
Appendix

Population Characteristics

Tables 1 and 2 summarize the clinical features of each derivation and validation cohort, respectively. We
observe differing rates of comorbidities in the populations: our identification of comorbidities was limited
by how they were captured in an admission’s diagnosis list. Chronic conditions that did not appear in
the diagnosis list are considered to not be present in the patient, which could lead to under-reporting of
comorbidities. While this is a limitation, these features are not significant in the model on their own and
thus do not greatly affect the model predictions. As we expand our models to incorporate richer medical
history and treatment information, we will revisit this topic.

Missing Data Imputation

Missing values were encountered in the majority of the included risk factors since the electronic health records
of many patients were not complete. Employing imputation techniques instead of complete case analysis
allows the inclusion of a wider set of features which otherwise would have been omitted by the model. The
k-Nearest Neighbors algorithm [1] is a machine learning technique that can be applied to both supervised and
unsupervised learning problems. In the missing data imputation setting, given a missing value for a patient,
the algorithm searches for k observations in the population that are nearest in feature space, where k = 5 in
our analysis. The observation is then imputed to the average of the values of its neighbors belong. Though
the k-NN algorithm is a simple technique, it often has powerful empirical performance. Its simplicity is also
an advantage in terms of interpretability – one can assess the imputed value of a certain point by looking at
its neighbors and in which features they are most similar. The training set was imputed independently of
the testing set to avoid any bias in the resulting data.

The XGBoost Algorithm

The XGBoost algorithm is one of the most popular ensemble methods for binary classification in the machine
learning field [2]. It is based on a large number of trees that are built in an iterative fashion. Later trees
are constructed based on the errors that existed in earlier trees, giving the model more power to handle
“harder” cases. This error correction ability often gives XGBoost a performance edge over other linear or
tree-based methods. There is multitude of hyperparameters that need to be tuned for this algorithm. Three
of them are particularly important: number of trees, depth of trees and learning rate. In this study, we tune
the parameters: learning rate, γ, λ, α, minimum child weight, maximum tree depth, number of estimators.
The learning rate, also called shrinkage factor or η, controls the weighting factor for corrections by new
trees added in the model: it takes values between 0 and 1, with values closer to 1 having more corrections
for each tree and higher risk of overfitting on the training data. Gamma (γ) is a regularization parameter
controlling the minimum loss reduction required to make a further partition on a leaf node of a tree: it takes
positive values, with larger ones defining a more conservative model. Lambda (λ) is the L2 regularization
parameter on the feature weights: it takes positive values, with the larger ones encouraging smaller weights,
thus making the model more conservative. Alpha (α) is the L1 regularization parameter on the feature
weights: it takes positive values, with the larger ones driving to 0 the weights, defining a more conservative
model. Minimum child weight is the minimum Hessian weight required to create a new node, with a role
similar to that of γ, i.e. regularization at the splitting step: it takes positive values, with higher values
making the model more conservative. The maximum depth of a tree controls the maximum number of nodes
that can exist between the root node and the farthest leaf in the tree: it is a positive integer, and large
values usually lead to overfitting on the training data. The number of estimators determines the number of
trees to fit in the model: it is a positive integer, and large values usually lead to overfitting on the training
data. All remaining parameters are set to their default values.

Methods Comparison

A comparison of three different machine learning methods is presented in eTable 3. In all cases, we formulate
a binary classification problem to predict mortality (1) or discharge (0) as the endpoint of a patient’s

1



hospitalization. Predictive models are trained using XGBoost, Logistic Regression, and Classification And
Regression Trees (CART); all methods are implemented in Scikit-learn [3]. Logistic Regression assumes an
additive relationship between risk factors, whereas CART and XGBoost are able to capture non-linearities
and feature interactions. While CART forms a single decision tree, XGBoost is an ensemble method: it
constructs a set of decision trees which are then combined to yield a single prediction for a given patient.

The AUC and various threshold-based metrics are reported in eTable 1. For each method, we select the
threshold that yields a sensitivity of at least 80% to reflect the priority of correctly identifying mortality.
Of the three methods, XGBoost is able to capture the most sophisticated interactions between features and
subsequently demonstrates the strongest performance. Logistic Regression reports a strong test set AUC
but indicates a loss in specificity and precision for the chosen thresholds. CART has the highest negative
predictive value but is outperformed by both other models on all other metrics.

Parameter tuning

In this project, we leverage the hyperparameter optimization framework Optuna [4] as follows. We first
identify the corresponding parameter spaces for the Scikit-Learn implementations of XGBoost, Logistic
Regression and CART [3]. Second, we define the objective function as the 300-folds cross validation area
under the curve (AUC). Finally, we employ a pipeline to maximize the objective over 500 maximum iterations
on multiple cores.

SHAP Methodology

SHapley Additive exPlanations (SHAP) are useful tools to interpret model predictions and risk drivers [5, 6].
The SHAP methodology explains a patient risk prediction (normalized between 0 and 1) by computing the
contribution of each feature. This is obtained by approximating the nonlinear XGBoost prediction model
as a linear model around the patient prediction. The coefficients of the linear approximation are estimated
by introducing every feature one at a time and comparing the model output variations. We use the SHAP
Python package [6], featuring an efficient algorithm to compute the SHAP values and the plot generation
functions, to interpret the outcomes of XGBoost model in Figure 1.

eTables

eTable 1: Descriptive summary of derivation population broken down by study site.

eTable 2: Descriptive summary of validation population broken down by study site.

eTable 3: AUC performance and threshold-based metrics for different machine learning methods, evaluated
on the test set from the derivation cohort.

eTable 4: Overview of participating institutions in the The Hellenic COVID-19 Study Group.

eFigure 1: Receiver operator curves (ROC) evaluating the model’s performance on the testing set for
patient subgroups.
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eTable 1: Descriptive summary of derivation population broken down by study site.

Cremona (N = 1441) HM Hospitals (N = 1390) Hartford Affiliates (N = 231)

Median (IQR) Missing % Median (IQR) Missing % Median (IQR) Missing %

Age 70.0 (58.0-80.0) 1.60% 67.0 (56.0-78.0) 1.60% 68.0 (55.5-79.0) 1.70%
Female ∗ 558.0 (38.7%) 0.00% 537.0 (38.6%) 0.00% 112.0 (48.5%) 0.00%

Heart Rate (bpm) 89.0 (79.1-100.0) 11.00% 90.0 (80.0-102.0) 8.80% 99.0 (88.0-110.0) 4.80%
Oxygen Saturation (%) 93.9 (90.2-96.0) 36.80% 94.0 (92.0-96.0) 10.60% 93.0 (89.0-95.0) 4.80%
Temperature (°C) 37.2 (36.6-37.9) 3.30% 36.6 (36.2-37.2) 9.50% 37.8 (37.0-38.6) 1.30%

ALT (U/L) 26.0 (17.0-43.0) 4.90% 27.8 (17.2-44.7) 19.60% 25.0 (16.0-41.0) 15.20%
AST (U/L) 37.0 (26.0-56.0) 10.10% 34.7 (25.0-52.9) 18.70% 34.0 (24.0-51.8) 17.70%
Blood Glucose (mg/dL) 119.0 (106.0-144.0) 6.20% 116.0 (104.0-137.5) 10.60% 122.0 (102.0-159.5) 5.20%
BUN (mg/dL) 18.0 (14.0-29.0) 7.80% 15.5 (12.0-22.3) 11.10% 19.0 (12.0-31.0) 6.10%
CRP (mg/L) 76.3 (28.5-158.6) 3.70% 70.9 (29.0-132.5) 6.80% 77.3 (30.4-124.0) 46.80%
Creatinine (mg/dL) 1.0 (0.8-1.3) 4.10% 0.9 (0.7-1.1) 5.70% 1.0 (0.8-1.4) 6.50%
Hemoglobin (U/g) 13.5 (12.4-14.7) 22.30% 14.2 (13.1-15.2) 1.90% 12.6 (11.2-13.9) 3.90%
MCV (µm3) 87.3 (84.6-90.5) 23.60% 88.2 (85.5-91.4) 1.30% 90.0 (86.0-94.0) 6.50%
Platelets (103/µL) 198.0 (154.0-261.5) 22.90% 204.5 (159.0-259.2) 2.40% 204.0 (162.5-250.0) 6.90%
Potassium (mEq/L) 3.9 (3.6-4.3) 9.60% 4.2 (3.9-4.6) 6.50% 4.0 (3.7-4.4) 6.50%
Prothrombin Time (INR) 1.0 (1.0-1.1) 22.30% 1.2 (1.1-1.3) 29.60% 1.1 (1.1-1.4) 67.50%
Sodium (mEq/L) 138.0 (136.0-140.0) 4.20% 136.6 (134.6-139.0) 8.30% 136.0 (134.0-140.0) 4.30%
WBC (/µL) 6900 (5300-9400) 22.80% 6600 (5100-8900) 2.90% 6500 (4800-8700) 3.50%

Cardiac dysrhythmias ∗ 60.0 (4.2%) 0.00% 140.0 (10.1%) 0.00% 1.0 (0.4%) 0.00%
Chronic kidney disease ∗ 16.0 (1.1%) 0.00% 49.0 (3.5%) 0.00% 7.0 (3.0%) 0.00%
Heart disease ∗ 48.0 (3.3%) 0.00% 77.0 (5.5%) 0.00% 0.0 (0.0%) 0.00%
Diabetes ∗ 138.0 (9.6%) 0.00% 207.0 (14.9%) 0.00% 39.0 (16.9%) 0.00%

Mortality ∗ 472.0 (32.8%) 0.00% 239.0 (17.2%) 0.00% 49.0 (21.2%) 0.00%
∗ Count (proportion) is reported for binary variables.

eTable 2: Descriptive summary of validation population broken down by study site.

Hellenic CSG (N = 323) Seville (N = 219) Hartford Hospital (N = 323)

Median (IQR) Missing % Median (IQR) Missing % Median (IQR) Missing %

Age 59.0 (47.0-72.0) 0.31% 64.0 (54.0-78.5) 0.00% 73.0 (57.0-84.0) 0.00%
Female ∗ 125.0 (38.7%) 0.00% 91.0 (41.55%) 0.00% 176.0 (54.49%) 0.00%

Heart Rate (bpm) 88.0 (80.0-98.0) 4.95% 88.0 (77.0-100.0) 37.44% 98.0 (86.0-112.75) 0.31%
Oxygen Saturation (%) 95.0 (92.0-97.0) 16.72% 95.0 (92.0-97.0) 8.22% 93.0 (90.0-95.0) 0.31%
Temperature (°C) 38.0 (37.2-38.5) 5.57% 38.5 (38.0-38.9) 42.01% 37.8 (37-38.4) 0.31%

ALT (U/L) 27.0 (18.0-40.0) 1.86% 24.0 (16.5-39.5) 10.96% 24.0 (16.0-39.0) 12.69%
AST (U/L) 29.0 (22.0-41.0) 0.62% 28.0 (21.0-39.75) 11.42% 38.0 (29.0-58.0) 11.76%
Blood Glucose (mg/dL) 106.0 (95.0-124.0) 1.86% 111.5 (95.0-129.0) 21.46% 127.0 (107.0-165.5) 4.02%
BUN (mg/dL) 24.0 (14.56-33.8) 1.55% 16.82 (12.15-24.53) 21.46% 20.0 (13.0-33.0) 4.64%
CRP (mg/L) 53.7 (13.0-130.7) 1.86% 66.9 (23.45-138.45) 7.31% 67.85 (33.9-129.38) 35.60%
Creatinine (mg/dL) 0.9 (0.7-1.1) 1.55% 0.9 (0.76-1.15) 0.00% 1.0 (0.8-1.5) 4.33%
Hemoglobin (U/g) 13.3 (12.2-14.5) 3.10% 13.4 (11.8-14.88) 2.28% 12.2 (10.8-13.7) 3.41%
MCV (µm3) 86.9 (83.9-89.9) 2.48% 91.1 (88.25-94.18) 2.28% 90.0 (86.0-95.0) 3.72%
Platelets (103/µL) 193.0 (156.0-245.0) 0.93% 204.5 (163.75-261.75) 2.28% 183.5 (140.0-241.5) 4.02%
Potassium (mEq/L) 4.1 (3.9-4.4) 1.24% 3.9 (3.6-4.3) 0.91% 4.1 (3.8-4.5) 4.95%
Prothrombin Time (INR) 1.03 (0.96-1.11) 4.95% 1.08 (1.01-1.2) 73.52% 1.2 (1.1-1.4) 53.87%
Sodium (mEq/L) 138.0 (135.0-140.0) 1.55% 139.0 (136.0-141.0) 0.91% 138.0 (135.0-140.0) 4.64%
WBC (/µL) 5710 (4380-7430) 1.55% 7180 (5200-10050) 2.28% 6800 (5000-9500) 3.72%

Cardiac dysrhythmias ∗ 45.0 (13.98%) 0.31% nan (nan%) 100.00% 0.0 (0.0%) 0.00%
Chronic kidney disease ∗ 16.0 (4.97%) 0.31% 21.0 (9.95%) 3.65% 10.0 (3.1%) 0.00%
Heart disease ∗ 60.0 (18.63%) 0.31% 55.0 (25.82%) 2.74% 0.0 (0.0%) 0.00%
Diabetes 42.0 (13.04%) 0.31% 32.0 (15.02%) 2.74% 61.0 (18.89%) 0.00%

Mortality ∗ 32.0 (9.91%) 0.00% 28.0 (12.79%) 0.00% 46.0 (14.24%) 0.00%
∗ Count (proportion) is reported for binary variables.
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eTable 3: AUC performance and threshold-based metrics for different machine learning methods, evaluated
on the test set from the derivation cohort.

Method AUC Threshold Accuracy Specificity Precision NPV

XGBoost 90.19 (86.86,93.52) 28.3 (23.26,33.34) 85.02 (81.02,89.01) 86.58 (82.77,90.39) 66.3 (61.02,71.59) 93.02 (90.17,95.87)
Logistic Regression 88.45 (84.87,92.02) 21.99 (17.36,26.62) 80.46 (76.02,84.89) 80.52 (76.09,84.95) 57.55 (52.02,63.08) 92.54 (89.6,95.48)
CART 85.85 (81.95,89.75) 23.4 (18.67,28.14) 79.8 (75.31,84.3) 77.49 (72.82,82.16) 55.93 (50.38,61.49) 94.71 (92.2,97.21)
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eTable 4: Overview of participating institutions in the The Hellenic COVID-19 Study Group.

Organization Sample
Size

Study
Dates

Description

Sotiria Thoracic
Diseases Hospi-
tal of Athens

83
03/12
−
05/07

The Sotiria Thoracic Diseases Hospital of Athens is a tertiary care hos-
pital and the reference centre for respiratory medicine in Greece with a
capacity of 710 inpatient beds, of which 400 are dedicated to pulmonary
care and ICU. There is also a large sector of internal medicine and in-
fectious disease. The clinic cares for around 150.000 in- and outpatients
yearly and is on emergency rota almost daily admitting patients from the
large Athens area (5.000.000 inhabitants). The Hospital was the refer-
ral centre for covid infection in Greece and stopped all other operations
and admissions during the pandemic. There were 278 admissions, most
patients have been discharged and there were 28 deaths.

Evangelismos
Hospital

82
03/10
−
05/04

It is the largest tertiary hospital in Greece. It is a referral center for
patients with Covid-19 for ICUs and a secondary center for patients in
need of hospitalization. The data comes from the Covid - 19 Patient
Care Unit set up in a former 90-bed surgery wards. The staff of the
clinic was provided by the internal medicine and pulmonary clinics of
the hospital as well as colleagues of other hospitals who were seconded
to Evangelismos including specialized internists of the hospital.

University Hos-
pital of Alexan-
droupolis

50
03/14
−
05/10

It is the COVID-19 Reference Hospital for the Region of Eastern Mace-
donia - Thrace, an area with a large heterogeneity of population. It
includes a total of 572 beds, of which 40 (Special Infections Unit and
COVID-19 Clinic) exclusively for patients with SARSCoV-2, as well as
the ICU (16 beds).

University Hos-
pital of Patra

49
03/03
−
30/04

It is a modern tertiary hospital, with about 800 beds and >30 special-
ized clinics, and serves > 1,500 patients a day. During the COVID-19
epidemic from February 2020, it became a reference center for Southern
and Western Greece, serving a multitude of both externally confirmed
cases and cases that required hospitalization in common wards as well
as in ICUs.

Attikon GH 40
03/01
−
05/15

It is a 650-bed tertiary hospital in Western Attica. During the COVID-
19 pandemic, the hospital was designated as a Covid-19 referral hospital.
Confirmed cases were admitted in the Infectious Diseases Unit with a
capacity of 8 isolated single-patient rooms or in dedicated hospital wards
of 60 beds in total. Twenty ICU beds were also dedicated to Covid-19
in specific ICU areas with negative pressure.

General Univer-
sity Hospital of
Larissa

34
03/13
−
05/14

The General University Hospital of Larissa is the referral center of the
5th Health Region of Central Greece for the management of COVID-19
patients, covering more than 1,000,000 population. Since March 2020,
COVID-19 patients are managed in its Infectious Disease Unit. Patients
were treated according to the therapeutic algorithms proposed by the
Greek Committee of Public Health of the Ministry of Health, using hy-
droxychloroquine and azithomycin as the first-line main antiviral agents.
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eFigures

eFigure 1: Receiver operator curves (ROC) evaluating the model’s performance on the testing set for patient
subgroups.
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