of τ_{s} explains our inability to correctly estimate this parameter from simulated data (Fig 5B). Using the spatial and temporal data and estimating the accuracy of the travel history, the true value of τ_{s} was 0.61 , and 5.2% of all cases in the simulated data set were imported. However, applying the MC3 algorithm to this simulated data set, we inferred only $\sim 1 \%$ of all cases to be imported. Consequently, we do not estimate a sufficient number of imported cases to shift the posterior distribution of τ_{s} away from the prior distribution and correctly estimate this parameter (S7 Fig).

S7 Fig. Comparison of the prior and posteriors of τ_{s} from simulated data using spatial and temporal data and estimating the accuracy of the travel history. The prior (gray shape), the analytical posterior distribution (black line), and the numerical posterior distribution from MC3 (green histogram) are plotted for τ_{s}.

