
A Supplementary Material

Supplementary material for Simulating drug e�ects on blood glucose laboratory test time series with a
conditional WGAN by Alexandre Yahi and Nicholas P. Tatone�i.

A.1 Background: Generative Adversarial Networks (GANs)

GANs are an implicit density estimation framework proposed by Goodfellow et al. in 2014 [9]. Implicit
generative models are de�ned as ”a stochastic mechanism whereby the data are generated” [7]. �ey take
as an input a latent variable z and map it using a deterministic function Gθ de�ned on Rm → Rd using
parameters θ. In their original formulation, GANs consist of a generator network G that maps random
latent variables to synthetic samples in order to fool a discriminator network D that classi�es real and
synthetic samples. D and G play a two-player minmax game with the following value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

However this framework has known numerous improvements and variations over the past �ve years, to
make up for the initial instabilities of the so-called ”Vanilla GAN” known to have an arduous training, with
several papers trying to address the issues by suggesting training techniques for GANs[18] or a�empts at
principled approaches [2]. �e f -GAN by Nowozin et al. [16] demonstrated that Goodfellow’s formulation
with a Jensen-Shannon divergence was a special case of a broader and more general variational divergence
estimation approach. Given two distributions P and Q that possess, respectively, an absolutely continuous
density function p and q with respect to a base measure dx de�ned on the domain X , an f -divergence is
de�ned by:

Df (P ||Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dx

where the generator function f : R+ → R is a convex, lower-semicontinuous function satisfying
f(1) = 0. f -divergences include Kullback-Leibler, Reverse KL, Pearson χ2, Squared Hellinger and Jensen-
Shannon.

Yet, it’s another family of distance measures that has showed signi�cant improvements in GAN training
stability: integral probability metrics (IPMs)[15]. Given F a set of functions from X to R, we can de�ne:

dF (Pr,Pθ) = sup
f∈F

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

as an integral probability metric associated with the function class F . Depending on this function class,
the expression of that distance measure can vary widely. �e intuition being IPMs is that they measure
the distance between probability measures via the largest discrepancy in expectation over a class of ”well
behaved” witness functions.

�e Wasserstein GAN [3] was the �rst GAN model proposed with such an IPM, using the Wasserstein-1
or Earth Mover (EM) distance:

W (Pr,Pg) = inf
γ∈Π(Pr,Pg

E(x,y)∼γ [||x− y||]

�at can be translated using the Kantorovich-Rubinstein duality [19] into:

WF (Pr,Pθ) = sup
||f ||L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

where f is the family of 1-Lipschitz functions f : X → R. Having it be the family of K-Lipschitz function
does not ma�er because it would just multiply WF (Pr,Pθ) by K .

1

Enforcing this constraint in the GAN training is the hardest part, and the authors resolved to clamping
the weights of the neural network within a �xed box (e.g.,W = [−0.01, 0.01]l) a�er each gradient update.
In their formulation, the discriminator becomes the critic that learns a witness function used to approximate
the Wasserstein-1 distance between synthetic and real samples.

However, the way the WGAN enforced the K-Lipschitz requirements, using weight clipping, seemed to
still cause issues in the training process and the quality of the outputs. In response to these issues, Gulrajani
et al. [10] proposed a gradient penalty GAN, or WGAN-GP, showing the issues with weight clipping and
how a penalization of the norm of the critic gradient with respect to its input addressed more e�ciently
the Lipschitz requirement.

Formally, the WGAN-GP de�nes a new objective function:

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]︸ ︷︷ ︸
Original WGAN loss

+λ E
x∼Px̃

[(||∇x̃D(x̃)||2 − 1)2]︸ ︷︷ ︸
WGAN-GP gradient penalty

Where Px̃ is de�ned by sampling uniformly along straight lines between pairs of points sampled
from the data distribution Pr and the generator distribution Pg , motivation by the fact that the authors
demonstrated the optimal critic contains straight lines with gradient norm 1 connecting coupled points
from Pr and Pg .

More recently, variation of the WGAN-GP was proposed, using a Lipschitz penalty that consists of
taking the maximum of the gradient penalty or zero, forcing it to be positive or null. [17]

In healthcare, there is only a handful of GAN applications to date, ranging from discrete categorical
variables generation with medGAN [6], and its improved version using a WGAN [4], to natural language
generation for EHR notes [14]. Two studies modeled time series, but in the context of ICU patients who are
highly monitored, yielding high frequency regularly sampled time series about the patients states and their
medication dosages. Esteban et al. [8] developed a recurrent conditional GAN (RCGAN) using an LSTM
architecture and working with a type of time series very di�erent from laboratory tests time series: oxygen
saturation measured by pulse oximeter (SpO2), heart rate (HR), respiratory rate (RR) and mean arterial
pressure (MAP) from the Philips eICU database [1]. Recently, Wang et al.[20] proposed a coupled GAN
(SC-GAN) with two generators that can simulate a patient state time series (e.g., vitals, highly sampled
blood measurements) along with the dosage of a speci�c medication, over windows of 4 hours and using
k-nearest neighbors imputation when values were missing, and training with MIMIC-III ICU data [12].
None of these models focused on irregularly sampled laboratory tests with a focus on simulate drug e�ects
conditionally. To this end, we believe we propose in this paper the �rst conditional GAN that models drug
e�ects on irregular laboratory test time series.

A.2 Forecasting task

We developed forecasting models to evaluate di�erent data representations and neural network architectures.
�ese forecasting models are used in the main experiments for the ”train on synthetic test on real” (TSTR)
evaluation tasks of the generative adversarial networks (GANs), and in the applications with inference and
data augmentation.

For each time series of 10 values, the �rst nine values where used as features, and the last value was
used as the target of the regression. We randomly split each dataset between a training set (90%) and a
testing set (10%). We kept for each dataset a consistent split between analogous experiments: the regular
time series regression study has the same train/test split as the generative adversarial networks (GANs)
experiment on regular time series, and the irregular time series dataset are the same between the regression
and the conditional GAN models for consistency between experiments.

2

�e data were pre-processed by truncating at the 1 and 99 percentiles for quality control to get rid of
extreme or spurious values, and then scaled between 0 and 1. Time series with measurements that did not
respect these criteria were removed entirely.

For every model, we tuned the hyperparameters with cross-validation on the training set: for machine
learning models we used a 10-fold cross validation where a 10% random validation set is taken from the
training set to choose the best performing hyperparameters. �e deep learning models experimental
pipeline is described in details in the next section. Once the hyperparameters of a model are set, the model
is trained on the complete training set, and evaluated once on the testing set.

All the regression models rely on a mean square error loss function as preliminary studies showed that
it was the best objective loss with regard to testing evaluation metrics.

�e main evaluation metrics of this forecasting tasks were the MSE and the mean absolute loss (MAE).
While the former emphasizes the larger errors, the la�er provides a be�er idea of the error in real units of
the measurement.

MSE =
1

n

n∑
i=1

(y − ŷ)2

MAE =
1

n

n∑
i=1

|y − ŷ|

where y is the true value and ŷ is the predicted value.

A.2.1 Regular time series: Models

Baseline and machine learning models O�en, deep learning models are evaluated relatively to one
another without baseline. A number of misconceptions have resulted from these approaches that omit
to compare advanced models with naive approaches and classic machine learning algorithms. For these
forecasting experiments, we set the naive baseline to be a ”repeat” prediction: this heuristic predicts the
next value to be identical to the last value of the time series used for training.

We then selected two popular machine learning algorithms: linear regression, and random forest
regression [5]. While the former is considered to be the simplest approach, generalized linear models
(GLMs) have proven to be hard to beat in numerous prediction problems. Random forest regression
illustrates in comparison the performances of an ensemble methods relying on bagging (i.e., bootstrap
aggregation) built on the decision tree algorithm.

Deep learning models �e �rst deep learning model to be evaluated was the multi-layer perceptron
(MLP), a fully connected neural network that sets the baseline for deep models. �e architecture was
selected as follow:

• First layer:

– Fully-connected layer (I,N)

– Batchnorm
– Leaky ReLU activation

• Middle layers (optional):

– Fully-connected layer (N,N)

– Batchnorm

3

– Leaky ReLU activation

• Last layer

– Fully-connected layer (N,N)

– Batchnorm
– Leaky ReLU activation
– Dropout
– Fully-connected layer (N, 1)

Where N is the width of the network, and I is the size of the input. For simplicity of tuning, the
network width was constant once set for all layers except for the input and output layers that follow the
structure given above (Figure 1).

… … …

Figure 1: Multi-layer peceptron with time series input. Hidden layers are in grey, and the output of the
forecasting model is in blue. Every hidden layer has a Batchnorm layer, and leaky ReLU activation function,
and the last hidden layers contains a dropout mechanism.

Due to the sequential nature of the input, I compared MLP to long short-term memory (LSTM) cells.
�e LSTM architecture [11] is a type of RNN that models both short and long term dependencies in data.

LSTM tries to solve the vanishing gradient problem by not imposing any bias towards recent observations,
but it keeps constant error �owing back through time.

�e LSTM regressor I evaluated had the following general structure: an LSTM network, followed by a
fully connected layers with BatchNorm, Leaky ReLU activation and Dropout, and a fully connected layer
without activation that computes the prediction, similar to the last layer of the MLP model (Figure 2).

We evaluated di�erent models of LSTMs where the hidden vector ht was used either completely or at
the last time step, where dropout between stacked layers was authorized or not, and where the size of the
fully connected layer following the LSTM network varied 1.

�e last deep learning model evaluated was the convolutional neural networks (CNN), pioneered by
Yann LeCun in 1990 [13]. It consisted of two parallel CNNs with the following structure:

• CNN 1:

– Conv1d: kernel size=2, padding=0
– BatchNorm(scaleCoe�cient)
– ReLU

4

……LSTM
cell

LSTM
cell …

… LSTM
cell

Figure 2: Long Short Term Memory (LSTM) architecture, where the LSTM cells are followed by a fully
connected layer with Batchnorm, leaky ReLU and dropout.

Dropout in LSTM* Hidden vector ht used Size fully connected layer (vs. hidden size)

Model 1 Yes Last 1x
Model 2 Yes Last 2x
Model 3 Yes All 1x
Model 4 Yes All 2x
Model 5 No Last 1x
Model 6 No All 1x

Table 1: Di�erent types of LSTM architectures evaluated. *No dropout in single layer LSTMs.

– MaxPool
– Conv1d: kernel size=2, padding=1
– BatchNorm (2 x scaleCoe�cient)

• CNN 2:

– Conv1d: kernel size=3, padding=0
– BatchNorm (scaleCoe�cient)
– ReLU
– MaxPool
– Conv1d: kernel size=3, padding=1
– BatchNorm (2 x scaleCoe�cient)

�e outputs of these two parallel CNNs were then concatenated and passed into a fully connected layer
stack similar to the last part of the MLP:

• Fully-connected layer(N,N)

• Batchnorm

• Leaky ReLU activation

• Dropout

5

• Fully-connected layer(N, 1)

Where N is the size of the concatenated vector from the two parallel CNNs (Figure 3).

……

Figure 3: Convolutional Neural Networks (CNNs), where two CNNs with di�erent �lter sizes, two and
three, have their outputs concatenated and fed into a fully connected layer with Batchnorm, leaky ReLU
and dropout.

A.2.2 Irregular time series: Models

While regular time series were useful to get a baseline free of time interval variability by controlling
sampling rate, laboratory test time series are usually not regular as patients do not get measurements every
single day during their hospitalization. �e frequencies vary between patients, and depend on the di�erent
stages of care. �erefore it seems important to evaluate models that can deal with these irregular time
series. Another important aspect of these time series is their context, in the form of all the other types of
clinical events that occur during their time span, such as diagnoses, procedures, or drug exposures. To this
end, the previously introduced models were adapted to add two types of auxiliary data: time intervals and
binary drug exposures.

Time interval data were obtained by indexing measurements in days elapsed since the beginning of the
visit during which they were performed. I then computed the intervals in days between two measurements
as ∆(n) = t(n)− t(n− 1) where t(n) is the day index of the measurement n and t(0) = −1. �e heatmap
of average time intervals per time series for irregualar glucose lab measurements is available in �gure 4.

Drug exposures were represented by a binary vector that indicates if the patient was exposed to the
given drug concept during any of the days where the �rst nine measurements (i.e., the measurements used
to train models) were performed.

Classic machine learning models and MLP integrated these auxiliary data by concatenating them to the
measurement features, directly at the input of the models. LSTM and CNN followed a di�erent approach.
Time intervals were added as a second channel of features for LSTM and CNN, as they are associated to
measurements in a pair-wise fashion. �erefore the input in these cases went from 1x9 to 2x9. Binary drug
exposure information are not speci�cally associated to a given measurement, therefore these data were
concatenated at the output of the CNN module, and LSTM module respectively, at the input of the �nal
stack of fully connected layers.

A.2.3 Regular time series: forecasting results

We compared the forecasting performances of the machine learning and deep learning models to the
repeated measure baseline that assumes that the 10th value is identical to the 9th. While this baseline
resulted in a 1502.62 MSE (25.15 MAE), machine learning models outperformed it with performances about

6

1 23 45 67 89
Time series standard deviation

30
1

25
0

19
9

14
8

97
Ti

m
e

se
ri

es
 m

ea
n

1.0

1.2

1.4

1.6

1.8

2.0

Figure 4: Time intervals heatmap of regular glucose lab measurements time series represented by their
standard deviations and mean.

30% be�er. Linear regression was the best machine learning methods with an MSE of 1058.43. Among deep
learning models, LSTM was on average worse than linear regression, and at best performed the same. �e
MLP model had the best average MSE, lower than the linear regression error by 3 points, and performing
as well as 7 points lower than linear regression. Finally, CNNs displayed MSEs that on average were very
similar to MLP, with a best performance about 1 point be�er than MSE due to a larger variance (Table 2).
�e heatmap of the regression MSE are illustrated in �gure 5.

�e best MLP model for regular glucose time series had the following hyperparameters (Figure 6):

• Batch size: 64

• Dropout: 0.5

• Dimensions: 2 layers of width 64

Model best MSE best MAE avg. MSE (±SD) avg. MAE (±SD)

Repeated (baseline) 1502.62 25.15 – –
Linear regression 1058.43 21.99 – –
Random Forest Regression 1083.69 22.45 – –
MLP 1051.11 21.85 1055.10 (± 3.328) 21.97 (± 0.069)
LSTM 1058.51 21.84 1065.92 (± 5.928) 22.17 (± 0.258)
CNN 1049.93 21.93 1055.63 (± 5.625) 22.04 (± 0.106)

Table 2: Evaluation of the forecasting model with regular time series for blood glucose (2345-7)

7

Model best MSE best MAE avg. MSE (±SD) avg. MAE (±SD)

Repeated (baseline) 1461.90 25.14 – –
Linear regression 1064.70 22.22 – –
Random Forest Regression 1084.54 22.59 – –
MLP-reg 1053.20 22.06 1056.34 (± 2.795) 22.15 (± 0.077)
MLP 1058.06 22.06 1066.46 (± 7.683) 22.30 (± 0.134)
LSTM 1067.45 22.10 1069.53 (± 2.214) 22.33 (± 0.149)
CNN 1049.49 21.91 1054.58 (± 2.838) 22.09 (± 0.106)

Table 3: Evaluation of the forecasting model with irregular time series for blood glucose (2345-7) with time
intervals.

• Leaky ReLU coe�cient: 1e-3

• Learning rate: 5e-5

• Weight decay: 1e-4

• Adam coe�cients: 0.0; 0.999

• Epochs: 90

A.2.4 Irregular time series with time interval: Forecasting results

Integrating time intervals to the data representation yielded unexpected results. Machine learning and deep
learning models still outperformed the baseline. With blood glucose, all deep learning models had lower
best MSE except for LSTM, and MLP and LSTM had an average MSE of 1066.46 (± 7.683) and 1069.53 (±
2.214) respectively, higher than linear regression at 1064.70 of MSE (Table 3). Interestingly, when running
the best MLP selected for regular time series on the irregular time series, without time interval features,
called MLP-reg in the tables below, I obtained lower MSE than the MLP using time intervals for blood
glucose (MSE: 1053.20 vs. 1058.06) and urea nitrogen (MSE: 32.14 vs. 33.66). For irregular hematocrit time
series, selected for the low dispersion, the best performing model overall was MLP with time intervals
(MSE: 5.71) with a large variance between runs (avg. MSE: 5.81 (± 0.084)).

When put in perspective with the regular time series without time intervals, there is a general increase
in forecasting error by adding the time interval information. Finally, the best model for irregular blood
glucose time series was the CNN model with a best performance at an MSE of 1049.49.

As a consequence, we decided not to include time intervals in the generative adversarial models
developed to generate laboratory test time series.

A.2.5 Irregular time series with drug exposure information: forecasting results

Multi-layer perceptron (MLP) In this study, we re-used the 10 best models from the regular time series
experiments:

• Batch size: 128

• Dropout: 0.25

• Dimensions: 2 layers of width 64

8

• Leaky ReLU coe�cient: 1e-2

• Learning rate: 5e-5

• Weight decay: 1e-3

• Adam coe�cients: 0.9; 0.999

• Epochs: 100

Overall, adding drug exposure representations resulted in lower MSE than using only irregularly sampled
measurements. While time intervals were harming the performances, binary drug exposure improves them
for all the models tested. On average, MLP were the best models for every drug representation. Adding
drug exposures to the binary vector, from 5 to 10, did not improve the models except for ATC-5 (1039.97
vs. 1040.90 for best MSE) but each model was well within each other’s standard deviation. �e best drug
representation was ATC-3 with 5 drug concepts, illustrated with its MSE heatmap for 5 and 10 drugs in
�gure 8. �e worse drug representation on average was surprisingly RxNorm with 10 drugs (Figure 11),
while ATC-4 with 10 drugs (Figure 9)and ATC-5 with 5 drugs ((Figure 10)) were the worse models in terms
of best possible performance (1045.55 vs. 1045.45 respectively). It is important to note that these models
were however be�er than the MLP with time interval features (1058.06 MSE).

A.2.6 Conclusions

�is annex study was designed to understand how deep learning can be applied to the data we wanted to
model, what were the data representation that carry the most information as evaluated by the forecasting
task, and what are the architectures that perform the best with these data representation. We demonstrated
that MLP in the speci�c context of laboratory test measurements collected at the visit scale was the most
robust model in terms of capacity versus generalizibility trade-o�. Time intervals do not add information
and therefore will not be used in the generative models as auxiliary information. �e validation laboratory
tests presented similar results as blood glucose which strengthen the validity of these conclusion.

On a more general note, when it comes to forecasting laboratory test time series with machine learning,
classic machine learning provides performances close to deep learning models results, for a fraction of the
time and complexity, but deep learning does make a be�er use of multi-modal features.

References

[1] eicu collaborative research database. june 2018. URL https://eicu-crd.mit.edu/.

[2] Martin Arjovsky and Léon Bo�ou. Towards Principled Methods for Training Generative Adversarial
Networks. arXiv.org, January 2017. URL http://arxiv.org/abs/1701.04862v1.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bo�ou. Wasserstein GAN. arXiv.org, January 2017. URL
http://arxiv.org/abs/1701.07875v3.

[4] Mrinal Kanti Baowaly, Chia-Ching Lin, Chao-Lin Liu, and Kuan-Ta Chen. Synthesizing electronic
health records using improved generative adversarial networks. Journal of the American Medical
Informatics Association, 26(3):228–241, 2018.

[5] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

9

https://eicu-crd.mit.edu/
http://arxiv.org/abs/1701.04862v1
http://arxiv.org/abs/1701.07875v3

[6] Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F Stewart, and Jimeng Sun. Generating
Multi-label Discrete Patient Records using Generative Adversarial Networks. arXiv.org, March 2017.
URL http://arxiv.org/abs/1703.06490v2.

[7] P J Diggle and Richard J. Gra�on. Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, 46:193–227, 1984. URL http://www.jstor.org/
stable/2345504.

[8] Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (Medical) Time Series
Generation with Recurrent Conditional GANs. arXiv.org, June 2017. URL http://arxiv.org/
abs/1706.02633v1.

[9] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. arXiv.org, June 2014. URL
http://arxiv.org/abs/1406.2661v1.

[10] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved
Training of Wasserstein GANs. arXiv.org, March 2017. URL http://arxiv.org/abs/1704.
00028v3.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 1997. URL
https://dblp.org/rec/journals/neco/HochreiterS97.

[12] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a freely accessible
critical care database. Scienti�c data, 3:160035, 2016.

[13] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne E
Hubbard, and Lawrence D Jackel. Handwri�en digit recognition with a back-propagation network. In
Advances in neural information processing systems, pages 396–404, 1990.

[14] Sco� H Lee. Natural language generation for electronic health records. NPJ digital medicine, 1(1):63,
2018.

[15] Alfred Müller. Integral probability metrics and their generating classes of functions. Advances in
Applied Probability, 29(2):429–443, 1997.

[16] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training generative neural
samplers using variational divergence minimization. In Advances in Neural Information Pro-
cessing Systems, pages 271–279. Microso� Research, Redmond, United States, January 2016.
URL https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&
scp=85018914753&origin=inward.

[17] Henning Petzka, Asja Fischer, and Denis Lukovnicov. On the regularization of wasserstein gans. arXiv
preprint arXiv:1709.08894, 2017.

[18] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training GANs. In Advances in Neural Information Processing Systems, pages 2234–2242,
January 2016. URL https://www.scopus.com/inward/record.uri?partnerID=
HzOxMe3b&scp=85018875486&origin=inward.

[19] Cédric Villani. Optimal Transport, 2009. doi: 10.1007/978-3-540-71050-9.

10

http://arxiv.org/abs/1703.06490v2
http://www.jstor.org/stable/2345504
http://www.jstor.org/stable/2345504
http://arxiv.org/abs/1706.02633v1
http://arxiv.org/abs/1706.02633v1
http://arxiv.org/abs/1406.2661v1
http://arxiv.org/abs/1704.00028v3
http://arxiv.org/abs/1704.00028v3
https://dblp.org/rec/journals/neco/HochreiterS97
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85018914753&origin=inward
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85018914753&origin=inward
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85018875486&origin=inward
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85018875486&origin=inward

[20] Lu Wang, Wei Zhang, and Xiaofeng He. Continuous patient-centric sequence generation via sequen-
tially coupled adversarial learning. In International Conference on Database Systems for Advanced
Applications, pages 36–52. Springer, 2019.

11

repeat - training error repeat - testing error

linReg - training error linReg - testing error

RFR - training error RFR - testing error

MLP - training error MLP - testing error

LSTM - training error LSTM - testing error

CNN - training error CNN - testing error

Figure 5: Heatmap of the average training and testing MSE between forecasting models on regular glucose
lab time series.

12

0 20 40 60 80 100
epoch

0.010

0.011

0.012

0.013

0.014

0.015

M
SE

 lo
ss

es

training loss
validation loss

MLP - regular time series - best model

Figure 6: Best MLP model for regular glucose lab time series during tuning.

13

repeat - training error repeat - testing error

linReg - training error linReg - testing error

RFR - training error RFR - testing error

MLP - training error MLP - testing error

MLP - training error MLP - testing error

LSTM - training error LSTM - testing error

Figure 7: Heatmap of the average training and testing MSE between forecasting models on irregular
glucose lab time series with time intervals.

14

drug
representation

of drug
features Model best MSE avg. MSE (±SD)

ATC-3

5

Repeated (baseline) 1463.61 –
Linear regression 1051.82 –
Random Forest Regression 1080.76 –
MLP 1039.97 1044.48 (± 2.963)

10

Repeated (baseline) 1463.61 –
Linear regression 1051.79 –
Random Forest Regression 1075.55 –
MLP 1040.90 1046.98 (± 4.125)

ATC-4

5

Repeated (baseline) 1463.61 –
Linear regression 1055.27 –
Random Forest Regression 1080.15 –
MLP 1044.10 1046.63(± 1.949)

10

Repeated (baseline) 1463.61 –
Linear regression 1052.64 –
Random Forest Regression 1072.78 –
MLP 1045.55 1047.71 (± 2.363)

ATC-5

5

Repeated (baseline) 1463.61 –
Linear regression 1057.28 –
Random Forest Regression 1080.88 –
MLP 1045.45 1048.78 (± 2.884)

10

Repeated (baseline) 1463.61 –
Linear regression 1054.62 –
Random Forest Regression 1073.09 –
MLP 1042.86 1047.87 (± 3.141)

RxNorm

5

Repeated (baseline) 1463.61 –
Linear regression 1056.04 –
Random Forest Regression 1080.90 –
MLP 1042.71 1046.74 (± 2.065)

10

Repeated (baseline) 1463.61 –
Linear regression 1054.40 –
Random Forest Regression 1073.87 –
MLP 1044.30 (1050.93 ± 4.956)

Table 4: MSE on test set of irregularly sampled blood glucose (2345-7) for di�erent drug representations
and numbers of features

15

repeat - training error repeat - testing error

linReg - training error linReg - testing error

RFR - training error RFR - testing error

MLP - training error MLP - testing error

(a) ATC-3 with 5 drugs

repeat - training error repeat - testing error

linReg - training error linReg - testing error

RFR - training error RFR - testing error

MLP - training error MLP - testing error

(b) ATC-3 with 10 drugs

Figure 8: Heatmap of MSE errors by model for glucose lab irregular time series with ATC-3 exposure
representation with 5 and 10 drugs.

16

repeat - training error repeat - testing error

linReg - training error linReg - testing error

RFR - training error RFR - testing error

MLP - training error MLP - testing error

(a) ATC-4 with 5 drugs.

repeat - training error repeat - testing error

linReg - training error linReg - testing error

RFR - training error RFR - testing error

MLP - training error MLP - testing error

(b) ATC-4 with 10 drugs

Figure 9: Heatmap of MSE errors by model for glucose lab irregular time series with ATC-4 exposure
representation with 5 and 10 drugs.

17

repeat - training error repeat - testing error

linReg - training error linReg - testing error

RFR - training error RFR - testing error

MLP - training error MLP - testing error

(a) ATC-5 with 5 drugs

repeat - training error repeat - testing error

linReg - training error linReg - testing error

RFR - training error RFR - testing error

MLP - training error MLP - testing error

(b) ATC-5 with 10 drugs

Figure 10: Heatmap of MSE errors by model for glucose lab irregular time series with ATC-5 exposure
representation with 5 and 10 drugs.

18

repeat - training error repeat - testing error

linReg - training error linReg - testing error

RFR - training error RFR - testing error

MLP - training error MLP - testing error

(a) RxNorm with 5 drugs

repeat - training error repeat - testing error

linReg - training error linReg - testing error

RFR - training error RFR - testing error

MLP - training error MLP - testing error

(b) RxNorm with 10 drugs

Figure 11: Heatmap of MSE errors by model for glucose lab irregular time series with RxNorm exposure
representation with 5 and 10 drugs.

19

	Supplementary Material
	Background: Generative Adversarial Networks (GANs)
	Forecasting task
	Regular time series: Models
	Irregular time series: Models
	Regular time series: forecasting results
	Irregular time series with time interval: Forecasting results
	Irregular time series with drug exposure information: forecasting results
	Conclusions

