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1 Dataset

The global mobility network. The data for constructing the global mobility network (GMN) is

provided by the Official Airline Guide (OAG). This dataset includes the airports and the seats

of scheduled commercial flights between airports in 2013. We assumed that the daily scheduled

commercial flights in 2020 are the same as in 2013. We also assume that the number of seats

on the scheduled commercial flights is proportional to the number of passengers taking air trav-

els. We construct the weighted and directed GMN by integrating the airports to corresponding

geographic areas and integrating the passengers/seats between airports. We represent GMN as

G = (N,E, F ), N is the set of M = 228 geographical areas, E is the set of |E| = 5493 airline

links, and F is the passenger influx of airline links (see Table S1 and S2). Fmn is the number

of passengers that travels from country n to country m, and Fmn 6= Fnm. The total amount of

passenger influx is 7,259,935 passengers per day.

Geographic areas’ infected cases and arrival times. According to the Johns Hopkins Uni-

versity (?), we obtain the reported infected cases, recovered cases, and death toll from Jan-22

to Apr-4 in 249 geographic areas. Combing the data set from Johns Hopkins University (?) and

Ding Xiang Doctor Website (?), which published the daily fact-checking statements related to

the outbreak, we obtain the arrival times of 199 areas as of Apr-4. Notably, we consider Dec-8

in 2019 as the arrival time of mainland China when the first case was reported.

Geographic areas’ population. We collect the geographic areas‘ population in 2019 from

the website World Population Review (?).

Travel Restrictions. Currently, 249 countries, territories, or areas of geographical interest

that are assigned two-letter official codes in ISO 3166-1 are considered in the travel restrictions’

dataset. The information about entry bans and global travel bans are collected from (?). The

information about lockdowns is obtained from a summary of government measures regarding
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COVID-19 from ACAPS in the Humanitarian Data Exchange website (?). Until Apr-4, 2020,

184 areas have imposed 476 entry bans, 87 areas imposed 87 global travel bans, and 70 countries

imposed 100 lockdowns (see Table S3). Among the lockdowns, 12 geographic areas imposed

12 full lockdowns, and 65 geographic areas imposed 88 partial lockdowns.

2 SIR Meta-population Model

We adopt the SIR meta-population model to simulate the spread of COVID-19 in the global

mobility network (GMN). For each geographic area n, it has a population size of Ωn (from the

2019 world population statistics). The disease time course within the population is described by

the three states (i.e., susceptible sn = Sn/Ωn, infectious in = In/Ωn, recovered rn = Rn/Ωn),

and the disease time course between populations is described by their travels influx pmn =

Fmn∑
m Fkn

:


ṡn = −αsninσ(in/ε) + γ

∑
m 6=n pmn(sm − sn)

i̇n = αsninσ(in/ε)− βin + γ
∑

m 6=n pmn(im − in)

ṙn = βin + γ
∑

m6=n pmn(im − in)
(S1)

with the initial condition as

i̇k(t0) = 1/Ωk, k ∈ NI(t0) (S2)

where α is infectious rate, and α = R0/DI . β is the recovery rate, and β = 1/DI . DI is

the infectious period. R0 is the basic reproductive number. γ =
∑
m,nFmn∑
n Ωn

(γ = 0.010) is

the mobility rate. σ(in/ε) = (in/ε)η

(in/ε)η+1
is a sigmoid Hill-type function. ε ≈ M/

∑
n Ωn =

3.242 ∗ 0.17. NI(t0) is the set of outbreak locations (OL).

We simulate the global spread of COVID-19 by using the SIR meta-population model on

GMN, with the basic reproductive number R0 2.2 (95% CI, 1.4-3.9), the infectious period DI

2.3 (95% CI, 1.2-12) provided by the literature (?), and NI(t0) = {mainland China} where

t0 =Dec-8. Then, we get two fundamental properties – the arrival time (Tn) once the infected
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cases In(t) > 1, and the infected cases (In(t)) in arbitrary geographic area n.

3 Country Distancing

Consider τm|n = {n, c1, ..., ci, cj, ..., ck,m} is the path of Lm|n steps from (outbreak location)

OL geographic area n to geographic area m in G, the probability of connects the two areas is

W (τm|n) = Pmck×, ..., Pcicj , ...,×Pc1n, (S3)

where Pcicj =
Fcicj∑
ci
′ Fci′cj

is the fraction of passenger influx from geographic area cj to geo-

graphic area ci over all out-flow influx from geographic area cj . The effective distance of path

τm|n from source area n to destination area m is

λ(τm|n) = Lm|n − logW (τm|n)

=
∑

(i,j)∈τm|n

(1− logPij). (S4)

For arbitrary source area n and destination aream, the effective distance dm|n (?) is the minimal

length of λ(τm|n) for a path τm|n, defined as

dm|n = min
τm|n

λ(τm|n), (S5)

which is the sum of effective distance of links in the path τm|n, in par with the effective effective

resistance in series circuits.

Assume we have multiple outbreak locations (OLs) NI = {n1, n2, ..., ni, ...} and |NI | ≥ 1,

so the probability of connecting from OLs NI to destination m is:

Wm =
1

M

∑
ni∈NI

W (τm|ni)

=
1

M

∑
ni∈NI

∏
(i,j)∈τm|ni

Pij

=
1

M

∑
ni∈NI

eLm|ni−λ(τm|ni ),

(S6)
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where M = |N | is the number of geographic areas in the GMN and is also the number of

possible outbreak locations. NI ∈ N , thus Wm ≤ 1.

As each path τm|ni is the path with minimal length from OL ni ∈ NI to destination area m,

then

Wm =
1

M

∑
ni∈NI

eLm|ni−dm|ni . (S7)

So the country distancing of area m, which quantifies how far country m is from multiple OLs

ni ∈ NI , is:

Dm|NI = Lm|NI − log(
1

|M |
∑
ni∈NI

eLm|ni−dm|ni ) (S8)

where

Lm|NI = min
ni∈NI

Lm|ni . (S9)

Eq. S8 could also be represented as

eLm|NI

eDm|NI
=

1

M

∑
ni∈NI

eLm|ni

edm|ni
. (S10)

As Lm|NI ≤ Lm|ni for any ni ∈ NI , Lm|ni ≤ dm|ni and Lm|ni ≤ 3, we have

eDm|NI =
M∑

ni∈NI
1

e
dm|ni

(S11)

which similar to the effective effective resistance in parallel circuits. So the country distancing

of area m could also be presented as

Dm|NI = log(M)− log
∑
ni∈NI

1

edm|ni (S12)

For the explanations on notations and further calculations about country distancing, please

check Table. S1.
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4 Arrival Times and Infected Cases

4.1 Correlations with Country Distancing

According to existing literature, we know that the effective distance dm|n exhibits linear cor-

relations with arrival times Tm (?) and the log-transformed mobility flow (the other form of

effective distance, that is, eLm|n−dm|n) exhibits linear correlation with log-transformed infected

cases Im (?) in the presence of one outbreak location (OL). Country distancing, a metric ex-

tended from effective distance, could also exhibit these two types of linear correlations in the

presence of one/multiple outbreak locations. Specifically, as shown in Fig. S1A-C, the simu-

lated arrival times Tm|NI could be well predicted by country distancingDm|NI withR2 = 0.9 for

NI={mainland China}, R2 = 0.89 for NI={mainland China, Japan, South Korea, Italy}, and

R2 = 0.85 for NI having 119 geographic areas. As shown in Fig. S1. D-E, the log-transformed

infected cases log(Im|NI ) could be well predicted by country distancing Dm|NI (which is also

log-transformed mobility flow Dm|NI ≈ log(e−Dm|NI ) ≈ log(eLm|NI−Dm|NI )) with R2 = 0.91

for NI={mainland Chin}, R2 = 0.90 for NI={mainland China, Japan, South Korea, Italy}, and

R2 = 0.77 for NI having 119 geographic areas.

But the country distancing fails to exhibit linear correlation with real-world infected cases

and real-world infected cases, as shown in Fig. S2. Researchers point out that there are mass

undetected, missing, undiagnosed, or unreported COVID-19 cases (?, ?, ?, ?, ?). For exam-

ple, about 86% of infected cases were undocumented before travel restrictions in mainland

China (?). The mass undetected cases result in biased arrival times and infected cases in the

collected real-world dataset, and further make the real-world arrival times and infected cases

unable to confirm the linear relationships with country distancing.

As the robustness check, we study the correlations between country distancing with simu-

lated arrival times and simulated infected cases in the presence of different outbreak locations
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NI(t), which is defined as the geographic areas whose infected case is more than 100, and

|1 ≤ NI(t) ≤ 119| as of Apr-4. See Fig. S3, the linear correlations establish for different

size of outbreak locations with R2 ∈ [0.83, 0.90] between country distancing and simulated ar-

rival times and with R2 ∈ [0.77, 0.92] between country distancing and log-transformed infected

cases. The slope vNI (measuring the change of arrival times relative to the change of country

distancing) and the slope uNI (measuring the change of log-transformed infected cases relative

to the change country distancing) are varied for different size of outbreak locations. To give the

generic speeds of arrival times and infected cases from OLs, we estimate the average slope of

vNI as v̄ (v̄ = 5.50 [95% CI, 4.58 to 6.41)] and the average slope of vNI as ū [ū = −2.95 (95%

CI,-3.51 to -2.38)].

4.2 Arrival Time Delay and Infected Case Reduction

With v̄ = 5.50 (95% CI, 4.58 to 6.41) (slope for linear correlation between country distancing

and arrival times) and ū = −2.95 (95% CI,-3.51 to -2.38) (slope for linear correlation between

country distancing and log-transformed infected cases), we could calculate how the arrival times

are delayed and the infected cases are reduced as the country distancing increases due to travel

restrictions. Explicitly, the sth travel restriction increases country distancing for area m by

D?
m|F (ts)

, simultaneously, it would cause arrival time delay (ATD) T ?m|F (ts)
and infected case

reduction (ICR) I?m|F (ts)
for area m with following equations:

T ?m|F (ts)
= v̂D?

m|F (ts)
, if Im(ts) = 0

I?m|F (ts)
=

∑
t∈{t|t∈T,t≥ts&NI(t)=NI(ts)}

D?
m|F (ts)

I?m(t)(e−û×D
4
m(t)−1)

D4m(t)

(S13)

We illustrate the procedures of calculating ATD and ICR (see algorithm 1 and algorithm

2) with the example {(1)th,(2)th,(3)th} travel restrictions in Fig. S4. The three example travel

restrictions are imposed on {Jan-30, Jan-31, Jan-31} respectively, and cause {1,2,3} ofD?
m|F (ts)

respectively for area m when mainland China (CN) is the only outbreak location.
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For the (1)th travel restriction, if the area m has not been infected on t1 =Jan-30, then the

ATD of aream is T ?m|F (t1) = 5.5×1 days; if the aream is infected on t1=Jan-30, then T ?m|F (t1)=0

days. Same procedure (algorithm 1) are applied to other travel restrictions.

Algorithm 1: Procedure of calculating arrival time delay (ATD).
input : G, v̄ = 5.50, Im(t), D?

m|F (ts)

output: T ?m|F (ts)
, T ?G|F (ts)

1 for sth travel restriction do
2 for m ∈ G do
3 if Im(ts)=0 then
4 T ?m|F (ts)

= v̂D?
m|F (ts)

5 else
6 T ?m|F (ts)

= 0

7 end
8 end
9 T ?G|F (ts)

=
∑

m∈G T
?
m|F (ts)

/M

10 end

As for ICR, we define the new infected case at area m as I?m(t) = Im(t + 1) − Im(t). We

firstly filter out the travel restrictions prior to time t and having the same OL set NI(t) and save

them as S ′. In our example travel restrictions, S ′ = {1th} on Jan-30, and S ′ = {1th, 2th, 3th}

on Jan-31. Then, we calculate the accumulative increase of country distancing D4m(t) at area

m brought by travel restriction in S ′. D4m(t) = 1 on Jan-30, and D4m(t) = 1 + 2 + 3 = 6 on

Jan-31 in our example. Next, we calculate aream’s total reduced infected cases at time t caused

by travel restriction in S ′. I tempm = I?m(t)(e2.95×1 − 1) on Jan-30, and I tempm = I?m(t)(e2.95×6 −

1) on Jan-31 in our example. Next, we distribute the total reduced infected cases to travel

restrictions according to their increase in country distancing. The ICR caused by (1)th travel

restriction on Jan-30 is 1
1
I?m(t)(e2.95×1− 1), the ICR caused by (1)th travel restriction on Jan-31

is 1
6
I?m(t)(e2.95×6−1). Applying the above four procedures to other travel restrictions, we could

finally obtain area m’s ICR caused by (1)th travel restriction by summing the daily produced
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ICR for area m.

The reason of filtering out the travel restrictions having the same OL set is that the travel

restrictions, which are imposed when fewer OLs appear, are not effective for the intertwined

influence from new OLs. So, we ignore ICR caused by travel restrictions having the fewer OL

set.
Algorithm 2: Procedure for calculating ICR.

input : G, T , ū = −2.95, Im(t), D?
m|F (ts)

output: I?m|F (ts)
, I?G|F (ts)

1 for t ∈ T do
2 list S ′ = [ ];
3 for sth travel restriction do
4 if ts ≤ t and NI(t) = NI(ts) then
5 list S ′ = S ′ + [s];
6 end
7 end
8 for m ∈ G do
9 D4m(t) = 0;

10 for s′th ∈ S ′ travel restriction do
11 D4m(t)+ = D?

m|F (ts′ )
;

12 end
13 I?m(t) = Im(t+ 1)− Im(t);
14 I tempm = I?m(t)(e−û×D

4
m(t) − 1);

15 for s′th ∈ S ′ travel restriction do

16 I?m|F (ts′ )
+ =

D?
m|F (ts′ )

Dm(t)4

17 end
18 end
19 end
20 for sth travel restriction do
21 I?G|F (ts)

=
∑

m∈G I
?
m|F (ts)

/M

22 end
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5 Existing Travel Restrictions

5.1 Effectiveness of Travel Restrictions

By assuming the strengths of passenger influx reduction (α, β, and γ) for the three types of

travel restrictions, i.e., α = 50% for entry bans, β = 90% for global travel bans, γ = 10%

for partial lockdowns and γ = 90% for full/national lockdowns, we obtain the increase in

country distancing for each travel restriction. See Tab. S3, 337 (50.8%) travel restrictions

make zero contribution in average country distancing D?
G|F (ts)

for the world. Among the 337

entry bans, which induce zero D?
G|F (ts)

, 315 of them are entry bans to areas which are not OLs.

Though the rest 22 of them are imposed on OLs, no actual links exit in GMN and thus lead to

no increase in average country distancing. 304 travel restrictions induce (0, 0.01] increase in

average country distancing. Among the all 663 travel restrictions, only 22 (3.3%) of them make

> 0.01 increase in D?
G|F (ts)

, and only 3 of them make > 0.1 increase in D?
G|F (ts)

. The three

are Hubei’s (a province in mainland China) lockdown with D?
G|F (ts)

= 0.09, mainland China’s

national lockdown with D?
G|F (ts)

= 2.09, and Italy’s lockdwon with D?
G|F (ts)

= 0.69. Through

the 663 travel restrictions, the final increase of D?
G|F (ts)

is 3.869.

Tab. S5 summarized the total reduced influx, the average increase in country distancing,

the average ATD, and the average ICR for the world bought by entry bans, global travel bans,

and lockdowns. Overall speaking, lockdowns are most effective in increasing country distanc-

ing, ATD, and ICR. Entry bans are most effective and economical, produces more increase in

country distancing than global travel ban with much less passenger influx. Excluding the travel

restrictions whose D?
G|F (ts)

= 0, Fig. S5 shows the increase in country distancing caused by

travel restrictions for two groups. One is the increase in country distancing (D?
ns|F (ts)

) for area

ns, which imposed the travel restriction s, the other is the average increase in country distancing

(D?
G|F (ts)

) for the world. Entry bans to mainland China have a higher increase in country dis-
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tancing than entry bans to other areas. Fig S6 shows the arrival time delay (ATD) and infected

case reduction (ICR) caused by travel restrictions, and their distributions. Observing Tab. S5,

Fig. S5, and Fig. S6, we find that entry bans perform well in ATD and ICR with a small portion

of reduced influx. It suggests that wisely deploy the entry bans could achieve the goal of effec-

tively lowering the importation risk of COVID-19 and preserving the maximal passenger influx

in GMN.

5.2 Areas’ Gain and Contribution

Fig. S7, supplementary figure to Fig. 3B in the main text, shows areas’ the arrival times delay

(ATD) and infected case reduction (ICR) with travel restrictions till Feb-4, Mar-4, and Apr-4.

Tab. S7 also lists the top ten geographic areas with the highest ATD and top ten geographic

areas with the highest ICR.

Fig. S8 and Fig. S9, supplementary figure to Fig. 4 in main text, present each area’s

contribution of ATD and ICR to other continents, and continents’ contribution of ATD and ICR

to other continents.

6 Recommendations for Travel Restrictions

6.1 Optimization Travel Restrictions

As a supplementary to the optimized travel restrictions in the main text, we introduce the case

when the optimized solutions would influence fewer airline links than existing travel restric-

tions, and simultaneously, keeping high effectiveness and minimizing the loss of passenger

influx. Different from the bi-objective optimisation formulation in the main text, the size of
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selected airline links for optimized travel restriction is |θs′ | = K,

max
θs′∈Θs′

∑
m,n Fmn(ts′)∑
m,n Fmn(t0)

max
θs′∈Θs′

D?
G|F (ts′ )

s.t. Fij(ts′) = Fi,j(ts′−1)(1− α), (i, j) ∈ θs′

Fij(ts′) = Fi,j(ts′−1), (i, j) /∈ θs′

θs
′ ∈ E&|θs′ | = K

(S14)

We use the Non-dominated Sorting Genetic Algorithm (NSGA-II) to obtain non-dominated

solutions when one OL (mainland China) and four OLs (mainland China, South Korea, Japan,

and Italy) are presented with α = 0.5 and α = 0.9, respectively. When the OL is mainland

China and α = 0.5 (see Fig. S10A), we could easily get an optimal solution, which only

reduces the passenger influx by 0.32% and enables 0.661 in increasing country distancing by

involving 100 edges. In comparison with the existing travel restrictions imposed by Feb-6 (0.9%

of reduced passenger influx, 0.39 increase in country distancing, and involving 268 edges),

the optimal solution rises passenger influx by more than 0.58%, increases 69.48% in country

distancing, and inflicts 168 less edges. For all optimal solutions, we notice that largerK induces

a growth of the percentage of reduced passenger influx and enlarges country distancing.

From our analysis, when α = 50%, there exist no solutions that outperform the existing

travel restrictions imposed by Feb-17, date after which mainland China imposed national lock-

down (5.1% of passenger influx reduction, 2.687 increase of country distancing, and involving

443 edges). This observation is related to our assumption that national lockdowns reduce 90% of

passenger influx for each edge, but optimal solution based on entry bans reduces only α = 50%

of passenger influx for each edge. Even if the optimal solutions based on entry bans have in-

flicted the same set of edges with the national lockdowns, the optimal solutions are worse in

increase of country distancing.
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From Fig S10.B, it can be seen that increasing α from 50% to 90%, the optimal solution

(0.6% of decreased passenger influx, 2.264 increase of country distancing by involving only

100 edges) outperforms existing travel restrictions imposed by Feb-17 in decreased passenger

influx and involved edges. More precisely, the passenger influx rises by 4.5%, and 343 less

edges are inflicted. However, an increase of 2.27 in country distancing, 15.7% less than the

existing travel restrictions imposed by Feb-17. To conclude, the NSGA-II enables us to find

the optimal solutions that outperform the existing travel restrictions with a maximal increase

of country distancing, a minimal decrease passenger influx, and a minimal inflicted edges by

adjusting the strengths, α.

When four OLs {mainland China, South Korea, Japan, and Italy} are presented on Feb-23

in S10.C-D, Italy imposed lockdowns with 2.8% of decrease in passenger influx, 0.165 increase

in country distancing, and involving 191 edges. The optimal solutions obtained by NSGA-II are

more effective than Italy’s lockdown for α = 0.5 and α = 0.9. The optimal solution achieves

almost the same with country distancing, 0.161, with a decrease of 1.1% in passenger influx,

but inflicts 300 edges, when α = 0.5. For α = 0.9, the optimal solution outperforms Italy’s

lockdown with 0.23 increase of country distancing, augmenting the passenger influx by 1.8%

with only 100 edges.

The obtained optimal solutions consist of a set of entry bans. To explore whether the set

of entry bans in different optimal solutions share same features, we test the correlations be-

tween the number of entry bans targeting OLs (restricting the passenger influx has OLs) and

the increase of country distancing in Fig. S11. Results prove that the number of entry bans

targeting OLs have linear relationship with the increasecountry distancing. For instance, with

α = 0.5, when the OL is mainland China, a statistical coefficient R2 = 0.86 is deduced while

for the case of multiple OLs, namely, mainland China, Japan, South Korea, and Italy, the statis-

tical coefficient is R2 = 0.96 for the same value of α. With α = 0.9, when the OL is mainland
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China, a statistical coefficientR2 = 0.82 is deduced while for the case of multiple OLs, namely,

mainland China, Japan, South Korea, and Italy, the statistical coefficient is R2 = 0.94.

In a nutshell, all the optimized solutions reveal that a small set of entry bans could achieve

substantial increase of country distancing regardless of the number of outbreak locations. More-

over, based on the linear relationship between the number of entry bans targeting OLs and the

increase of country distancing, our findings suggest that the most effective and direct way of dis-

tancing areas is to implement entry bans to OLs, without considering the intertwined spreading

routes in the complex network.
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Table S1: Table of Notation.

Notation Description
G Global mobility network G = (N,E, F )
N Set of geographic areas |N | = M = 228
E Set of airline links between geographic areas |E| = 5493
F Set of passenger influx between geographic areas F (t0) = F , F (ts) for sth travel restriction
Im(t) Infected cases in area m at time t t ≤ Apr-4
Tm(t) Arrival time in area m at time t t ≤ Apr-4
NI(t) Set of outbreak locations NI(t) = {n|∀n ∈ N&In(t) > 100}, NI ∈ N , and NI(ts)

for sth travel restriction
N ′I Set of different outbreak locations N ′I = {NI(t)|∀t, NI(t) 6= NI(t+ 1)}
T Set of dates for collected travel restrictions T = {Jan-21, Jan-22,....,Apr-4 }
S Set of occurrence orders of travel restrictions S = {1, 2, ..., s, ..., S} and |S| = 663
T Set of the occurrence dates of travel restrictions T = {t1, t2, ..., ts, ..., tS} and ts ∈ T
N Set of countries which imposed sth travel restriction N = {n1, n2, ..., ns, ..., nS} and ns ∈ N
E Set of airline links whose passenger influx are reduced by

sth travel restrictions
E = {E1, E2, ..., Es, ..., ES} and Es ∈ E

α Strength of entry ban α = 50%
β Strength of global travel ban β = 90%
γ Strength of lockdown γ = 10% for partial lockdown and γ = 90% for full lock-

down
dm|n Effective distance from n to m m,n ∈ N
Dm|NI Country distancing from NI to m

vNI Speed of arrival time when NI presents Tm = vNI ×Dm|NI + v0NI , v̄ =

∑
NI (t)∈N

′
I
vNI (t)

|T |

uNI Speed of infected cases when NI presents log(Im) = uNI ×Dm|NI + u0NI , ū =

∑
NI (t)∈N

′
I
uNI (t)

|T |
Dm|(NI(ts),F (ts)) Country distancing in geographic area m when sth travel

restriction is implemented and set of outbreak locations
NI(ts) presents

Dm|(NI(ts),F (ts)) = Dm|NI(ts) +Dm|F (ts)

Dm|F (ts) Area m’s country distancing exclusively resulting by sth

travel restriction
Dm|NI(ts) Aream’s the country distancing resulting from outbreak lo-

cations
DG|F (ts) Average country distancing resulting from by sth travel re-

striction in G
DG|F (ts) = 1

M

∑
m∈N Dm|F (ts)

D?
m|F (ts)

Area m’s increase in country distancing resulting from sth

travel restriction
D?
m|F (ts)

= Dm|F (ts) −Dm|F (ts−1)

D?
G|F (ts)

Average increase in country distancing resulting from sth

travel restriction
D?
G|F (ts)

= 1
M

∑
m∈N D

?
m|F (ts)

D4m(t) Area m’s accumulative increase in country distancing re-
sulting from travel restrictions by time t

D4m(t) =
∑

ts≤tD
?
m|F (ts)

D4G (t) Worldwide average accumulative increase of country dis-
tancing resulting from travel restrictions by time t

D4G (t) = 1
M

∑
m∈N D

4
m(t)

D5n (t) Area n’s accumulative contribution in increasing country
distancing by imposing travel restrictions by time t

D5n (t) =
∑

ns=n,ts≤tD
?
G|F (ts)

(T ?m|F (ts)
, I?m|F (ts)

) Area m’s arrival time delay (ATD) and infected case reduc-
tion (ICR) caused by sth travel restriction

see main text

(T ?G|F (ts)
, I?G|F (ts)

) Worldwide average (ATD,ICR) resulting from sth travel re-
striction

T ?G|F (ts)
=

∑
m∈N T ?

m|F (ts)

M
, I?G|F (ts)

=
∑
m∈N I?

m|Fts)
M

(T4m (t), I4m (t)) Area m’s accumulative (ATD,ICR) resulting from travel re-
strictions by time t

T4m (t) =
∑

ts≤t T
?
m|F (ts)

, I4m (t) =
∑

ts≤s I
?
m|F (ts)

(T4G (t), I4G (t)) Worldwide average accumulative (ATD,ICR)) resulting
from travel restrictions by time t

T4G (t) =
∑
m∈N T4m (t)

M
, I4G (t) =

∑
m∈N I4m (t)

M

(T5n (t), I5n (t)) Area n’s accumulative contribution of (ATD,ICR) by im-
posing travel restrictions by time t

T5n (t) =
∑

ns=n,ts<t
T ?G|F (ts)

,I5n (t) =
∑

ns=n,ts<t
I?G|F (ts)

15



Table S2: Statistics of the global airline network. The columns from left to right are, the
number of geographic areas, links, total passenger flux in the network, mean flux per link, mean
in-degree of geographic areas, mean out-degree of geographic areas.

Airline M |E| Φ[d−1] < F > [d−1] < Kin > [d−1] < Kout > [d−1]
G 228 5493 7259934 1321 48.3 45.8

Table S3: Travel restrictions implemented by Apr-4.

Travel restrictions Entry ban Global travel ban full Lockdown partial Lockdown
# of travel restrictions
(663)

476 (71.7%) 87 (13.1%) 12 (18.1%) 88 (13.2%)

# of geographic areas
imposing travel restric-
tions (249)

184 (73.8%) 87 (34.9%) 12 (4.8%) 65 (26.1%)

Table S4: Travel restrictions’ average increase in country distancing worldwide D?
G|F (ts)

. �1

represents the ten entry bans, namely, {HK-CN,US-CN,AT-CN,BE-CN,DE-CN,NL-CN,NZ-
CN,TR-CN,AU-CN,RU-CN,US-JP}. �2 represents {*CL,*KE,*AE,*NZ,*AU,*FJ,*NC}.

D?
G|F (ts)

0 (0,0.01] (0.01,0.1] ≥ 0.1

# of entry bans 333 133 10�1 0
# of global travel bans 1 79 7�2 0
# of lockdowns 3 92 2 (@ES,@ZA) 3(@Hubei,CN;

@IT;@CN)
Total 337 304 19 3
Reduced influx 32,663

(1.3%)
1,331,292
(55.8%)

609,611
(25.58%)

409,482
(17.18%)

Table S5: The average increase in average country distancing D?
G|F (ts)

, average ATD T ?G|F (ts)
,

and average ICR worldwide I?G|F (ts)
generated by three types of travel restrictions.

Travel restrictions Reduced influx D?
G|F (ts)

∑
sD

?
G|F (ts)∑
s 1

T ?G|F (ts)

∑
s T

?
G|F (ts)∑
s 1

∑
s I

?
G|F (ts)

∑
s I
?
G|F (ts)∑
s 1

entry bans 107,139 0.329 0.00069 1.53 0.0032 668.49 1.404
global travel bans 1,237,033 0.425 0.004 0.608 0.006 171.84 1.975

lockdowns 1,038,864 3.11 0.031 14.55 0.145 4188.69 41.88
Total 2,383,049 3.869 - 16.69 - 5029.03 -
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Table S6: The top ten areas with the highest ATD, and the top ten areas with the highest ICR.

code Geographic Area Name ATD code Geographic Area Name ICR
TV Tuvalu 36.65 HK Hong Kong 394,976
KP North Korea 35.39 KR South Korea 218,800
TM Turkmenistan 31.62 IT Italy 160,766
SL Sierra Leone 29.62 JP Japan 97,292
AL Albania 29.58 TW Taiwan 85,606
SV El Salvador 29.35 SG Singapore 63,278
MT Malta 29.33 US United States 42,984
LU Luxembourg 29.23 DE Germany 32,551
RO Romania 28.91 IR Iran 30,806
MD Moldova 28.87 VN Vietnam 28,304

Table S7: The top ten areas contribute the highest ATD to the world, and the top ten areas
contribute the highest ICR to the world.

code Geographic Area Name ATD code Geographic Area Name ICR
CN mainland China 2,659 CN mainland China 1,012,233
IT Italy 868 HK Hong Kong 88,526
US United States 103 IT Italy 47,004
AU Australia 51 TW Taiwan 18,931
NZ New Zealand 46 TR Turkey 14,548
NL Netherlands 428 ES Span 8,700
RU Russia 36 US United States 8,449
ZA South Africa 32 DE Germany 7,812
DE Germany 28 VN Vietnam 6,400
BE Belgium 22 BR Brazil 2,918
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D E F

A
B C

OLs: {China} OLs: {China, Japan, South Korea, Italy} OLs: {119 countries}

Figure S1: Correlation between country distancing Dm|NI and simulated arrival time Tm, and
correlation between country distancingDm|NI and simulated infected cases Im for the pandemic
COVID-19. The three columns are for when only {mainland China} is the OL, {mainland
China, Japan, South Korea, Italy} are the OLs, and 119 areas are OLs as of Apr-4.
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A

OLs: {China} OLs: {China, Japan, South Korea, Italy} OLs: {119 countries}

B C

D
E F

Figure S2: Correlation between country distancing Dm|NI and real-world arrival time Tm,
and correlation between country distancing Dm|NI and real-world infected cases Im for the
pandemic COVID-19. The three columns are for when only {mainland China} is the OL,
{mainland China, Japan, South Korea, Italy} are the OLs, and 119 areas are OLs as of Apr-4.
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A B

C D

Figure S3: R-squared values for measuring the linear correlations between country distancing
and arrival time / infected cases for the growing outbreak location set, and the corresponding
slopes of formulation describing the linear correlations. (A) R-squared values and (B) slopes
for linear correlation between country distancing and arrival time. (C) R-squared values and
(D) slopes for linear correlation between country distancing and arrival time.
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{CN,KR,JP}
OLs: 
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{CN,KR,JP,IT,...}

Feb-20 Feb-21 Apr-4Apr-3

travel retriction

Feb-26

Figure S4: Timeline of example travel restrictions.

A B

Figure S5: Increase in country distancing caused by travel restrictions. (A) Three main types
of travel restrictions (i.e., entry ban, global travel ban, and lockdown). (B) Entry bans mainly to
five areas, i.e., mainland China, Iran, Japan, Schengen Area, South Korea. D?

ns|F (ts)
represents

the increase in country distancing in area ns, which impose sth travel restriction. D?
G|F (ts)

represents the average increase in country distancing for the world. The travel restrictions
whose D?

ns|F (ts)
= 0 are not displayed here.
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A B C

D E F

Figure S6: The arrival time delay (ATD) and infected case reduction (ICR) caused by travel
restrictions. (A)(B)(C) The three-dimensional plots visualized the imposed time, average ATD
(T ?G|F (ts)

) for the world [distribution in (B)] and the ATD (T ?ns|F (ts)
) for area ns [distribution in

(C)], who imposed sth travel restriction. (D)(E)(F) The three-dimensional plots visualized the
imposed time, average ICR (T ?G|F (ts)

) for the world [distribution in (E)] and the ICR (T ?ns|F (ts)
)

for area ns [distribution in (F)].

22



A  Arrival time delay (days)
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B  Infected case reuction (counts)

Feb-4 Mar-4 Apr-4

Figure S7: Areas’ gain of arrival time delay (A) and infected case reduction (B).
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A   Arrival Time Delay (ATD) B  Infected Case Reduction (ICR)

Figure S8: The arrival time delay (ATD) and infected case reduction (ICR) contribution of
geographic areas (except for mainland China) to different continents till Apr-4. (A) ATD. (B)
ICR. The flow from the left to the right implies the ATD and ICR to the right continents from
the left areas’ travel restrictions.
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A   Arrival Time Delay (ATD) B  Infected Case Reduction (ICR)

Figure S9: The arrival time delay (ATD) and infected case reduction (ICR) contribution between
continents till Apr-4.
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C D

@CN

@Hubei

US-CN

NC-CN

@IT @IT

OLs: {China}

OLs: {China, Japan, 
South Korea, Italy}

=0.5 =0.75

@CN

@Hubei

US-CN

NC-CN

Figure S10: Non-dominated solutions with NSGA-II of the optimized travel restrictions which
comprise different size (K = 20, 40, 60, 100) of entry bans when (A) OLs is {mainland China},
and α= 0.5; (B) OLs is {mainland China} and α= 0.9; (C) Multiple OLs is { mainland China,
South Korea, Japan, Italy} and α= 0.5; (D) Multiple OLs is { mainland China, South Korea,
Japan, Italy} and α= 0.9.
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A B

C D

OLs: {China}

OLs: {China, Japan, 
South Korea, Italy}

=0.5 =0.75

Figure S11: Correlation between the number of entry bans targeting OLs and the effectiveness
of optimized travel restrictions which comprise different size (K = 20, 40, 60, 80, 100) of entry
bans when (A) OLs is {mainland China}, and α= 0.5; (B) OLs is {mainland China} and α=
0.9; (C) Multiple OLs is {mainland China, South Korea, Japan, Italy} and α= 0.5; (D) Multiple
OLs is { mainland China, South Korea, Japan, Italy} and α= 0.9.
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