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1 Viral genomic sequencing

RNA from 217 confirmed COVID-19 cases in New Zealand were obtained from diagnostic laboratories

around the country. Viral RNA is reverse transcribed with SSIV with random hexamers, and then amplified

using multiple overlapping PCR reactions spanning the viral genome, by employing Q5 HotStart High-

Fidelity DNA Polymerase. Two primer schemes were used in this study: 1) ARTIC network protocol (V1

and V3) and 2) the New South Wales (NSW) primer set described in Eden et al. (2020) . Samples processed

with the ARTIC protocol were sequenced on R9.4.1 MinION flow cells using the Oxford NanoPore ligation

sequencing protocol (Loman et al., 2020). Sample processed with the NSW primer set were sequenced

on Illumina NextSeq and MiSeq flowcells in paired-end 300 cycle format using the Nextera-XT library

protocol. Table S1 describes the number of genomes processed using each protocol.

Table S1: Sequencing protocols used to sequence the 217 New Zealand SARS-CoV-2 genomes.

Protocol Technology Number of genomes
ARTIC V1 Oxford Nanopore 9
ARTIC V3 Oxford Nanopore 86
NSW Illumina 122

For both methods, alignment to the reference genome MN908947.3 was followed by consensus calling

for the major alleles on variation sites. Regions are masked with N’s in the final genome when amplicon

failed to reach sufficient depth. Genomes with fewer than 3000 N’s in their consensus genome were used in

the analysis presented here. The nanopore reads generated with Nanopore sequencing of ARTIC primer

sets (V1 and V3) were mapped and assembled using the ARTIC bioinformatics pipeline (v1.1.0; Loman et al.

2020) with the “–medaka” flag enabled in the minion step. For the NSW primer set, raw reads were quality

and adapter trimmed using trimmomatic (v0.36; Bolger et al. 2014) with the following settings: removing

first 15 and last 20 bases of each read, minimum trailing quality of 30, 4nt-moving average quality of 25,

and length >= 100bps.

Trimmed paired reads were mapped to reference using bwa. Primer sequences were masked us-

ing iVar (v1.2; Grubaugh et al. 2019). Duplicated reads were marked using Picard (v2.10.10; http:

//broadinstitute.github.io/picard/) and not used for SNP calling or depth calculation. Single nu-

cleotide polymorphisms (SNPs) were called using bcftools mpileup (v1.9; http://samtools.github.io/

bcftools/). SNPs within genomic regions amplified by each primer sets and primer regions were called

separately. SNPs were quality trimmed using vcffilter (vcflib v1.0.0; Garrison 2014) requiring 20x depth

and overall quality of 30. Positions that are less than 20x were masked as N in the final consensus genome.

In addition, positions with an alternative allele frequency between 20 and 79% were also masked as N.

5

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://samtools.github.io/bcftools/
http://samtools.github.io/bcftools/


Douglas et al. • July 2020

2 Sequence preprocessing

2.1 Filtering

Viral genomic sequences were filtered by observing the following constraints:

1. All viral sequences must have a human host;

2. All sequences must have date resolution down to the day of the month;

3. All sequences be more than 25 kb in length;

4. The proportion of ambiguous sites in a sequence must be less than 0.005 (appoximately 150 sites) (due

to a shortage in sequences, samples from New Zealand and Taiwan are exempt from this constraint);

5. Sequences on the “NextStrain CoV exclude list” (Hadfield et al., 2018); URL: https://github.com/

nextstrain/ncov/blob/master/defaults/exclude.txt) are excluded from the analysis. This list

contains sequences which were identified as problematic either through manual inspection, or due to

the sample falling outside 4 interquartile ranges from the mean root-to-tip distance (calculated using

TreeTime; Sagulenko et al. 2018).

2.2 Subsampling

Because analysing all available genomic data using our Bayesian model is prohibitively slow, subsampling

the full dataset is necessary. We assess four subsampling schemes producing one alignment each, differing

with respect to (i) dataset size n (either “small” or “large”), and (ii) the method used to select sequences

(either “time” or “active”). In (i), the rest-of-the-world deme (RW) contributes 200 or 500 sequences to

the “small” and “large” datasets, respectively. Out of these sequences, 40 (for “small”) or 80 (for “large”)

always come from China for the phylogenetic signal they carry with respect to the root of the infection tree.

The island deme (IS) then contributes the remaining sequences to n, up to a maximum of 250. Specifically,

Australia contributes 250 sequences, Iceland 250, New Zealand 217, and Taiwan 76 (see more details on our

deme definitions below). In (ii), the method consists of either (a) randomly choosing one sequence from

each of n dates sampled with replacement (i.e., picking uniformly through time; the “time” method), or (b)

sampling (with replacement) n country-date pairs proportionally to the number of active cases reported

in that country on that date (according to https://www.worldometers.info/coronavirus/), with one

sequence chosen randomly from each pair (the “active” method).

6
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2.3 Alignment

After filtering and subsampling sequences, alignments are generated using MAFFT under its default

settings (Katoh et al., 2009), yielding a total of 16 alignments (four alignments per geographical model).

Table S2: Taxa count N, alignment length L, and A, C, G, T, and ambiguous (?) content are reported for each alignment
used in this study.

Island Alignment N L (kb) A (%) C (%) G (%) T (%) ? (%)

Australia Small-time 450 30 29.7 18.3 19.5 32 0.1
Australia Small-active 450 30 29.7 18.3 19.5 32 0.1
Australia Large-time 750 30 29.7 18.3 19.5 31.9 0.1
Australia Large-active 750 30 29.7 18.2 19.5 31.9 0.1

Iceland Small-time 450 30 29.7 18.3 19.5 32 0.2
Iceland Small-active 450 30 29.7 18.3 19.5 32 0.2
Iceland Large-time 750 30 29.7 18.2 19.5 31.9 0.2
Iceland Large-active 750 30 29.7 18.3 19.5 32 0.1

New Zealand Small-time 417 30 29.5 18.1 19.4 31.7 0.9
New Zealand Small-active 417 30 29.5 18.2 19.4 31.8 0.8
New Zealand Large-time 717 30 29.5 18.1 19.4 31.7 0.5
New Zealand Large-active 717 30 29.6 18.2 19.4 31.8 0.5

Taiwan Small-time 310 30 29.5 18.1 19.4 31.7 0.1
Taiwan Small-active 310 30 29.6 18.2 19.4 31.8 0.1
Taiwan Large-time 610 30 29.5 18.1 19.4 31.7 0.1
Taiwan Large-active 610 30 29.3 18 19.2 31.5 0.1
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Table S3: Summary of the COVID-19 pandemic in the four target islands. Total passenger arrivals into the island in
the Jan-Mar period are counted. All dates are in the year 2020. The number of confirmed cases and the percentage of
cases with recent overseas travel are reported for the Jan-Apr period. *Visitor arrivals only.

Island Population
(millions)

Arrivals (mil-
lions)

First case Border close Confirmed
cases

Overseas
travel

New Zealand 5 1.6 [1] Feb 28 Mar 19 [2] 1,129 [3] 39% [4]
Australia 25 4.3 [5] Jan 25 Mar 20 [6] 6,746 [3] 64% [7]
Iceland 0.34 0.33* [8] Feb 28 Mar 20 [9] 1,797 [3] 19% [10]
Taiwan 23 3.6 [11] Jan 21 Mar 19 [12] 429 [13] 90% [13]

Table references
[1]http://archive.stats.govt.nz/browse_for_stats/population/Migration/provisional-international-travel-
statistics.aspx
[2]https://www.rnz.co.nz/news/national/412162/nz-to-close-its-borders-to-anyone-not-a-citizen-or-permanent-
resident-pm-confirms
[3]https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200430-sitrep-101-covid-
19.pdf?sfvrsn=2ba4e093_2
[4]https://www.health.govt.nz/our-work/diseases-and-conditions/covid-19-novel-coronavirus/covid-19-current-
situation/covid-19-current-cases
[5]https://www.abs.gov.au/ausstats/abs@.nsf/mf/3401.0
[6]https://7news.com.au/lifestyle/health-wellbeing/australia-closes-borders-to-stop-coronavirus-c-752927
[7]https://www.health.gov.au/sites/default/files/documents/2020/04/coronavirus-covid-19-at-a-glance-30-april-
2020.pdf
[8]https://www.ferdamalastofa.is/static/files/ferdamalastofa/Frettamyndir/2020/mai/april-2020-e.pdf
[9]https://www.schengenvisainfo.com/news/iceland-starts-implementing-schengen-and-eu-travel-ban/
[10]https://www.covid.is/data
[11]https://www.taiwannews.com.tw/en/news/3931135
[12]https://thediplomat.com/2020/03/taiwan-closes-borders-in-preparation-for-possible-second-wave-of-the-
coronavirus/
[13]https://www.cdc.gov.tw/En/Bulletin/Detail/shdoyOUaEjWMbkToD9DZEQ?typeid=158

3 Demes and epochs

We consider four geographical models – each comprised of a target island deme IS (Australia, Iceland,

New Zealand, or Taiwan), and a mutually exclusive “rest-of-the-world” deme RW . The RW grouping

of viral lineages is not biologically meaningful – it is a computational and modelling convenience – as

its samples are further structured among themselves and not necessarily more similar to each other than

to sequences from island demes. For this reason, the parameters associated with the RW deme are not

interpreted and are treated as nuisance parameters.

Our MTBD analyses employ a general model implementation that allows for piecewise rate changes

over the course of the infection (Kühnert et al., 2016), i.e., rates are held constant within time intervals, but

are allowed to vary between them. An infection process is characterised by the time of the origin at t0,

and the end of its last ( f -th) interval, t f (which is also the last sampling time). Each of the f intervals is

then defined by a boundary time ti ∈ t = (t1, ..., t f−1), where t0 < t1 < ... < t f−1 < t f . Given a parameter

p ∈ {Re, b, s, m}, pi is the rate inside the i-th interval [ti−1, ti). Time intervals t are both parameter-specific

and deme-specific, and are treated as data (i.e., they are not sampled; Table S4).
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Table S4: Time intervals (epochs) used by the MTBD model, specified as [ti, ti+1). t0 and t f correspond to the origin
and the date the last sample was collected. All other times are deme-specific, and in the case of s, sample specific.
The “First reported case” dates are in Table S3. For simplicity, the “Border close” date is held at March 20 for all
demes, despite a one day difference existing in practice. “Mobility decline” dates are shown in Table S6. The sampling
proportion s is held constant at 0 from the start of the infection until the first tip within the deme (an alignment-specific
date), and then estimated in the second epoch. As there is no migration signal before the first reported case within
each island, the migration rate mIS ,RW is fixed to a negligible quantity (10−6) due to its non-identifiability. Nuisance
parameters (RW deme) are modelled with a single time interval over which they are sampled.

Parameter(s) Deme i Time interval
Start (ti) End (ti+1)

Re and b IS 0 t0 First reported case
Re and b IS 1 First reported case Mobility decline
Re and b IS 2 Mobility decline t f
Re and b RW 0 t0 t f
s = 0 IS 0 t0 First sample
s IS 1 First sample t f
s = 0 RW 0 t0 First sample
s RW 1 First sample t f
mIS ,RW = 10−6 − 0 t0 First reported case
mRW ,IS − 0 t0 First reported case
mIS ,RW − 1 First reported case Border close
mRW ,IS − 1 First reported case Border close
mIS ,RW − 2 Border close t f
mRW ,IS − 2 Border close t f

3.1 A model of human movement decrease for mobile phone data

Defining time intervals characterised by different levels of human movement is challenging, as the four

“island” considered here differ markedly in their response to COVID-19. No single date (such as the day

of lockdown, for example) could be used across countries: while the governments of New Zealand and

Australia locked human movement down to different extents for several weeks, those of Iceland and Taiwan,

on the other hand, found it sufficient to restrict the size of gatherings and encourage social distancing (Hale

et al., 2020).

In order to define country-specific time intervals in a statistically principled way, we first parameterise

human movement decrease with a sigmoid model describing how mobility (Apple, 2020; Fig. S1) changes

as a function of time t:

s(t|t0, d, a, r) = 1.0− a
(
S(mt + c)− S(mrt + cr)

)
, (1)

the parameters of which are described in table S5. Here, S corresponds to the sigmoid (logistic) function

S(x) = 1
1+e−x , and m, c, mr and cr are deterministically defined in terms of other parameters such that:

1. 1− S
(
m(t0 + d) + c

)
= S

(
mt0 + c

)
= 1−α

2 , i.e., α of the decrease occurs between t0 and t0 + d,

9
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2. S
(
mr(t0 + d) + cr

)
= 1−α

2 , i.e., only 1−α
2 of the recovery has occurred at the end of the decrease, and

3. S
(
mr(t0 + d + dr) + cr

)
= r, i.e., r of the recovery has occurred dr after the end of the decrease.

We apply Equation 1 to our set of four demes I = {1, 2, 3, 4} by allowing each country i ∈ I to have

its own parameters controlling the timing of the decrease, t0i and di. Additionally, we can consider the

three modes of transportation j individually (i.e., j ∈ J = {1, 2, 3}), and allow each (country i–mode of

transportation j) pair to be characterised by its own decrease amplitude, aij, recovery amplitude rij, and

mobility standard deviation parameter νij (Table S5). Finally, we let each combination of country, mode of

transportion, and weekday k have its own baseline mobility mean of bijk. Note that these considerations

make all parameters in equation 1 multidimensional (Table S5).
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Fig. S1: Cell phone mobility data from New Zealand, Australia, Iceland and Taiwan, for three kinds of transportation:
driving, transit and walking. The “wiggly” lines correspond to the raw data. Fit sigmoid models are shown in all
graphs as a smooth shaded curve (the 2.5–97.5% quantile interval) and a solid line inside of it (the sigmoid function).

We model the human movement underlying mobility data M = (mijk) (i-th country, j-th mode of

transportation, k-th weekday) by assuming Mijk is sampled from a Normal distribution, letting:

10
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f (Mijk|bijk, νij, t0i, di, aij, rij) = N (Mijk|bijk × s(t; t0i, di, aij, rij), νij), (2)

where N (·|µ, σ) is the probability density function of a normal distribution with mean µ and standard

deviation σ. Note that the baseline mean of this distribution, bijk, is scaled by the sigmoid function s(·)
describing the mobility decrease effect in equation 1.

Our full model is hierarchical and allows the mobility signal of the different nations to jointly and

mutually inform all model parameters. This is done by using hierarchical priors, and estimating shared

hyperparameters θ = {µt0, σt0, µd, σd, αaj, βaj, αrj, βrj, bijk, νij}. The unnormalised posterior density of our

full model is given by:

f (b, ν, t0, d, a, r, θ|M) ∝ f (θ)∏
i∈I

f (t0i, di|θ) ∏
j∈Ji

f (aij, rij, νij|θ) (3)

7

∏
k=1

(
f (bijk|θ)

)
∏

t∈Mij

f (Mijω(t)|bijω(t), νij, t0i, di, aij, rij), (4)

where ω(t) is a deterministic function that returns the weekday of a time point t, f (θ) is the hyperprior

density on hyperparameters θ, and f (t0i, di|θ), f (aij, rij, νij|θ) and f (bijk|θ) are the prior densities on

country-, transportation mode-, and weekday-level parameters, respectively (Table S5). We chose our priors

following recommendation in Gelman et al. (2006). Priors are listed table S5.

We determined the boundary between time intervals characterised by “high” and “low” human

movement using New Zealand as a reference. As a post processing step after MCMC, we computed and

logged the proportion of mobility that had gone down in New Zealand by 26 March 2020 (according to

the fitted sigmoid model), and then deterministically recorded the dates by which the other islands had

undergone the same proportional reduction. Let S(t|t0, d) = S(mt + c), the sigmoid function describing

the decrease in mobility, where m and c are defined as in Equation 1. Let S−1(p|t0, d) be the inverse of this

function. Then, for a given set of parameter values, the boundary date for country i is:

S−1(S(26 March|t0z, dz)|t0i, di),

where the subscript z refers to the index of New Zealand in the set I . We used the posterior mean of this

date as the boundary between time intervals.

Our model is implemented in PyMC3 (Salvatier et al., 2016), and we employed the No-U-Turn Sampler

(Hoffman and Gelman, 2014) to sample the posterior distribution. We ran three independent chains

11



Douglas et al. • July 2020

and sampled each 10000 times (after 1000 tuning samples). The three chains were visually checked for

convergence and combined, yielding effective samples sizes larger than 200.

Table S5: Parameters of sigmoid model for human movement. These parameters share names with random variables
from other models, but represent distinct quantities only used in the sigmoid model. No indicates a bounded
Normal distribution conditioned on non-negativity, and HC indicates a Half-Cauchy distribution with location 0 and
conditioned on non-negativity.

Parameter Description Prior
Mobility model parameters

t0 t0 = (t0i), i ∈ I , the start of the mobility decrease
effect in country i

N(µt0 , σt0)

d d = (di), i ∈ I , the duration of the mobility decrease
effect in country i

a a = (aij), i ∈ I , j ∈ J , the proportional amplitude of
the mobility decrease for country i and transportation
mode j

Beta(αaj, βaj)

r r = (rij), i ∈ I , j ∈ J , the proportion of mobility
decrease that recovers by (t0 + d + dr) in country i,
for transporation mode j

Beta(αrj, βrj)

b b = (bijk), i ∈ I , j ∈ J , k ∈ K, the baseline mobility
for country i, transportation mode j and weekday k

No(µbjk, σbjk)

ν ν = (νij), i ∈ I , j ∈ J , the mobility standard devia-
tion for country i and transportation mode j

HC(0.1)

α Proportion of decrease effect which occurs between t0
and t0 + d

Fixed to 0.99

dr Duration over which recovery is measured Fixed to 60

Hyperparameters
µt0 t0 prior mean N(Mar 25, 14 days)
σt0 t0 prior standard deviation HC(2.0)
µd d prior mean No(14 days, 7 days)
σd d prior standard deviation HC(2.0)
αa αa = (αaj), j ∈ J , a prior shape No(2.0, 2.0)
βa βa = (βaj), j ∈ J , a prior rate No(2.0, 2.0)
αr αr = (αrj), j ∈ J , r prior shape No(1.5, 2.0)
βr βr = (βrj), j ∈ J , r prior rate No(2.0, 2.0)
µb µb = (µbjk), j ∈ J , k ∈ K, b prior mean No(1.0, 0.2)
σb σb = (σbjk), j ∈ J , k ∈ K, b prior standard deviation HC(1.0)

Table S6: Date boundaries of mobility reduction, according to the model described in Section 3.1 which was fit to
mobile phone data (Apple, 2020). All dates are within the year of 2020. The start dates were used as epoch boundaries
for Re and b.

IS Start Mean End
New Zealand Mar 26 Mar 26 Mar 26
Australia Mar 24 Mar 25 Mar 26
Iceland Mar 18 Mar 19 Mar 20
Taiwan Mar 27 Mar 31 Apr 05

12



Douglas et al. • July 2020

4 Model definition

4.1 Substitution and clock models

In all analyses, the phylogenetic likelihood was evaluated under the HKY substitution model with

estimated nucleotide equilibrium frequencies πD. Sites were partitioned into non-coding sites and the

three codon positions, with each partition having its own substitution model parameters. The end

regions were masked because they are suspected to harbour many sequencing errors (as described

by http://virological.org/t/issues-with-sars-cov-2-sequencing-data/473). Because SARS-CoV-2

genomes have undergone a small number of mutations (Lai et al., 2020; Li et al., 2020b; Rambaut, 2020), we

assumed a strict molecular clock in all analyses.

4.1.1 Partition schemes and substitution model selection

We compared substitution models and partition schemes based on their posterior distributions over T , and

picked the simplest model generating the least different posterior distribution. For example, substitution

models more complex than HKY did not affect the posterior distribution of T relative to HKY, while

simpler models such as JC69 (Jukes Cantor 1969) yielded a posterior distribution that was substantially

different. Therefore, we selected HKY with estimated frequencies. Model comparison was done with

BModelTest (Bouckaert and Drummond, 2017). By the same token, we did not opt for single partition

analyses – which led to very different tree posteriors compared to the chosen partition scheme (see main

text) – and rejected adding further partitions (e.g., on gene boundaries) because they did not alter the tree

posterior significantly.

4.2 Phylodynamic models

4.2.1 Discrete phylogeography (DPG)

The DPG model (Lemey et al., 2009) employs a continuous-time Markov chain in similar fashion to

substitution models used in molecular evolution studies, but one in which a single “character” is considered:

the discrete location (the deme) a lineage occupies in space. Lineages are allowed to change demes over

time, with demes being inherited by children lineages according to a phylogenetic tree. As opposed to

nucleotide substitution models that emit four discrete states, however, the DPG model can emit d states,

where d is the number of demes represented in the data.

Under the DPG model, state transitions correspond to migrations events (i.e., a lineage moves from one
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deme to another) that happen as described by a 2× 2 symmetric, infinitesimal rate matrix:

m = µmSΠ = µm

−πIS πIS

πRW −πRW

 , (5)

where µm is an overall rate scaler, S is a matrix of relative rates of changing demes, and Π = diag(π) (with

π being the equilibrium deme frequencies; Table S7). Note that (i) Π is estimated as opposed to S, because

the two are non-identifiable (i.e., a symmetric model), (ii) Π is normalised such that µm reflects the number

of migration events per unit time (Lemey et al., 2009), and (iii) the frequencies Π at the root are fixed at

Π = (πIS , πRW ) = (0, 1) to incorporate knowledge of the infection originating outside of the four island

demes of interest.

Finally, we couple our DPG model implementation to the Bayesian skyline model (Drummond et al.,

2005) to allow for effective population size (Ne) changes over ten time intervals. Following the notation

from the main manuscript, under the DPG we have:

f
(
T |θτ

)
= f

(
T |µm, π, Ne

)
. (6)

4.2.2 Two epoch discrete phylogeography (DPG2)

The two epoch discrete phylogeography model (DPG2) generalises the DPG model by distinguishing two

time intervals: one before and one after t =19 March 2020, the date in which both New Zealand and Taiwan

closed its borders (Australia and Iceland closed theirs in the following day). These two time intervals are

characterised by their own m rate matrix. Following the notation from the main manuscript, under the

DPG2 model we have:

f
(
T |θτ

)
= f

(
T |µm, π, Ne, t

)
. (7)

Note that t here is fixed and treated as data. In computing this density, only one m matrix is used for

branches contained in their entirety within a time interval; branches that are intersected by t, on the other

hand, have transition probabilities computed by combining two different m matrices (Bielejec et al., 2014).
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4.2.3 Structured coalescent (SC)

The fourth phylodynamic model we used was the structured coalescent model implemented in MASCOT

(Marginal Approximation of the Structured CoalescenT; Müller et al. (2018)). Structured coalescent models

allow one to estimate demographic parameters and genealogical relationships among sub-populations

(demes), but estimation under exact implementations is costly because lineage ancestral states must be

sampled with MCMC. The marginal approximation of the structured coalescent (MASCOT) model, on the

other hand, circumvents this issue by integrating over all possible migration histories (Müller et al., 2018).

Under this model, we estimate population sizes for each deme i, N = (Ni
e), and an among-deme migration

rate matrix m. Following the notation from the main text:

f
(
T |θτ

)
= f

(
T |S, m, N

)
, (8)

where S is treated as data containing the deme information for each sample.

4.2.4 Multi-type birth-death (MTBD)

The full probabilistic graphical model given the MTBD tree prior used in this study can be seen in Fig. S2.

D

φiy Q

T µD πD κ

LN

PhyloCTMC

HKY

Dirichlet LN

RebπGr s m O

SampleTimes

1

MTBDd, n, t

LNDirichlet LN Beta LN LN

Fig. S2: Full MTBD probabilistic graphical model used in our study. Yellow and blue circles correspond to parameters
and observed data, respectively. Red diamonds are deterministic functions and their outcomes. Filled squares represent
sampling distributions (e.g., “MTBD”, multitype birth-death; “HKY”, Hasegawa-Kishino-Yano substitution model).
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4.3 Prior distributions

The prior distributions used in this article are summarised in Table S7. Priors for O, s, m, and πG were

programatically generated for each alignment and are detailed in the following subsections.

Table S7: Summary of prior distributions. Γ(α, β) denots a gamma distribution with shape parameter α and inverse scale
parameter β; “LN(µ, σ)” denotes a log-normal distribution with log-space mean µ and log-space standard deviation
σ; “Exp(µ)” denotes an exponential distribution with a mean of µ. “Dir(α1, . . . , αm)” is a Dirichlet distribution with
shapes (α1, . . . , αm). *Origin time prior distribution has an offset (see Section 4.3.1). **s is parameterised as s′ (see
Section 4.3.2).

Parameter Description Prior distribution

DPG/DPG2 parameters
µm Migration rate scaler Γ(0.001, 1000)
π Equilibrium deme frequencies Dir(1, 1)
Ne(0) Effective population size baseline LN(0, 2)
Ne(i), i > 0 Effective population size change Exp(N(i− 1))

SC parameters
Ne Effective population size LN(0.007, 1)
m Migration rates

MTBD parameters
Re Basic reproduction number LN(1.0, 0.7)
b Rate of becoming non-infectious LN(4.09, 0.2)
O Origin time LN(-1.98, 0.4)*
r Removal probability 1
s Sampling proportion Beta(1.1, 8.0)**
m Migration rates LN(0, 1)
πG Equilibrium deme frequencies (see Section 4.3.3)

Substitution model parameters (shared)
κ HKY transition-transversion ratio LN(1, 1.25)
πD HKY nucleotide frequencies Dir(1, 1, 1, 1)
µ1

D Molecular clock rate (for DPG and DPG2) LN(−7, 1.25)
µ2

D Molecular clock rate (for MTBD and SC) LN(−7, 0.25)

4.3.1 Prior for origin time

As defined in the main text, origin time O represents the height of the sampled infection tree (T ) in years,

which goes from the most recent sample to patient zero, the first case of the disease. The time of the most

recent sample can vary depending on the sampling scheme (Section 2), but with the exception of one

alignment, all alignments had their most recent sample taken on 29 April 2020. Patient zero has been only

tentatively placed on 17 November 2020 in Hubei, China, but at least 60 cases had been confirmed with

certainty by 20 December in that country (see https://www.scmp.com/news/china/society/article/

3074991/coronavirus-chinas-first-confirmed-covid-19-case-traced-back).
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We assumed an offset log-normal prior distribution for O; specifically, (O − δ) ∼ LN(µ = −1.98, σ =

0.4), where δ is an offset defined by the time interval between the alignment-dependent first sample and

20 December 2020, a day we judged to provide positive evidence COVID-19 was spreading in China. By

applying variable offsets, one can use the same log-normal parameterisation (i.e., same mean and standard

deviation) for all alignments. Therefore, irrespective of the subsampling scheme, this prior translates into

the first case having its mean and modal occurrence dates on 26 October and 7 November 2020, respectively.

This prior also implies that the first case of COVID-19 has (1) zero probability of having happened after 20

December 2019, and (2) asymptotically zero probability of happening before mid 2019 (Fig. S3).

4.3.2 Priors for sampling proportion s

Under the MTBD model, s = ψ
ψ+µ describes the proportion of sampled individuals out of all sampled and

removed individuals. In the time interval prior to the first sample no sampling has happened, and hence

s = 0. After the first sample, s has an upper-limit u such that s ≤ u:

u =
Number of samples

Number of confirmed cases as of date t f
. (9)

The denominator on the right-hand side comes from the assumption that once an individual has become a

confirmed case, they are removed from the infectious pool (i.e., we assume r = 1). If a large proportion of

infections are asymptomatic or mildly symptomatic, as is the case of COVID-19 (Day, 2020b,a; Li et al.,

2020a; Lu et al., 2020), s can be an order of magnitude smaller than u.

In the equation above, note that u can be specific to a deme d, in which case we only count individuals

from deme d when calculating ud. ud is also alignment specific; for example, in the “small-active” alignment

(see Section 2) where New Zealand is the target island, uIS = 0.147 and uRW = 8.22 × 10−5 (3 sf).

The full set of values are available in the GitHub repository accompanying this article. The number of

confirmed COVID-19 cases was compiled by https://www.worldometers.info/coronavirus/, and we

programmatically accessed these figures from the Worldometers Daily Data GitHub repository by David

Bumbeishvili (https://github.com/bumbeishvili/covid19-daily-data).

We reparameterised s as s′ = s
ud
∈ [0, 1] so that a natural prior choice for s′ would be a Beta distribution.

More specifically, we assumed s′ ∼ Beta(α = 1.1, β = 8.0), which sets the mean of s at 0.12ud and bounds it

at 0.0 and ud.
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Table S8: Alignment-specific upper limits for s in the MTBD model. Rounded to 3 sf.

Alignment Island IS uIS uRW

Small-active

Australia 0.0373 8.62× 10−5

Iceland 0.139 8.98× 10−5

New Zealand 0.147 8.22× 10−5

Taiwan 0.255 8.52× 10−5

Small-time

Australia 0.0369 7.61× 10−5

Iceland 0.138 8.83× 10−5

New Zealand 0.147 8.32× 10−5

Taiwan 0.255 7.44× 10−5

Large-active

Australia 0.0372 1.98× 10−4

Iceland 0.14 1.96× 10−4

New Zealand 0.147 2.02× 10−4

Taiwan 0.255 1.91× 10−4

Large-time

Australia 0.0369 1.89× 10−4

Iceland 0.138 1.93× 10−4

New Zealand 0.147 1.8× 10−4

Taiwan 0.255 1.92× 10−4

4.3.3 Priors for MTBD geographical frequencies πG

Under our MTBD model, the equilibrium frequency of each deme is assumed to be proportional to that

deme’s human population Hd. In the case of RW , Hd is the sum of the population of countries represented

in an alignment, so this quantity is thus dependent on the subsampling scheme. πG is given by:

πG = (πG(IS), πG(RW)) ∼ Dirichlet
( HIS

HIS + HRW
× kπG ,

HRW
HIS + HRW

× kπG

)
. (10)

Scalar kπG controls the variance and was set to kπG = 104. The full set of priors for πG is presented in Table

S9.
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Table S9: Alignment-specific priors for πG in the MTBD model. “Dir” stands for Dirichlet.

Alignment Island IS Prior of πG

Small-active

Australia Dir(68.2, 9938.1)
Iceland Dir(1, 9999)
New Zealand Dir(20.6, 9979.4)
Taiwan Dir(66.8, 9933.2)

Small-time

Australia Dir(58.8, 9941.2)
Iceland Dir(0.9, 9999.1)
New Zealand Dir(11.9, 9988.1)
Taiwan Dir(53.3, 9946.7)

Large-active

Australia Dir(63.6, 9936.4)
Iceland Dir(0.9, 9999.1)
New Zealand Dir(13, 9987)
Taiwan Dir(60.1, 9939.9)

Large-time

Australia Dir(55, 9945)
Iceland Dir(0.8, 9999.2)
New Zealand Dir(10.5, 9989.5)
Taiwan Dir(54, 9946)

Table S10: Alignment-specific priors for m in the SC model for the “small-active” method. “LN” is a LogNormal
distribution.

Island IS mRW ,IS mIS ,RW
Australia LN(−15.1, 1) LN(−4.7, 1)
Iceland LN(−19.6 1) LN(−0.8, 1)
New Zealand LN(−16.8, 1) LN(−3.4, 1)
Taiwan LN(−14.9, 1) LN(−4.9, 1)
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Fig. S3: Prior probability distributions used in our models for phylodynamic analyses. Parameters appear in the same
order as in Table S7. Black horizontal lines indicate the exact intervals between 2.5% and 97.5% quantiles for the different
priors; the blue dot indicates the 50% quantile (Dirichlet priors are multivariate distributions with non-unique quantiles,
so those are not shown for these priors). The prior for Ne(1) assumes Ne(1) ∼ Exp(E[Ne(0)]). Only one dimension
of each Dirichlet priors is shown. These dimensions are: π(IS) = 1− π(RW) for MTBD geographical frequencies
π; πG(IS) = 1− πG(RW) for DPG geographical frequencies πG; and πD(A) = 1− πD(C)− πD(G)− πD(T) for
nucleotide frequencies πD.
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5 Model implementation and parameter inference

All models used in this study are implemented in BEAST 2.6 (Bouckaert et al., 2019). Parameter inference

is carried out using the Metropolis-Hastings algorithm, which generates a Markov chain that explores

the posterior distribution by Monte Carlo simulation (MCMC). We thus employed MCMC to sample

(T , µc, θτ , θs) ∼ f (T , µc, θτ , θs|D, y). We used a combination of MCMC and coupled MCMC (MC3; Müller

and Bouckaert (2019)), as determined by examining either method’s performance on a chain-by-chain basis.

Chain convergence was evaluated by observing a minimum ESS of 200 for the posterior, likelihood,

and prior densities, as well as for all reported parameters (Tables S11, S12, S13, S14), with phylogenetic

tree convergence inferred from a high correlation between posterior clade probabilities from independent

chains (Fig. S4). Due to computational limitations, the “large” alignments did not fully converge for the

MTBD or SC methods, and neither did the “small-active” method for MTBD. The results presented in the

main text are not derived from the aforementioned chains. This highlights the appeal in the DPG model.

Table S11: Effective sample sizes (ESS) under the MTBD model. ESSes are in bold if they are problematic (i.e., less
than 100). For vector parameters (such as κ, Re, and b), the minimum ESS is reported.

Alignment Island Chain
length
(106)

posterior likelihood prior µ Height κ Re b m s πG

Large-active New Zealand 93 158 320 170 187 355 2911 19 24 19 1135 4661
Large-active Australia 110 31 214 34 37 129 3212 18 49 10 1175 4942
Large-active Iceland 234 104 104 105 162 1909 3271 742 294 546 1734 11703
Large-active Taiwan 162 277 411 238 345 360 4984 2075 2179 2309 2188 8091

Large-time New Zealand 91 100 101 117 145 404 3101 23 11 471 971 3956
Large-time Australia 122 65 211 79 195 1365 3823 224 42 130 1830 5910
Large-time Iceland 218 41 110 44 74 116 6948 5 5 5 620 10901
Large-time Taiwan 137 285 452 279 435 427 4779 1250 30 1597 3181 6322

Small-active New Zealand 158 70 1497 68 70 98 2599 1208 488 125 940 7496
Small-active Australia 122 42 123 43 39 59 3036 227 243 262 333 5600
Small-active Iceland 374 173 1716 162 179 452 7905 1558 1083 434 9399 18679
Small-active Taiwan 268 376 3165 355 320 444 9041 147 1034 143 8007 13204

Small-time New Zealand 174 291 1930 396 414 976 5593 812 1787 840 6360 8243
Small-time Australia 214 413 2683 397 573 1656 8106 2820 1049 1496 6411 10693
Small-time Iceland 409 325 1030 295 404 1291 12747 265 684 159 14746 20189
Small-time Taiwan 280 587 2128 533 730 2224 10535 1637 628 1957 7266 14023
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Table S12: Effective sample sizes under the SC model. See Table S11 caption for notation.

Alignment Island Chain
length
(106)

posterior likelihood prior µ Height κ Ne m

Large-active New Zealand 269 121 26 211 310 181 5289 269 1703
Large-active Australia 204 343 91 294 403 118 15768 379 1364
Large-active Iceland 240 321 31 72 171 292 17602 106 496
Large-active Taiwan 278 570 163 422 420 157 22350 536 1897

Large-time New Zealand 269 351 43 290 266 381 21108 240 546
Large-time Australia 317 668 340 407 806 299 26585 787 1782
Large-time Iceland 253 441 195 374 675 305 20296 553 1936
Large-time Taiwan 279 649 122 437 574 342 18439 426 1332

Small-active New Zealand 270 331 66 1055 2036 804 16208 1612 3029
Small-active Australia 240 833 334 691 1054 445 16094 1040 2771
Small-active Iceland 240 1143 1106 1006 1953 560 12543 1650 2298
Small-active Taiwan 270 1240 175 378 556 720 20527 557 4134

Small-time New Zealand 270 770 669 526 217 668 11967 203 634
Small-time Australia 240 768 418 408 986 334 16274 818 2333
Small-time Iceland 240 820 158 249 604 1092 14314 344 1236
Small-time Taiwan 270 1432 1735 835 1136 1687 15362 1111 2972

Table S13: Effective sample sizes under the DPG model. See Table S11 caption for notation.

Alignment Island Chain
length
(106)

posterior likelihood prior µ Height κ Ne m π

Large-active New Zealand 577 125 173 134 125 306 2523 75 986 443
Large-active Australia 1168 318 487 249 224 4269 5307 80 2274 853
Large-active Iceland 967 1091 47 380 538 2759 4359 10 1238 1094
Large-active Taiwan 1383 394 1270 311 229 611 4933 86 367 346

Large-time New Zealand 545 259 101 277 607 2762 2469 66 146 144
Large-time Australia 1070 875 848 668 1132 1921 5183 158 4860 3606
Large-time Iceland 781 843 930 491 911 4226 4058 89 1448 1106
Large-time Taiwan 1329 463 790 365 370 1658 6213 179 3963 2837

Small-active New Zealand 2388 4405 5705 3986 5443 9610 7447 2672 9809 7970
Small-active Australia 2307 3999 4945 3647 2826 8699 6068 1872 8931 7074
Small-active Iceland 2085 923 1550 721 1815 5760 8442 825 6881 5364
Small-active Taiwan 2700 4425 10601 3814 2723 2995 11254 3275 825 768

Small-time New Zealand 2039 3740 5947 3605 4391 8431 6182 1409 7195 5130
Small-time Australia 2275 3482 2367 2331 2197 23924 7472 2720 12194 10330
Small-time Iceland 1353 1816 513 481 597 17151 6428 1860 4062 3921
Small-time Taiwan 2700 4358 6564 3529 2971 16519 9984 2904 9238 8438
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Table S14: Effective sample sizes under the DPG2 model. See Table S11 caption for notation.

Alignment Island Chain
length
(106)

posterior likelihood prior µ Height κ Ne m π

Large-active New Zealand 328 170 263 294 293 827 3888 102 2583 2229
Large-active Australia 357 396 586 412 489 2905 5104 189 1499 1730
Large-active Iceland 257 100 180 87 162 1675 3669 57 1246 1001
Large-active Taiwan 439 359 985 328 286 739 6557 161 749 538

Large-time New Zealand 315 386 26 222 351 2372 5714 78 2427 2408
Large-time Australia 320 580 1139 428 806 2647 5170 460 904 848
Large-time Iceland 241 645 791 561 967 3426 4569 254 1326 751
Large-time Taiwan 418 670 477 644 530 1038 6445 188 1736 1694

Small-active New Zealand 180 626 406 474 556 1019 2727 651 214 146
Small-active Australia 180 662 1000 659 642 1408 2774 431 1593 1456
Small-active Iceland 180 921 1738 800 566 2135 1840 256 676 615
Small-active Taiwan 900 5977 9534 4677 4292 5677 16069 2076 5533 5474

Small-time New Zealand 180 1201 81 1037 551 1547 3061 370 1018 990
Small-time Australia 180 797 662 642 768 2886 2892 445 687 748
Small-time Iceland 180 807 217 500 521 3600 2835 967 2134 1948
Small-time Taiwan 817 3503 4816 2634 2742 12256 12609 3213 2686 2415
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Fig. S4: The points on each plot are clade posterior probabilities from two independent MTBD analyses (using the
“small-time” alignments). The size of each point is proportional to clade probability. These analysis indicates that
tree topologies from independent MCMC chains converged to similar posterior distributions, with most probability
differences being significantly less than than 0.25 (blue lines).
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6 Supplementary results

6.1 Parameter estimates

Changes in posterior estimates for MTBD parameters over time intervals (for the “small-active” alignment)

are presented in Fig. S5. These results indicate that the rate of becoming non-infectious b = µ + ψ increases

over time in all four islands. This results from two mechanisms: 1) in increase in sampling rate ψ, likely due

to higher rates of SARS-CoV-2 genomic sequencing (Fig. S8), and 2) an increase in death rate µ, likely due

to improved measures of self-isolation and/or quarantine enforced by the respective governments (Fig. S9).

Clock rate and root height estimates vary slightly among differing models and subsampling schemes (Fig.

S10). However, the four sampling methods yielded similar results for key MTBD parameters, suggesting

that the MTBD analysis was not sensitive to subsampling methods (Fig. S11, S12, S13, and S14).

6.2 Introductions through time

The first step in quantifying SARS-CoV-2 introductions into the four IS demes is to carry out ancestral

state reconstruction (ASR). The main goal of ASR is to sample ancestral states at internal nodes so that

states from adjacent nodes can be compared: if the state of a parent node is RW and that of its child is IS ,

an introduction is inferred. (The sampling procedure is done either simultaneously with the sampling of

the tree, or during post-processing by using the parameter values logged during MCMC.) All branches

of the tree can then be parsed and introductions annotated according to their chronological distribution,

which allows one to plot the number of introductions over time (Fig. S15).

Under all models, ASR is carried out by traversing the tree backward in time, followed by a forward pass

during which ancestral states are sampled (note that in a Bayesian framework we sample states at internal

nodes, instead of trying to find the marginal or joint collection of states that maximize the likelihood, e.g.,

Pupko et al., 2000; Yang, 2014). In the case of DPG, DPG2, and MTBD, the tree is peeled backward so

that partial likelihoods can be obtained at internal nodes and at the root, and then stochastic mapping is

carried out forward in time (Nielsen, 2002; Freyman and Höhna, 2019). Under the SC model, ASR follows

an approach similar in spirit to that of Pearl (1982); the procedure has been previously, and thoroughly

detailed elsewhere (?).
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Fig. S5: Posterior distribution of the rate of becoming non-infectious b across the two epochs following the first reported
case in the respective island. Relative prior densities and 95 % HPD intervals (blue) are displayed along the x-axis, with
the mean posterior estimate indicated with a dashed line. The number of samples n from the specified country within
the epoch is reported.
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Fig. S6: Posterior distribution of sampling proportions s after the epoch following the first sample. s is held constant at
0 throughout the interval before the first sample. See Fig. S5 for further details on figure notation.
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Fig. S7: Posterior distribution of the birth rate λ, following the first reported case. Although λ is not directly estimated
as a model parameter, it can be calculated using λ = Re

b . See Fig. S5 for further details on figure notation.
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Fig. S8: Posterior distribution of the sampling rate ψ, following the first reported case. Although ψ is not directly
estimated as a model parameter, it can be calculated using ψ = sb (when r = 1). See Fig. S5 for further details on figure
notation.
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Fig. S9: Posterior distribution of the death rate µ, following the first reported case. Although µ is not directly estimated
as a model parameter, it can be calculated using λ = b− sb (when r = 1). See Fig. S5 for further details on figure
notation.
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Fig. S10: Comparison of mean root height and clock rate estimates across the 64 combinations of sampling methods,
models, and islands. These results show that MTBD and SC are less robust to changes in the sample and tend to give,
on average, older tree heights. In contrast, DPG and DPG2 both give very late estimates for the root (late Dec - early
Jan) when the active sampling method is employed, thus providing further evidence that the active method is not
suitable for these models. For MTBD, the “small” datasets yield lower clock rates estimates.
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Fig. S11: Comparison of the four subsampling methods for New Zealand alignments. Posterior distributions of key
parameters from the MTBD analyses are presented above. Alignment-specific mean estimates and 95% highest posterior
density intervals are printed above the plots.
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Fig. S12: Comparison of subsampling methods for Australia alignments. See Fig. S11 for further details.
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Fig. S13: Comparison of subsampling methods for Iceland alignments. See Fig. S11 for further details.

34



Douglas et al. • July 2020

small active
large active
small time
large time

Taiwan

Clock rate µD (subst.site−1.yr−1)

P
o
st
er
io
r
d
en
si
ty

7.75e-04 (6.13e-04, 9.34e-04)
9.98e-04 (8.88e-04, 0.0011)
8.00e-04 (6.89e-04, 9.17e-04)
8.42e-04 (7.73e-04, 9.26e-04)

0e+00 4e-04 8e-04

0
5
00
0

1
50
0
0

Tree origin O (yr)

P
o
st
er
io
r
d
en
si
ty

0.537 (0.432, 0.661)
0.492 (0.414, 0.583)
0.586 (0.462, 0.715)
0.558 (0.447, 0.682)

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Interval 1: Re

P
os
te
ri
or

d
en
si
ty

0.849 (0.378, 1.29)
0.877 (0.389, 1.35)
0.74 (0.304, 1.14)
0.88 (0.414, 1.2)

0.0 0.4 0.8 1.2

0
1

2
3

4

Interval 2: Re

P
os
te
ri
or

d
en
si
ty

1.08 (0.688, 2.27)
0.94 (0.797, 1.07)
1.02 (0.825, 1.22)
0.949 (0.788, 1.09)

0.0 0.5 1.0 1.5 2.0

0
2

4
6

8
10

Interval 3: Re

P
os
te
ri
or

d
en
si
ty

0.662 (0.155, 2.08)
0.462 (0.201, 0.715)
0.522 (0.184, 1.01)
0.46 (0.202, 0.749)

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6

Interval 1: b (removals.yr−1)

P
os
te
ri
or

d
en
si
ty

63.7 (39.3, 89.4)
63.1 (40.1, 89)
65.2 (40.6, 91.5)
60.8 (38.3, 85.1)

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

Interval 2: b (removals.yr−1)

P
os
te
ri
or

d
en
si
ty

84 (54.2, 114)
84 (58.8, 112)
83.6 (52.6, 117)
81 (44.7, 120)

0 20 40 60 80 100

0.
00

0.
02

0.
04

Interval 3: b (removals.yr−1)

P
os
te
ri
or

d
en
si
ty

67.4 (43.8, 94.1)
68 (45.1, 93.1)
68.7 (43.4, 95.1)
69.3 (43.6, 94.5)

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

Fig. S14: Comparison of subsampling methods for Taiwan alignments. See Fig. S11 for further details.
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Table S15: Estimated number of imports and exports (mean and corresponding and 95% HPD intervals) into each
target island deme IS (using the “small-time” subsampling protocol). Overseas (total) assumes that the sample is
representative of the total proportion of cases linked to overseas travel in Table S3. Overseas (sample) counts the number
of samples that have been marked as having recent overseas travel in the GISAID sequence metadata Shu and McCauley
(2017). These counts are likely influenced by missing data. Estimates are highlighted in bold if the expected number is
within the 95% HPD interval of either of these two methods.

Island IS Model Estimated imports Estimated exports

New Zealand

Overseas (total) 84
Overseas (sample) 49
DPG 41 [29,51] 14[5, 23]
DPG2 41 [30,50] 11[4, 20]
SC 58 [48,67] 0[0, 0]
MTBD 63[54, 72] 1.4[0, 4]

Australia

Overseas (total) 159
Overseas (sample)
DPG 49[33, 63] 34[17, 50]
DPG2 52[38, 65] 31[16, 44]
SC 98[83, 111] 0[0, 0]
MTBD 87[72, 100] 0.68[0, 3]

Iceland

Overseas (total) 47
Overseas (sample) 68
DPG 6.9[6, 9] 36[26, 46]
DPG2 7[5, 9] 43[32, 55]
SC 37 [25,48] 0[0, 0]
MTBD 49 [31,64] 0.95[0, 3]

Taiwan

Overseas (total) 99
Overseas (sample) 25
DPG 48[37, 58] 21[6, 36]
DPG2 49[38, 58] 19[6, 32]
SC 57[47, 68] 0[0, 0]
MTBD 65[53, 76] 0.98[0, 4]
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Table S16: Estimated imports and exports using the “large-time” method. See Table S15 caption for details.

Island IS Model Estimated imports Estimated exports

New Zealand

Overseas (total) 84
Overseas (sample) 49
DPG 47 [39,55] 1.3[0, 4]
DPG2 48 [39,55] 2.3[0, 5]
SC 55 [47,64] 0[0, 0]
MTBD 60[50, 67] 0.52[0, 1]

Australia

Overseas (total) 159
Overseas (sample)
DPG 68[55, 80] 47[27, 67]
DPG2 70[56, 80] 47[29, 64]
SC 110[100, 126] 0[0, 0]
MTBD 92[77, 104] 2.6[0, 9]

Iceland

Overseas (total) 47
Overseas (sample) 68
DPG 19[9, 27] 65[40, 87]
DPG2 28[18, 37] 54[31, 76]
SC 60 [49,68] 0[0, 0]
MTBD 62 [53,71] 0.7[0, 3]

Taiwan

Overseas (total) 99
Overseas (sample) 25
DPG 59[49, 66] 23[6, 40]
DPG2 60[50, 67] 29[15, 44]
SC 67[59, 74] 0[0, 0]
MTBD 69[60, 77] 0.93[0, 3]
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Table S17: Estimated imports and exports using the “small-active” method. See Table S15 caption for details.

Island IS Model Estimated imports Estimated exports

New Zealand

Overseas (total) 84
Overseas (sample) 49
DPG 13[7, 18] 41[29, 52]
DPG2 32 [9,49] 20[1, 44]
SC 54 [43,62] 0[0, 0]
MTBD 64[55, 71] 0.13[0, 1]

Australia

Overseas (total) 159
Overseas (sample)
DPG 14[8, 20] 68[52, 80]
DPG2 14[9, 19] 82[66, 96]
SC 120[99, 135] 0[0, 0]
MTBD 72[51, 91] 5.6[0, 17]

Iceland

Overseas (total) 47
Overseas (sample) 68
DPG 4.4[4, 6] 29[21, 36]
DPG2 4.6[4, 6] 68[49, 84]
SC 47 [36,60] 0[0, 0]
MTBD 57 [43,69] 0.28[0, 1]

Taiwan

Overseas (total) 99
Overseas (sample) 25
DPG 4.3[1, 10] 80[63, 98]
DPG2 26 [16,35] 90[68, 110]
SC 66[55, 77] 0[0, 0]
MTBD 69 [24,82] 11[0, 116]
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Table S18: Estimated imports and exports using the “large-active” method. See Table S15 caption for details.

Island IS Model Estimated imports Estimated exports

New Zealand

Overseas (total) 84
Overseas (sample) 49
DPG 22[11, 36] 48[13, 77]
DPG2 40[31, 48] 17[7, 26]
SC 58 [49,67] 0[0, 0]
MTBD 54 [42,65] 9.7[0, 20]

Australia

Overseas (total) 159
Overseas (sample)
DPG 27[13, 43] 67[28, 101]
DPG2 50[35, 65] 38[19, 57]
SC 110[88, 120] 0.0012[0, 0]
MTBD 82[51, 112] 22[0, 75]

Iceland

Overseas (total) 47
Overseas (sample) 68
DPG 4.9[4, 7] 55[41, 69]
DPG2 5.1[4, 7] 100[66, 132]
SC 62 [48,74] 0[0, 0]
MTBD 65 [53,77] 1[0, 3]

Taiwan

Overseas (total) 99
Overseas (sample) 25
DPG 8.2[1, 16] 96[63, 126]
DPG2 40 [23,55] 120[60, 181]
SC 68[59, 77] 0[0, 0]
MTBD 72[63, 80] 0.8[0, 3]
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