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We introduce the methods implemented in our package and include some prior distributions. We also show
the R syntax and results when the models are fitted using personalized informative prior distributions on
example datasets. Further investigations were conducted into the joint prior distribution in relation to the
InSIDE assumption and we introduce some strategies when choosing prior distributions.

Methods

• The instrument-phenotype associations are denoted by γ̂j .
• The instrument-outcome associations are denoted by Γ̂j .

In one-sample MR analyses, the Wald estimator for ratio estimates is

βj = Γ̂j
γ̂j
. (1)

In two-sample MR analyses the numerator and denominator are obtained from different samples.1

When there are multiple instruments, the IVW estimator is used to estimate the causal effect in a summary
level dataset. Equation (2) shows the linear model, with no intercept, from which we derive the IVW
estimator in equation (3).

Γ̂j = βγ̂j + εj ; εj ∼ N(0, σ2
yj

). (2)
The IVW estimator is given by,

βIVW =
∑J
j=1 wj β̂j∑J
j=1 wj

, (3)

The variable wj in equation (3) represents the weights denoted as the inverse variance of the ratio estimate(
1

var(β̂j) = 1
σ2

yj

)
.

Equation (4) denotes the MR-Egger model for estimating causal inference. MR-Egger models assume in-
strument strength independent of direct effects (InSIDE), which means irrespective of the magnitude of
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pleiotropic effects valid estimates can be obtained given they are independent of SNP-exposure associations
(γ̂j)2. For a summary level dataset, if the value of the mean pleiotropic effect(α̂) is further from zero, the
larger the difference between the causal effect from the true effect

Γ̂j = α+ βγ̂j + εj , εj ∼ N(0, σ2) (4)

The radial MR-Egger model, as seen in equation (5). The variable wj denotes the radial weights which differ
from the weights in MR-Egger, assuming first order weights γ2

j

σ2
yj

and subsituting in the model we see the
intercept is unweighted, the IVW estimator (equation (3)) is its submodel.

β̂j
√
wj = α+ β

√
wj + εj , εj ∼ N(0, σ2), (5)

Assuming known variance, the likelihood of the MR-Egger estimator follows a univariate Gaussian distribu-
tion in equation (6), again w denotes the weights.

P (Γ̂|α, β, σ, γ̂j) =
J∏
j=1

N(α+ γ̂jβ, σ
2w) (6)

Equation (7) denotes the Bayesian posterior distribution;

P (α, β, σ|Γ̂j , γ̂j) ∝ P (Γ̂j , γ̂j |α, β, σ)P (α, β, σ) (7)

Prior distributions

The choice of prior distributions is an important factor in Bayesian estimation. This section gives a brief
description on the formulation of the different prior distributions included in this package and the rjags
syntax used for implementing them.3

Non-informative prior distributions

We use non-informative prior distributions when we have no prior beliefs about the distribution of a param-
eter. This type of prior distribution is expected to produce estimates similar to frequentist estimates. There
is no “better” choice of an uninformative prior but Equation (8) denotes some possible non-informative
prior distributions, these have large variances for the average pleiotropic effect (α) and the causal effect
(β). Although an improper prior density was set for the σ, given a large number of instruments (J > 3)
the prior yields proper posterior densities. 4 Although in the presence of pleiotropic instruments the use of
vauge/uninformative prior distributions may lead to estimates with low precision.5

α ∼ N(0, 1000), β ∼ N(0, 1000), σ ∼ U(0.0001, 10) (8)

Weakly informative prior distributions

The idea of a weakly informative prior, equation (9), is to provide partial information on the variables,
which is ideal for regularization. Weakly informative priors could mitigate the effects of winners curse. The
prior distributions are described in equation (9), where the variance is reduced for α and β compared to the
non-informative prior distributions.

α ∼ N(0, 1), β ∼ N(0, 1), σ ∼ U(0.0001, 10) (9)
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Pseudo-Horseshoe prior distribution

We extend the MR-Egger estimator by placing a cauchy distribution prior on the causal effect β ∼ c(0, 1).
The Cauchy distribution was chosen as the prior distribution due to some appealing properties, for example
the divergence property of no mean and infinite variances, rather mode and median which are equal. An
investigation into the direction of causality through Bayesian models showed that pleiotropic instruments can
give the causal effect a multimodal distribution.6 Assuming there are more strong instruments, the divergence
property of the Cauchy distribution weighs more on the effect of the strong instruments and reduces the
effect of outlying instruments. The convergence towards the Gaussian distribution in the presence of a large
number of instruments is another useful property of the Cauchy distribution as a shrinkage prior. This
is also a good test for reliable strategies designed to function well under a wide variety of distributional
assumptions. The default prior distributions for our prior = "pseudo" option, in the mr_egger_rjags and
mr_radialegger_rjags functions, are as in equation (10).

α ∼ N(0, 1), β ∼ C(0, 1), σ ∼ IG(0.5, 0.5) (10)

Joint prior distribution

A conjugate bivariate normal prior distribution on the slope and intercept in the MR-Egger model has been
shown to have good properties.7 We assume α, β and σ2 follow a bivariate prior distribution which have
marginal normal distributions, the proposed priors are denoted in (11).

α|σ2 ∼ N(µα, σ2σα)
β|σ2 ∼ N(µβ , σ2σβ)
σ2 ∼ U(1, 10)

Cov(α, β|σ2) = σ2ραβ

(11)

Under its accompanying InSIDE assumption, the correlation coefficient can be described as the degree of
InSIDE violation when σασβ ≥ 0 within the MR-Egger model. We investigate the InSIDE assumption using
assumed external information on the values for the hyperparameters in equation (11) denoted below;

µα, µβ = 0
σα, σβ = 10

(12)

We are interested in whether the magnitude of the correlation coefficient between the intercept and slope
of the joint prior distribution influences the estimates, which can help us determine the ideal value of ρ
while conducting an MR analysis. We fitted the MR-Egger and radial MR-Egger models for values of the
correlation coefficient (ρ) between -0.99 upto 0.99 under the null and alternative hypothesis. The simulated
datasets consist of two-sample study design showing directional pleiotropy when the InSIDE assumption is
violated(β = 0.5).
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Figure S1: Estimates of the causal effect and average pleiotropic effect for different values of ρ in the joint
prior distribution.

Figure S1 shows the results generated for α and β from the different values of ρ, the values show a similar
pattern when the InSIDE assumption is valid or violated. The values of the parameters within the MR-Egger
model show no difference when the correlation coefficient changes. The Radial formulation shows a pattern
in the intercept parameter where we notice a little change when ρ gets closer to ±1.

Strategies for choosing priors

Informative prior distributions can help to account for pleiotropy in Bayesian MR analyses5, an approach for
informative prior distribution is to use the result from a previous study. Alternatively, for cases where prior
estimates cannot be obtained, we can use regularized priors similar to weakly informative prior distributions.
We give some strategies when considering informative prior distribution. The emphasis would be on the slope
parameter (which is the causal effect estimate).

The choice of a prior distribution with small standard deviation (e.g. β ∼ N(0, 1)) can be regarded as an
ideal option when Γ̂j and γ̂j are standardized which is comparable to the IVW and the original formulation
of MR-Egger models. We can set prior distributions for the slope and its standard deviation independently
an example is the normal gamma distribution β ∼ N(0, 1/σβ); σβ ∼ G(a, b). However, this prior distribution
applies to non-standardized error terms similar to the radial MR-Egger. The selection of hyperparameters
(a, b) can make the normal-gamma distribution have a similar shape as the laplace distribution which has
stronger regularization. This prior distribution can also be considered a Bayesian version of frequentist
LASSO regression8.
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Example: Estimates from some informative prior distributions

Data description

The data is an excerpt from the mr.raps package, details of the instrument-exposure and instrument-outcome
associations are within the package documentation. The outcome for this dataset is acute ischemic stroke
and the exposure for this analysis is body mass index (BMI). This dataset is created from three genome-wide
association studies (GWAS). GWAS on BMI was used for SNP selection by9, The UK BioBank GWAS of
BMI was applied to estimate the SNPs’ effect on BMI. The third GWAS study estimates the SNPs’ effect
on AIS10.

To obtain this dataset, the Akiyama study is used for SNP selection (column pval.selection). The UK
BioBank dataset estimates and the Malik dataset estimates the SNPs’ effect on AIS.

Application of some informative and Hierarchical priors

From the example dataset, we applied some informative prior distributions discussed above on the parameter
for the causal effect estimate (β), the R-syntax is given below and table S1 results of the estimates for
illustration.

# restrictive prior distribution
user_egger <-

mr_egger_rjags(
dat,
betaprior = "dnorm(0,1)",
seed = c(123456, 456789, 342564),
n.chains = 3

)

# normal gamma prior distribution
user_radialegger <-

mr_radialegger_rjags(
dat,
betaprior = "dnorm(0,1)",
seed = c(123456, 456789, 342564),
n.chains = 3

)

user_trialegger <-
mr_egger_rjags(

dat,
betaprior = "dnorm(0,phi) phi ~ dgamma(0.5,0.5)",
sigmaprior = "dgamma(1E-4,1E-4)",
seed = c(123456, 456789, 342564),
n.chains = 3

)

user_trialradialegger <-
mr_radialegger_rjags(

dat,
betaprior = "dnorm(0,tau/lambda) lambda ~ dgamma(0.5,0.5) tau = 0.025",
sigmaprior = "dgamma(1E-4,1E-4)",
seed = c(123456, 456789, 342564),
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Table S1: Estimates from informative prior distributions

Model Coefficient Estimate CrI
Bayesian MR-Egger Intercept 0.0046 -0.0066, 0.0162
Bayesian MR-Egger Slope 0.3225 0.0052, 0.6406
Bayesian MR-Egger Radial Intercept 0.3847 -0.4761, 1.2558
Bayesian MR-Egger Radial Slope 0.3083 -0.0044, 0.6143

n.chains = 3
)

Estimates in table S1 show shrinkage towards the null and the credible interval cuts across zero for the
slope parameter. The estimates show the effects of different priors when using Bayesian models in MR for
summary-level dataset.

In summary, it is helpful to compare estimates from models fitted with both uninformative and partially
informative prior distributions.
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