Appendix

Supplementary information

A. Poisson regression2
B. Two-sample summary MR approaches 3
References 4

Supplementary tables and figures

Tables

Table S1. Cross-table of participant counts across eight exclusion criteria. 5
Table S2. Patient demographics at baseline 6
Table S3 Hospital admission counts per WHR, BMI, age and gender 7
Table S4. Observational multivariable and one-sample MR analyses of the effect of BMI , 8 WHR and WHRadjBMI on yearly hospital admission rate
Table S5. Observational multivariable and one-sample multivariable MR analyses of the 9 effect of BMI, WHR and WHRadjBMI on yearly hospital admission rate
Table S6. Association between weighted GRS for BMI, WHR and WHRadjBMI 10
Table S7. Two-sample MR analyses: MR-Egger, IVW, weighted median and weighted mode 11 analyses of BMI, WHR and WHRadjBMI on yearly hospital admission rates
Table S8. Multivariable two-sample MR estimates for BMI and WHR on yearly hospital 12 admission rate
Table S9. Two-sample MR estimates after SNP exclusion (companion to S7) 12
Table S10. BMI-SNP and hospital admission count-SNP associations 13
Table S11. WHR-SNP and hospital admission count-SNP associations 15
Table S12. WHRadjBMI-SNP and hospital admission count-SNP associations 17
Table S13. BMI-SNP, WHR-SNP and hospital admission count-SNP associations as used 19for the multivariable two-sample MR analysis.

Figures

Figure S1. Plots for two-sample MR analysis of $B M I$ effect on yearly hospital admission21rate: A) Cochran's Q against Rücker's Q; B) SNP effects on log scale

Figure S2. Plots for two-sample MR analysis of WHR effect on yearly hospital admission22 rate: A) Cochran's Q against Rücker's Q; B) SNP effects on log scale
Figure S3. Plots for two-sample MR analysis of WHRadjBMI effect on yearly hospital 23 admission rate: A) Cochran's Q against Rücker's Q; B) SNP effects on log scale

A. Poisson regression

A Poisson regression model applies a generalized linear model with a logarithmic link function under the assumption that the response variable is Poisson distributed and that the logarithm of the expected value μ can be expressed in a linear combination of k parameters (1) ${ }^{1}$

$$
\begin{equation*}
\log \mu=\beta_{1} * x_{1}+\beta_{2} * x_{2}+\cdots+\beta_{k} * x_{k} \tag{1}
\end{equation*}
$$

When counts are measured for a unit that varies across individuals an offset can be included in the model, allowing for a rate interpretation (3). UK Biobank participants were recruited over a period of four years and for each participant hospital admissions were counted from recruitment to study censoring with the latter given by either death or 31 March 2015, the censoring date for the linked Hospital Episode Statistic data. We ignore emigration, which is estimated to occur at low rates (0.3\%) in this cohort (1).To correct for the varying times on study, the logarithm of observed person-years t is added to the linear equation as an offset (2).

$$
\begin{equation*}
\log \mu=\log t+\beta_{1} * x_{1}+\beta_{2} * x_{2}+\cdots+\beta_{k} * x_{k} \tag{2}
\end{equation*}
$$

The modeled outcome can now be interpreted as a rate rather than a count, as becomes apparent when restructuring the equation (3).

$$
\begin{equation*}
\log \frac{\mu}{t}=\beta_{1} * x_{1}+\beta_{2} * x_{2}+\cdots+\beta_{k} * x_{k} \tag{3}
\end{equation*}
$$

Let x_{1} and β_{1} represent the exposure BMI and the corresponding parameter estimated from the Poisson regression. Then with t in years and BMI in $\mathrm{kg} / \mathrm{m}^{2}$ the exponent of the coefficient $\exp \left(\beta_{1}\right)$ is the factor by which the mean value of the outcome is multiplied for a $1 \mathrm{~kg} / \mathrm{m}^{2}$ increase in BMI. More generally, given that the remaining variables are held constant, the yearly hospital admission rate increases with a factor $\exp \left(\beta_{1}\right)^{n}$ for every n unit increase in BMI.

Within the context of one- and two-sample MR analyses we propose a model where the second stage linear regression of the outcome $Y_{\text {adm }}$ on the gene is replaced by a Poisson regression with the person years on study t as offset. Let $\beta_{\text {exp }}$ be the exposure coefficient obtained from a linear regression of the exposure $Y_{\text {exp }}$ on the genetic instrument or risk score $G(4)$, and $\beta_{\text {out }}$ the outcome coefficient on the logarithmic scale obtained from a Poisson regression of the outcome $Y_{\text {out }}$ on the genetic instrument G (5).

$$
\begin{align*}
& Y_{\text {exp }} \sim \beta_{\text {exp }} * G \tag{4}\\
& \log \left(Y_{\text {out }}\right) \sim \log (t)+\beta_{\text {out }} * G \tag{5}
\end{align*}
$$

As the Poisson model is linear on the log scale, the two coefficients are compatible and a valid ratio can be obtained, with the final IV estimate β_{IV} of the rate coefficient given by the exponent of this ratio (6).

$$
\begin{equation*}
\beta_{I V}=\exp \left(\frac{\beta_{o u t}}{\beta_{\mathrm{exp}}}\right) \tag{6}
\end{equation*}
$$

In the one-sample MR framework, as in the traditional linear model, using the Wald ratio approach as detailed here is equivalent to performing a two-stage regression, where the fitted values of the exposure-gene regression (4) would be included as a covariate in a Poisson regression with time on study as offset. We elected to use the Wald ratio approach, which allows for a comparatively straightforward correction of IV estimate standard error using Taylor series expansions², applied on the logarithmic scale.

B. Two-sample summary MR approaches

Four two-sample MR approaches were used to investigate the effect of BMI, WHR and WHRadjBMI on yearly hospital admission rate: 1) the random effects exact weights inverse-variance weighted (IVW) estimator ${ }^{3}$; 2) the random effects MR-Egger estimator ${ }^{4}$; 3) the penalized median estimator ${ }^{5}$; 4) the weighted mode estimator ${ }^{6}$. Below, some detail is provided on these methods.

For the random effects models, Wald ratios are estimated for each SNP separately and combined using a random effects meta-analysis approach. The traditional IVW estimator uses weights derived from the inverse variance of the SNP-outcome coefficient. The exact weights IVW estimator derives weights in a slightly different way, using a limited information maximum-likelihood (LIML) approach in which the weight term is allowed to be a function of the causal-effect parameter. This approach ensures the estimator is naturally robust against regression-dilution bias. ${ }^{3}$

The random effects MR-Egger model is pleiotropy-robust and, unlike the IVW estimator, does not constrain the intercept to zero. The MR-Egger regression intercept can be interpreted as the average pleiotropic effect of all variants. Verifying whether the observed intercept is statistically different from zero serves as a test for horizontal pleiotropy. ${ }^{4}$

Heterogeneity was investigated using the IVW-based Cochran's-Q and the MR-Egger based Rucker's Q. As a rule of thumb, when Q is much larger than $L-1$, with L the number of SNPs used in the analysis, heterogeneity is detected. Assuming the observed heterogeneity is a result of horizontal pleiotropy, we can account for this by implementing a random effects IVW model or a random effects MR-Egger model in favour of either fixed effects model. ${ }^{7}$ Plots of these two Q statistics as calculated for each SNP in a
leave-one-out analysis, were used for the visual identification of outliers, which were removed in a sensitivity analysis with the purpose of verifying estimator consistency.

The median estimate is given by the median ratio estimate of ordered ratios. The simple median estimator will give a consistent estimate of the causal effect when at least 50% of the considered variants are valid, whereas the penalized weighted median estimator will do so when at least 50% of the weights come from valid instruments. In the penalized weighted median estimator, Cochran's Q statistic is used to quantify heterogeneity and more heterogeneous, outlying variants are down-weighted. ${ }^{5}$

The mode estimate is given by the mode of the Wald ratio estimates and will consistently estimate the causal effect even if more than half of the SNPs are invalid, provided the largest homogeneous cluster is valid. Both the weighted median and mode estimators use weights derived from the inverse variance of the ratios of the gene-outcome and gene-exposure association estimates and are, under different assumptions, robust to outliers and invalid instruments. ${ }^{6}$

References

1. Ver Hoef JM, Boveng PL. Quasi-Poisson vs. negative binomial regression: how should we model over dispersed count data? Ecology. 2007;88(11): 2766-2772.
2. Thomas DC, Lawlor DA, Thompson JR. Re: Estimation of bias in nongenetic observational studies using "Mendelian triangulation" by Bautista et al. Ann Epidemiol. 2007;17(7): 511-513.
3. Bowden J, Del Greco FM, Minelli C, Zhao Q, Lawlor D, Sheehan NA et al. Improving the accuracy of twosample summary-data Mendelian randomization: moving beyond the NOME assumption, Int J Epidemiol. 2019; 48(3): 728-742
4. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2): 512-525.
5. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol. 2016;40(4): 304-314.
6. Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018;27(R2): R195-R208. doi: 10.1093/hmg/ddy163
7. Bowden J, Spiller W, Del Greco MF, Sheehan N, Thompson J, Minelli C, et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. Int J Epidemiol. 2018;47(4): 1264-1278.

Table S1. Cross-table of participant count across eight exclusion criteria. Total participant count per exclusion criteria is given on the diagonal, with the remaining table entries giving the number of participants meeting any two such criteria (e.g. 345 participants failed the standard inclusion criteria and were of non-white British ancestry). A total of 154901 participants match one or more exclusion criteria and are considered ineligible for analysis

Exclusion criterion	Incorrect admission informationa	Failed standard inclusion criteriab	Non-white British ancestry	Highly relatedc	Minimally relatedd	Not genotypede	No BMI/WHR measurements	No PCA information
Incorrect admission informationa	34	0	1	0	1	27	1	27
$\begin{gathered} \text { Failed } \\ \text { standard } \\ \text { inclusion criteriab } \end{gathered}$		1675	345	0	100	899	8	0
Non-white British ancestry			73278	7	7431	225	415	0
Highly Relatedc				8	0	0	0	0
Minimally relatedd					73893	0	255	0
Not Genotypede						13797	796	12898
No BMI/WHR measurements							2454	794
No PCA information								12899

a) admissions prior to study start date, post death/censoring date or registered death prior to study start; b) individuals that have a mismatch between genetically inferred and reported gender, individuals with sex chromosome types putatively different from XX or XY and individuals that are outliers in heterozygosity and missing rate; c) individuals related to more than 200 other participants; d) on exclusion a maximal set of unrelated individuals is retained;) not genotyped for the exposures of interest (BMI, WHR, WHRadjBMI)

Table S2. Patient demographics at baseline for N=310471 patients. For continuous variables mean and standard deviation are given, for categorical variables counts and percentages per category.

Characteristic	N / mean (SD)	\%	Characteristic	N	\%
Age at entry	57.402 (7.988)	100	Qualifications		
Missing	0	0	A levels/AS levels or equivalent	35268	11.4
Sex			College or University degree	96670	31.1
Female	166610	53.7	CSEs or equivalent	17714	5.70
Male	143861	46.3	NVQ or HND or HNC or equivalent	20418	6.60
Missing	0	0	O levels/GCSEs or equivalent	69815	22.5
BMI	27.385 (4.743)	100	Other professional qualifications eg: nursing, teaching	15821	5.10
Missing	0	0	Missing	54765	17.6
WHR	0.872 (0.09)	100	Employment		
Missing	0	0	Doing unpaid or voluntary work	1298	0.40
Alcohol frequency			Full or part-time student	544	0.20
Daily or almost daily	67391	21.7	In paid employment or selfemployed	175679	56.6
Never	19900	6.4	Looking after home and/or family	8042	2.60
Once or twice a week	81161	26.1	Retired	109314	35.2
One to three times a month	34254	11.0	Unable to work because of sickness or disability	9043	2.90
Special occasions only	32382	10.4	Unemployed	4212	1.40
Three or four times a week	75173	24.2	Missing	2339	0.80
Missing	210	0.10	Townsend deprivation		
Days exercise			1st Quint. (-6.258, -4.014]	62055	20.0
0 days	110190	35.5	2nd Quint. (-4.014, -2.945]	62002	20.0
1 day	42722	13.8	3rd Quint. (-2.045, -1.683]	62028	20.0
2 days	47400	15.3	4th Quint. (-1.683, 0.709]	62030	20.0
3 days	40976	13.2	5th Quint. (0.709, 10.588]	62016	20.0
4 days	19061	6.10	Missing	341	0.10
5 days	19800	6.40			
6 days	5758	1.90			
7 days	10315	3.30			
Missing	14249	4.60			

$\mathrm{BMI}=$ body mass index, $\mathrm{SD}=$ standard deviation, $\mathrm{WHR}=$ waist-hip-ratio

Table S3. Hospital admission counts for 310471 patients per WHR quantiles, age quantiles, BMI categories and across gender. Shown are the $1_{\text {st }}$ quantile, median, $3_{\text {rd }}$ quantile, mean and SD.

	Hospital admission count				
	1st quantile	median	3rdquantile	mean	SD
WHR					
1st quant [0.45-0.82)	0	0	2	1.55	6.45
2 nd quant [0.82-0.87)	0	1	2	1.75	6.01
3 rd quant [0.87-0.92)	0	1	2	1.9	6.9
4th quant [0.92-2.13)	0	1	3	2.38	9.78
BMI					
<18.5	0	1	2	2.18	10.9
[18.5-20)	0	0	2	1.63	4.6
[20-22.5)	0	0	2	1.54	5.79
[22.5-25)	0	0	2	1.68	9.71
[25-27.5)	0	1	2	1.78	6.53
[27.5-30)	0	1	2	1.96	7.01
[30-35)	0	1	2	2.16	6.43
>35	0	1	3	2.66	8.33
Age					
1st quant [40-51)	0	0	1	1.24	7.41
2 nd quant [51-59)	0	0	2	1.67	8.2
3 rd quant [59-64)	0	1	2	2.03	6.13
4th quant [64-73)	0	1	3	2.64	7.77
Sex					
Female	0	1	2	1.84	7.28
Male	0	1	2	1.96	7.62

Table S4. Observational multivariable and one-sample MR analyses of the effect of BMI (76 SNPs), WHR (39 SNPs) WHRadjBMI (48 SNPs) on yearly hospital admission rate per year in UK Biobank participants of White British ancestry ($N=310471$). Rates and 95% confidence intervals ($95 \% \mathrm{CI}$) are given. Estimates are provided per unit (BMI), per 0.1 unit (WHR) and per exposure SD ($\mathrm{SD}_{\text {вмі }}=4.74$ and $\mathrm{SDwhr}^{2}=0.090$).

	Observational (unadjusted)		Observational (adjusteda)		IV (adjustedb)	
	Rate	95\%CI	Rate	95\%CI	Rate	95\%CI
BMI (unit)	1.030	1.027-1.032)	1.01	1.013-1.018)	1.02	1.003-1.051)
BMI (SD)	1.148	.133-1.163)	1.07	.065-1.091)	1.13	.015-1.267)
WHR (0.1 unit)	1.22	.203-1.240)	1.18	160-1.203)	1.2	997-1.661)
WHR (SD)	1.197	1.181-1.214)	1.16	1.144-1.182)	1.25	.997-1.580)
WHRadjBMI (0.1 unit)	1.173	.153-1.194)	1.157	.133-1.182)	1.24	.010-1.529)
WHRadjBMI (SD)	1.155	.137-1.173)	1.14	1.120-1.163)	1.21	.009-1.466)
WHR~BMI residuals (0.1 WHR unit)c	1.174	.154-1.194)	1.138	1.114-1.162)	1.180	0.965-1.442)
WHR~BMI residuals (WHR SD) c	1.156	1.136-1.176)	1.123	1.102-1.145)	1.16	0.968-1.391)

$\mathrm{BMI}=$ body mass index, $\mathrm{CI}=$ confidence interval, $\mathrm{IV}=$ instrumental variable, $\mathrm{SD}=$ standard deviation, WHR = waist-hip-ratio, WHRadjBMI = waist-hip-ratio adjusted for BMI
a) Adjusted for sex (categorical), age at study entry, alcohol frequency (categorical, from on a daily basis to never), employment (categorical), qualifications (categorical), Townsend deprivation score (categorical in quintiles, where 1 is not deprived and 5 is very deprived), and days of exercise per week (categorical, from 1 to 7). The WHRadjBMI observational analyses also include BMI as a predictor.
b) Adjusted for sex, age at study entry, and 40 PCAs
c) Residuals from linear WHR on BMI regressions are used as an exposure with the WHRadjBMI SNPs as instruments

Table S5. Observational multivariable and one-sample multivariable MR analyses of the effect of BMI a WHR on yearly hospital admission rate in UK Biobank participants of White British ancestry ($N=310471$ Rates and 95% confidence intervals $(95 \% \mathrm{CI})$ are given. Estimates are provided per unit (BMI), per 0.1 u (WHR) and per exposure $\operatorname{SD}\left(\mathrm{SD}_{\text {вмі }}=4.74\right.$ and $\left.\mathrm{SDwhr}^{\text {w }}=0.090\right)$.

	Observational (adjusteda)		Observational (unadjusted)		IV (adjust	
	Ratec	95\%CI	Ratec	95\%CI	Ratec	95\%
BMI (per unit)	1.006	.003-1.009)	1.01	14-1.020)	1.007	985-
BMI (per SD)	1.029	.015-1.043)	1.084	.068-1.100)	1.035	930-
WHR (per 0.1 unit)	1.158	134-1.182)	1.173	.153-1.194)	1.354	041-
WHR (per SD)	1.141	120-1.163)	1.155	137-1.173)	1.314	037-

$\mathrm{BMI}=$ body mass index, $\mathrm{CI}=$ confidence interval, $\mathrm{GRS}=$ genetic risk score, $\mathrm{SD}=$ standard deviation, W : waist-hip-ratio
a) The observational analysis regresses the outcome directly on the exposures BMI and WHR simultaneo The Poisson regression is adjusted for sex (categorical), age at study entry, alcohol frequency (categorica on a daily basis to never), employment (categorical), qualifications (categorical), Townsend deprivation s (categorical in quintiles, where 1 is not deprived and 5 is very deprived), and days of exercise per week (categorical, from 1 to 7);
b) Adjusted for sex, age at study entry, and 40 PCAs
c) Estimates (with corresponding $95 \% \mathrm{CIs}$) represent the fold increase in yearly hospital admission rate p unit ($1 \mathrm{~kg} / \mathrm{m}_{2}$) and SD ($4.74 \mathrm{~kg} / \mathrm{m}_{2}$) and per 0.1 WHR unit and SD (0.090)

Table S6. Association between weighted GRS for BMI, WHR and WHRadjBMI with BMI and WHR in UK Biobank participants of White British ancestry ($N=310471$). Effect estimates are provided per unit (BMI), per 0.1 unit (WHR) and per SD (SDbmi=4.74 and SDwhr=0.090).

Effect estimate (95\% CI)a					
BMI GRS (76 SNPS)	\boldsymbol{P}-value	$\mathbf{R}_{2} \%$	\boldsymbol{F}		
BMI (unit)	0.112	$(0.109-0.115)$	$<5 \times 10-324$	1.69	5326
BMI (SD)	0.0236	$(0.023-0.0243)$	$<5 \times 10-324$	1.69	5326
WHR (0.1 unit)	0.0075	$(0.0069-0.0081)$	$<4.04 \times 10-144$	0.210	654.1
WHR (SD)	0.0084	$(0.0077-0.009)$	$<4.04 \times 10-144$	0.210	654.1
WHR GRS (39 SNPs)					
BMI (unit)	0.0297	$(0.0256-0.0337)$	$<2.33 \times 10-46$	0.066	204.4
BMI (SD)	0.0060	$(0.005-0.007)$	$<2.33 \times 10-46$	0.066	204.4
WHR (0.1 unit)	0.0140	$(0.0132-0.0148)$	$<6.40 \times 10-277$	0.406	1267
WHR (SD)	0.0156	$(0.0147-0.0164)$	$<6.40 \times 10-277$	0.406	1267

WHRadjBMI GRS (48 SNPs)					
BMI (unit)	-0.024	$(-0.0278--0.0202)$	$<2.41 \times 10-35$	0.050	154
BMI (SD)	-0.005	$(-0.006--0.004)$	$<2.41 \times 10-35$	0.050	154
WHR (0.1 unit)	0.0141	$(0.0134-0.0148)$	$<1.88 \times 10-322$	0.474	1477
WHR (SD)	0.0157	$(0.0149-0.0165)$	$<1.88 \times 10-322$	0.474	1477

$\mathrm{BMI}=$ body mass index, $\mathrm{CI}=$ confidence interval, $\mathrm{GRS}=$ genetic risk score, $\mathrm{SD}=$ standard deviation, WHR = waist-hip-ratio, WHRadjBMI = waist-hip-ratio adjusted for BMI
a) Effect estimate, and corresponding P-value represent the change in BMI in units $(\mathrm{kg} / \mathrm{m} 2)$ and SD units $(4.74 \mathrm{~kg} / \mathrm{m} 2)$ and the change in WHR in 0.1 units and SD units (0.090) per BMI increasing allele (BMI GRS) and WHR increasing allele (WHR GRS, WHRadjBMI GRS)

Table S7. Two-sample MR analysis: MR-Egger (random effects), IVW (random effects, exact weights), weighted median and weighted mode analyses of BMI (64 SNPs), WHR (34 SNPs) and WHRadjBMI (45 SNPs) on hospital admission rate per year in UK Biobank participants of White British ancestry. SNPs with an LD R $2<0.001$ have been retained. Rates are given per exposure unit and exposure SD (SDвмі $=4.6$, SDwнг=0.07) and 95% confidence intervals $(95 \% \mathrm{CI})$ are provided.

	$\begin{gathered} \text { Rate }{ }_{a} \\ (95 \% \text { CI) } \end{gathered}$					
		IVW (random effects, exact weights)	Intercept	Slope	Penalized weighted median	Weighted mode
BMI (unit)		$\begin{array}{r} 1.020 \\ (1.002-1.038) \end{array}$	$\begin{array}{r} 1.001 \\ (0.999-1.002) \end{array}$	$\begin{array}{r} 0.994 \\ (0.943-1.048) \end{array}$	$\begin{array}{r} 1.020 \\ (0.986-1.055) \end{array}$	$\begin{array}{r} 1.019 \\ (0.981-1.059) \end{array}$
BMI (SD)	$\begin{gathered} \text { Rate }_{\mathrm{a}} \\ (95 \% \mathrm{CI}) \end{gathered}$	$\begin{array}{r} 1.098 \\ (1.009-1.194) \end{array}$	$\begin{array}{r} 1.004 \\ (0.997-1.011) \end{array}$	$\begin{array}{r} 0.973 \\ (0.759-1.247) \end{array}$	$\begin{array}{r} 1.095 \\ (0.930-1.290) \end{array}$	$\begin{array}{r} 1.095 \\ (0.915-1.312) \end{array}$
WHR (0.1 unit)	$\begin{gathered} \text { Rate }_{a} \\ (95 \% \mathrm{CI}) \end{gathered}$	$\begin{array}{r} 1.223 \\ (1.062-1.407) \end{array}$	$\begin{array}{r} 1.000 \\ (0.987-1.014) \end{array}$	$\begin{array}{r} 1.208 \\ (0.648-2.253) \end{array}$	$\begin{array}{r} 1.265 \\ (0.982-1.630) \end{array}$	$\begin{array}{r} 1.229 \\ (0.864-1.748) \end{array}$
WHR (SD)	$\begin{gathered} \text { Rate }_{a} \\ (95 \% \mathrm{CI}) \end{gathered}$	$\begin{array}{r} 1.199 \\ (1.054-1.364) \end{array}$	$\begin{array}{r} 1.000 \\ (0.987-1.014) \end{array}$	$\begin{array}{r} 1.185 \\ (0.676-2.079) \end{array}$	$\begin{array}{r} 1.236 \\ (0.985-1.550) \end{array}$	$\begin{array}{r} 1.204 \\ (0.867-1.167) \end{array}$
WHRadjBMI (0.1 unit)	$\begin{gathered} \text { Rate }_{\mathrm{a}} \\ (95 \% \mathrm{CI}) \end{gathered}$	$\begin{array}{r} 1.168 \\ (1.030-1.326) \end{array}$	$\begin{array}{r} 1.008 \\ (0.995-1.021) \end{array}$	$\begin{array}{r} 0.857 \\ (0.506-1.453) \end{array}$	$\begin{array}{r} 1.138 \\ (0.933-1.389) \end{array}$	$\begin{array}{r} 1.084 \\ (0.798-1.475) \end{array}$
WHRadjBMI (SD)	$\begin{gathered} \text { Rate }{ }_{a} \\ (95 \% \text { CI) } \end{gathered}$	$\begin{array}{r} 1.151 \\ (1.028-1.287) \end{array}$	$\begin{array}{r} 1.008 \\ (0.995-1.021) \end{array}$	$\begin{array}{r} 0.870 \\ (0.541-1.400) \end{array}$	$\begin{array}{r} 1.124 \\ (0.941-1.343) \end{array}$	$\begin{array}{r} 1.076 \\ (0.819-1.414) \end{array}$

$\mathrm{BMI}=$ body mass index, $\mathrm{CI}=$ confidence interval, $\mathrm{IVW}=$ inverse variance weighted, $\mathrm{MR}=$ Mendelian randomization, SD $=$ standard deviation, $\mathrm{WHR}=$ waist-hip-ratio, $\mathrm{WHRadjBMI}=$ waist-hip-ratio adjusted for BMI
a) Adjusted for sex, age and the first 40 genetic principle components. Estimates (with corresponding 95\% CIs) represent the fold increase in yearly hospital admission rate per BMI unit $\left(1 \mathrm{~kg} / \mathrm{m}_{2}\right)$ and $\mathrm{SD}\left(4.6 \mathrm{~kg} / \mathrm{m}_{2}\right)$ and per 0.1 WHR unit and SD (0.07)

Table S8. MR-Egger (random effects), IVW (random effects, exact weights), weighted median and weighted mode analyses of BMI (64 SNPs), WHR (34 SNPs) and WHRadjBMI (45 SNPs) on hospital admission count per year in UK Biobank participants of White British ancestry. SNPs with an LD $\mathrm{R}_{2}<0.001$ have been retained. Rates are given per exposure unit and exposure $\mathrm{SD}\left(\mathrm{SD}_{\mathrm{BMI}}=4.6, \mathrm{SD} \underset{\mathrm{wr}}{ }=0.07\right)$ and 95% confidence intervals $(95 \% \mathrm{CI})$ are provided. Outliers identified in figures S1, S2 and S3 were excluded as a sensitivity analysis (3, 4 and 4 SNPs for BMI, WHR and WHRadjBMI, respectively).

	$\begin{gathered} \text { Rate }_{\mathrm{a}} \\ (95 \% \mathrm{CI}) \end{gathered}$		MR-Egger		Penalized weighted median	Weighted mode
		IVW (random effects, exact weights)	Intercept	Slope		
BMI (unit)		$\begin{array}{r} 1.018 \\ (1.002-1.035) \end{array}$	$\begin{array}{r} \hline 1.004 \\ (0.997-1.011) \end{array}$	$\begin{array}{r} 0.992 \\ (0.941-1.046) \end{array}$	$\begin{array}{r} 1.019 \\ (0.983-1.058) \end{array}$	$\begin{array}{r} 1.020 \\ (0.978-1.063) \end{array}$
BMI (SD)	$\begin{aligned} & \text { Rate }_{a} \\ & (95 \% \mathrm{CI}) \end{aligned}$	$\begin{array}{r} 1.089 \\ (1.011-1.174) \end{array}$	$\begin{array}{r} 1.004 \\ (0.997-1.011) \end{array}$	$\begin{array}{r} 0.963 \\ (0.750-1.236) \end{array}$	$\begin{array}{r} 1.098 \\ (0.931-1.294) \end{array}$	$\begin{array}{r} 1.098 \\ (0.905-1.329) \end{array}$
WHR (0.1 unit)	$\begin{gathered} \text { Ratea } \\ (95 \% \mathrm{CI}) \end{gathered}$	$\begin{array}{r} 1.166 \\ (1.031-1.320) \end{array}$	$\begin{array}{r} 1.000 \\ (0.986-1.017) \end{array}$	$\begin{array}{r} 1.115 \\ (0.550-2.258) \end{array}$	$\begin{array}{r} 1.251 \\ (0.978-1.600) \end{array}$	$\begin{array}{r} 1.234 \\ (0.855-1.782) \end{array}$
WHR (SD)	$\begin{gathered} \text { Ratea } \\ (95 \% \mathrm{CI}) \end{gathered}$	$\begin{array}{r} 1.149 \\ (1.029-1.283) \end{array}$	$\begin{array}{r} 1.000 \\ (0.986-1.017) \end{array}$	$\begin{array}{r} 1.103 \\ (0.584-2.084) \end{array}$	$\begin{array}{r} 1.224 \\ (0.975-1.536) \end{array}$	$\begin{array}{r} 1.209 \\ (0.861-1.698) \end{array}$
WHRadjBMI (0.1 unit)	$\begin{gathered} \text { Rate }_{a} \\ (95 \% \text { CI }) \end{gathered}$	$\begin{array}{r} 1.137 \\ (1.024-1.264) \end{array}$	$\begin{array}{r} 1.002 \\ (0.988-1.015) \end{array}$	$\begin{array}{r} 1.070 \\ (0.624-1.834) \end{array}$	$\begin{array}{r} 1.139 \\ (0.938-1.384) \end{array}$	$\begin{array}{r} 1.089 \\ (0.792-1.497) \end{array}$
WHRadjBMI (SD)	$\begin{gathered} \text { Rate }{ }_{a} \\ (95 \% \text { CI) } \end{gathered}$	$\begin{array}{r} 1.123 \\ (1.015-1.243) \end{array}$	$\begin{array}{r} 1.002 \\ (0.988-1.015) \end{array}$	$\begin{array}{r} 1.063 \\ (0.654-1.728) \end{array}$	$\begin{array}{r} 1.125 \\ (0.945-1.338) \end{array}$	$\begin{array}{r} 1.080 \\ (0.792-1.473) \end{array}$

$\mathrm{BMI}=$ body mass index, $\mathrm{CI}=$ confidence interval, $\mathrm{IVW}=$ inverse variance weighted, $\mathrm{LD}=$ linkage disequilibrium, MR
$=$ Mendelian randomization, $\mathrm{SD}=$ standard deviation, WHR = waist-hip-ratio
a) Adjusted for sex, age and the first 40 genetic principle components. Estimates (with corresponding 95\% CIs) represent the fold increase in yearly hospital admission rate per BMI unit $\left(1 \mathrm{~kg} / \mathrm{m}_{2}\right)$ and $\mathrm{SD}\left(4.6 \mathrm{~kg} / \mathrm{m}_{2}\right)$ and per 0.1 WHR unit and SD (0.07)

Table S9. Multivariable two-sample MR estimates for the effect of BMI and WHR (70 SNPs) on yearly hospital admission rate in UK Biobank participants of White British ancestry. SNPs with an LD R2 < 0.001 have been retained. Rates are given per exposure unit and exposure SD ($\mathrm{SD}_{\text {вмі }}=4.6, \mathrm{SD}$ wнг $=0.07$) and 95% confidence intervals ($95 \% \mathrm{CI}$) are provided.

	Rate	$\mathbf{9 5 \%}$ CI
BMI (unit)	0.997	$(0.966-1.029)$
BMI (SD)	0.986	$(0.850-1.143)$
WHR (0.1 unit)	1.335	$(1.024-1.739)$
WHR (SD)	1.297	$(1.022-1.647)$

$\mathrm{BMI}=$ body mass index, $\mathrm{CI}=$ confidence interval, $\mathrm{IVW}=$ inverse variance weighted, $\mathrm{LD}=$ linkage disequilibrium, $\mathrm{MR}=$ Mendelian randomization, $\mathrm{SD}=$ standard deviation, WHR = waist-hip-ratio a) Adjusted for sex, age and the first 40 genetic principle components. Estimates (with corresponding $95 \% \mathrm{CIs}$) represent the fold increase in yearly hospital admission rate per BMI unit ($1 \mathrm{~kg} / \mathrm{m}_{2}$) and SD $\left(4.6 \mathrm{~kg} / \mathrm{m}_{2}\right)$ and per 0.1 WHR unit and SD (0.07)

Table S10. BMI-SNP and hospital admission count-SNP associations as used for the univariate two-sample MR analysis of the effect of BMI on yearly hospital admission rate. The BMI-SNP association coefficients were used as external weights for the genetic risk score in the one-sample MR analysis.

SNP	EAb	OA	EAF	BMI-SNP associations (European ancestry GIANT consortium metaanalysis, Locke et al. (2016)				Hospital admission count - SNP associations (UK Biobank)			
				$\boldsymbol{\beta}$ c	SE	N	\boldsymbol{P}	$\beta_{\text {d }}$	SE	N	\boldsymbol{P}
rs1000940	G	A	0.320	0.019	0.003	321836	$1.28 \mathrm{E}-08$	-0.012	0.011	310537	$9.25 \mathrm{E}-09$
rs10132280	C	A	0.682	0.023	0.003	321797	$1.14 \mathrm{E}-11$	0.003	0.011	310537	$1.76 \mathrm{E}-01$
rs1016287	T	C	0.287	0.023	0.003	321969	$2.25 \mathrm{E}-11$	0.015	0.011	310537	$9.98 \mathrm{E}-14$
rs10182181	G	A	0.462	0.031	0.003	321759	$8.78 \mathrm{E}-24$	-0.009	0.010	310537	$1.11 \mathrm{E}-06$
rs10733682	A	G	0.478	0.017	0.003	320727	$1.83 \mathrm{E}-08$	-0.003	0.010	310537	$1.24 \mathrm{E}-01$
rs10938397	G	A	0.434	0.040	0.003	320955	$3.21 \mathrm{E}-38$	-0.004	0.010	310537	$5.44 \mathrm{E}-02$
rs10968576	G	A	0.320	0.025	0.003	322061	$6.61 \mathrm{E}-14$	-0.001	0.011	310537	$6.46 \mathrm{E}-01$
rs11030104	A	G	0.792	0.041	0.004	322103	$5.56 \mathrm{E}-28$	0.014	0.013	310537	$1.43 \mathrm{E}-09$
rs11057405	G	A	0.901	0.031	0.006	314111	$2.02 \mathrm{E}-08$	0.009	0.017	310537	$3.95 \mathrm{E}-03$
rs11126666a	A	G	0.283	0.021	0.003	321979	$1.33 \mathrm{E}-09$	-0.007	0.012	310537	$1.11 \mathrm{E}-03$
rs11165643	T	C	0.583	0.022	0.003	320730	$2.07 \mathrm{E}-12$	0.012	0.011	310537	$5.15 \mathrm{E}-10$
rs11191560a	C	T	0.089	0.031	0.005	321893	$8.45 \mathrm{E}-09$	0.020	0.019	310537	$1.45 \mathrm{E}-08$
rs11583200a	C	T	0.396	0.018	0.003	322095	$1.48 \mathrm{E}-08$	-0.012	0.011	310537	$1.10 \mathrm{E}-10$
rs1167827	G	A	0.553	0.020	0.003	306238	$6.33 \mathrm{E}-10$	-0.004	0.010	310537	$4.97 \mathrm{E}-02$
rs11688816a	G	A	0.525	0.017	0.003	322051	$1.89 \mathrm{E}-08$	0.000	0.010	310537	$9.02 \mathrm{E}-01$
rs11727676	T	C	0.910	0.036	0.006	296401	$2.55 \mathrm{E}-08$	-0.011	0.017	310537	$8.04 \mathrm{E}-04$
rs11847697a	T	C	0.042	0.049	0.008	306243	$3.99 \mathrm{E}-09$	-0.014	0.025	310537	$1.68 \mathrm{E}-03$
rs12286929	G	A	0.523	0.022	0.003	321903	$1.31 \mathrm{E}-12$	0.016	0.010	310537	$1.37 \mathrm{E}-18$
rs12401738	A	G	0.352	0.021	0.003	322070	$1.15 \mathrm{E}-10$	0.004	0.011	310537	$3.01 \mathrm{E}-02$
rs12429545	A	G	0.133	0.033	0.005	312934	$1.09 \mathrm{E}-12$	-0.003	0.016	310537	$2.15 \mathrm{E}-01$
rs12446632	G	A	0.865	0.040	0.005	316758	$1.48 \mathrm{E}-18$	-0.005	0.015	310537	$3.93 \mathrm{E}-02$
rs12566985a	G	A	0.446	0.024	0.003	319282	$3.28 \mathrm{E}-15$	0.006	0.010	310537	$6.04 \mathrm{E}-04$
rs12885454a	C	A	0.642	0.021	0.003	320823	$1.94 \mathrm{E}-10$	-0.004	0.011	310537	$2.07 \mathrm{E}-02$
rs12940622	G	A	0.575	0.018	0.003	322032	$2.49 \mathrm{E}-09$	-0.022	0.010	310537	8.00E-33
rs13021737	G	A	0.828	0.060	0.004	318287	$1.11 \mathrm{E}-50$	0.005	0.014	310537	$4.17 \mathrm{E}-02$
rs13078960	G	T	0.196	0.030	0.004	322135	$1.74 \mathrm{E}-14$	-0.011	0.013	310537	$2.48 \mathrm{E}-06$
rs13107325	T	C	0.072	0.048	0.007	321461	$1.83 \mathrm{E}-12$	-0.011	0.020	310537	$2.57 \mathrm{E}-03$
rs13191362	A	G	0.879	0.028	0.005	321902	$7.34 \mathrm{E}-09$	-0.002	0.016	310537	$4.12 \mathrm{E}-01$
rs1516725	C	T	0.872	0.045	0.005	320644	$1.89 \mathrm{E}-22$	0.005	0.015	310537	$5.97 \mathrm{E}-02$
rs1528435	T	C	0.631	0.018	0.003	321924	$1.20 \mathrm{E}-08$	-0.009	0.011	310537	$9.40 \mathrm{E}-07$
rs1558902	A	T	0.415	0.082	0.003	320073	$7.51 \mathrm{E}-153$	0.008	0.011	310537	$2.53 \mathrm{E}-05$
rs16851483	T	G	0.066	0.048	0.008	233929	$3.55 \mathrm{E}-10$	-0.008	0.021	310537	$2.41 \mathrm{E}-02$
rs16951275	T	C	0.784	0.031	0.004	322098	$1.91 \mathrm{E}-17$	0.007	0.012	310537	$6.99 \mathrm{E}-04$
rs17001654	G	C	0.153	0.031	0.005	233722	$7.76 \mathrm{E}-09$	0.015	0.015	310537	$1.65 \mathrm{E}-08$
rs17024393	C	T	0.040	0.066	0.009	297874	$7.03 \mathrm{E}-14$	0.016	0.032	310537	$4.78 \mathrm{E}-03$
rs17094222	C	T	0.211	0.025	0.004	321770	$5.94 \mathrm{E}-11$	0.001	0.013	310537	$7.17 \mathrm{E}-01$
rs17405819	T	C	0.700	0.022	0.003	322085	$2.07 \mathrm{E}-11$	0.002	0.011	310537	$4.39 \mathrm{E}-01$
rs17724992	A	G	0.746	0.019	0.004	319588	$3.42 \mathrm{E}-08$	0.020	0.012	310537	$3.19 \mathrm{E}-22$
rs1808579	C	T	0.534	0.017	0.003	322032	$4.17 \mathrm{E}-08$	0.001	0.010	310537	$4.37 \mathrm{E}-01$
rs1928295	T	C	0.548	0.019	0.003	321979	$7.91 \mathrm{E}-10$	0.001	0.010	310537	$5.46 \mathrm{E}-01$
rs2033529	G	A	0.293	0.019	0.003	321917	$1.39 \mathrm{E}-08$	-0.002	0.011	310537	$3.73 \mathrm{E}-01$

rs2033732	C	T	0.747	0.019	0.004	321406	$4.89 \mathrm{E}-08$	-0.000	0.012	310537	$9.30 \mathrm{E}-01$
rs205262	G	A	0.273	0.022	0.004	315542	$1.75 \mathrm{E}-10$	0.025	0.012	310537	$7.63 \mathrm{E}-32$
rs2075650	A	G	0.848	0.026	0.005	308408	$1.25 \mathrm{E}-08$	-0.009	0.015	310537	$4.83 \mathrm{E}-04$
rs2112347	T	G	0.629	0.026	0.003	322019	$6.19 \mathrm{E}-17$	0.013	0.011	310537	$2.56 \mathrm{E}-11$
rs2121279	T	C	0.152	0.025	0.004	322065	$2.31 \mathrm{E}-08$	0.015	0.015	310537	$1.86 \mathrm{E}-08$
rs2176598	T	C	0.251	0.020	0.004	316848	$2.97 \mathrm{E}-08$	0.004	0.012	310537	$8.57 \mathrm{E}-02$
rs2207139	G	A	0.177	0.045	0.004	322019	$4.13 \mathrm{E}-29$	0.009	0.014	310537	$1.68 \mathrm{E}-04$
rs2245368	C	T	0.180	0.032	0.006	205675	$3.19 \mathrm{E}-08$	0.008	0.014	310537	$1.00 \mathrm{E}-03$
rs2287019a	C	T	0.804	0.036	0.004	300921	$4.59 \mathrm{E}-18$	0.013	0.014	310537	$8.26 \mathrm{E}-08$
rs2365389	C	T	0.582	0.020	0.003	316768	$1.63 \mathrm{E}-10$	-0.007	0.011	310537	$3.20 \mathrm{E}-04$
rs2650492	A	G	0.303	0.021	0.004	319464	$1.92 \mathrm{E}-09$	0.004	0.011	310537	$6.54 \mathrm{E}-02$
rs2820292	C	A	0.555	0.020	0.003	321707	$1.83 \mathrm{E}-10$	0.003	0.010	310537	$6.24 \mathrm{E}-02$
rs29941	G	A	0.669	0.018	0.003	321970	$2.41 \mathrm{E}-08$	-0.001	0.011	310537	$5.97 \mathrm{E}-01$
rs3101336	C	T	0.613	0.033	0.003	316872	$2.66 \mathrm{E}-26$	0.005	0.011	310537	$4.49 \mathrm{E}-03$
rs3736485	A	G	0.454	0.018	0.003	321398	$7.41 \mathrm{E}-09$	0.017	0.010	310537	$1.62 \mathrm{E}-19$
rs3810291a	A	G	0.666	0.028	0.004	296261	$4.81 \mathrm{E}-15$	0.011	0.011	310537	$1.46 \mathrm{E}-08$
rs3817334	T	C	0.407	0.026	0.003	321959	$5.15 \mathrm{E}-17$	-0.004	0.010	310537	$5.00 \mathrm{E}-02$
rs3849570	A	C	0.359	0.019	0.003	284339	$2.60 \mathrm{E}-08$	0.010	0.011	310537	$2.95 \mathrm{E}-07$
rs3888190a	A	C	0.403	0.031	0.003	321930	$3.14 \mathrm{E}-23$	0.013	0.011	310537	$1.71 \mathrm{E}-11$
rs4256980	G	C	0.646	0.021	0.003	320028	$2.90 \mathrm{E}-11$	0.003	0.011	310537	8.63E-02
rs4740619	T	C	0.542	0.018	0.003	321887	$4.56 \mathrm{E}-09$	0.023	0.010	310537	$3.67 \mathrm{E}-36$
rs543874	G	A	0.193	0.048	0.004	322008	$2.62 \mathrm{E}-35$	-0.005	0.013	310537	$3.75 \mathrm{E}-02$
rs6477694	C	T	0.365	0.017	0.003	322048	$2.67 \mathrm{E}-08$	0.013	0.011	310537	$5.67 \mathrm{E}-12$
rs6567160a	C	T	0.236	0.056	0.004	321958	$3.93 \mathrm{E}-53$	0.012	0.012	310537	$9.65 \mathrm{E}-09$
rs657452	A	G	0.394	0.023	0.003	313651	$5.48 \mathrm{E}-13$	0.014	0.011	310537	$9.58 \mathrm{E}-14$
rs6804842	G	A	0.575	0.019	0.003	321463	$2.48 \mathrm{E}-09$	-0.015	0.010	310537	$2.87 \mathrm{E}-16$
rs7138803	A	G	0.384	0.032	0.003	322092	$8.15 \mathrm{E}-24$	-0.016	0.011	310537	4.60E-16
rs7141420	T	C	0.527	0.024	0.003	321970	$1.23 \mathrm{E}-14$	0.004	0.010	310537	$2.70 \mathrm{E}-02$
rs7243357	T	G	0.812	0.022	0.004	322107	$3.86 \mathrm{E}-08$	0.028	0.014	310537	$6.55 \mathrm{E}-31$
rs758747	T	C	0.265	0.023	0.004	308688	$7.47 \mathrm{E}-10$	-0.009	0.012	310537	$5.07 \mathrm{E}-06$
rs7599312	G	A	0.724	0.022	0.003	322024	$1.17 \mathrm{E}-10$	0.006	0.012	310537	$3.37 \mathrm{E}-03$
rs7899106	G	A	0.052	0.040	0.007	321770	$2.96 \mathrm{E}-08$	-0.009	0.024	310537	$3.19 \mathrm{E}-02$
rs7903146	C	T	0.713	0.023	0.003	322130	$1.11 \mathrm{E}-11$	-0.000	0.011	310537	$9.53 \mathrm{E}-01$
rs9400239	C	T	0.688	0.019	0.003	321988	$1.61 \mathrm{E}-08$	0.017	0.011	310537	$7.57 \mathrm{E}-18$
rs9925964a	A	G	0.620	0.019	0.003	318385	$8.11 \mathrm{E}-10$	0.011	0.011	310537	$9.47 \mathrm{E}-09$

$\mathrm{BMI}=$ body mass index, $\mathrm{EA}=$ effect allele, $\mathrm{EAF}=$ effect allele frequency, $\mathrm{LD}=$ linkage disequilibrium, $\mathrm{MR}=$ Mendelian randomization, $\mathrm{OA}=$ other allele, $\mathrm{SE}=$ standard error
a) These 12 SNPs exceeded the LD threshold ($\mathrm{R}_{2}<0.001$) and were excluded from the two-sample summary MR analysis
b) The effect allele (EA) is the BMI increasing allele
c) Coefficients are given per BMI SD $\left(4.6 \mathrm{~kg} / \mathrm{m}_{2}\right)$
d) Coefficients are given on the logarithmic scale, obtained from a quasi-Poisson regression of hospital admission count on the relevant SNP, using person-years on study as an offset and adjusting for age, sex and the first 40 genetic principle components

Table S11. WHR-SNP and hospital admission count-SNP associations as used for the univariate two-sample MR analysis of the effect of WHR on yearly hospital admission rate. The WHR-SNP association coefficients were used as external weights for the genetic risk score in the one-sample MR analysis.

				WHR-SNP associations (European ancestry GIANT consortium meta-analysis, Shungin et al. (2015)				Hospital admission count - SNP associations (UK Biobank)			
SNP	EAb	OA	EAF	$\beta_{\text {c }}$	SE	N	\boldsymbol{P}	$\beta_{\text {d }}$	SE	N	\boldsymbol{P}
rs1011731a	G	A	0.427	0.019	0.003	212094	$1.07 \mathrm{E}-08$	-0.010	0.010	310537	$7.08 \mathrm{E}-08$
rs10195252	T	C	0.590	0.020	0.003	211907	$2.57 \mathrm{E}-09$	0.005	0.011	310537	$9.27 \mathrm{E}-03$
rs10245353	A	C	0.200	0.027	0.004	212151	$1.57 \mathrm{E}-10$	0.006	0.013	310537	$9.64 \mathrm{E}-03$
rs1045241	C	T	0.714	0.015	0.004	212012	$5.76 \mathrm{E}-05$	-0.008	0.012	310537	$8.74 \mathrm{E}-05$
rs10804591	A	C	0.793	0.021	0.004	212108	$2.09 \mathrm{E}-07$	-0.005	0.013	310537	$1.63 \mathrm{E}-02$
rs11048470	T	G	0.277	0.025	0.004	212159	$6.33 \mathrm{E}-12$	-0.001	0.012	310537	$6.45 \mathrm{E}-01$
rs1121980	A	G	0.433	0.043	0.003	211970	$1.33 \mathrm{E}-38$	0.011	0.010	310537	$5.44 \mathrm{E}-09$
rs11663816	C	T	0.265	0.025	0.004	212104	$2.65 \mathrm{E}-11$	0.006	0.012	310537	$4.99 \mathrm{E}-03$
rs11989744	C	T	0.760	0.021	0.005	144546	$1.30 \mathrm{E}-05$	0.007	0.012	310537	$5.43 \mathrm{E}-04$
rs12549058	G	T	0.084	0.040	0.006	212028	$3.17 \mathrm{E}-10$	-0.004	0.022	310537	$3.19 \mathrm{E}-01$
rs1294421	G	T	0.620	0.026	0.003	212054	$6.93 \mathrm{E}-14$	-0.007	0.011	310537	$4.15 \mathrm{E}-04$
rs1358980	T	C	0.470	0.027	0.004	211037	$1.98 \mathrm{E}-14$	0.014	0.010	310537	$1.48 \mathrm{E}-13$
rs139446	C	G	0.251	0.017	0.005	14	$4.68 \mathrm{E}-04$	0.005	0.013	310537	$1.33 \mathrm{E}-02$
rs1440372	C	T	0.710	0.021	0.004	210387	$7.59 \mathrm{E}-09$	0.014	0.012	310537	$4.20 \mathrm{E}-11$
rs1443512	A	C	0.235	0.026	0.004	212153	$2.76 \mathrm{E}-11$	0.001	0.013	310537	$7.11 \mathrm{E}-01$
rs1515108	C	T	0.377	0.007	0.003	212094	$3.13 \mathrm{E}-02$	-0.020	0.011	310537	$8.41 \mathrm{E}-26$
rs1569135	A	G	0.529	0.024	0.003	212086	$1.00 \mathrm{E}-12$	0.012	0.010	310537	$2.61 \mathrm{E}-10$
rs16996700	T	C	0.730	0.021	0.004	212159	$1.60 \mathrm{E}-08$	0.014	0.011	310537	$8.92 \mathrm{E}-12$
rs17109256	A	G	0.219	0.023	0.004	208422	$3.02 \mathrm{E}-08$	0.005	0.013	310537	$2.67 \mathrm{E}-02$
rs17451107	T	C	0.613	0.023	0.004	211586	$3.50 \mathrm{E}-11$	-0.005	0.011	310537	$1.26 \mathrm{E}-02$
rs17819328	G	T	0.432	0.016	0.004	211496	$2.29 \mathrm{E}-06$	0.029	0.010	310537	$2.35 \mathrm{E}-55$
rs2075650	A	G	0.848	0.029	0.005	206613	$6.43 \mathrm{E}-09$	-0.009	0.015	310537	$4.83 \mathrm{E}-04$
rs2179129	A	G	0.590	0.021	0.003	212181	$1.24 \mathrm{E}-09$	0.016	0.011	310537	$1.54 \mathrm{E}-18$
rs2287019a	C	T	0.802	0.026	0.005	199713	$4.34 \mathrm{E}-09$	0.013	0.014	310537	$8.26 \mathrm{E}-08$
rs2765539	T	C	0.735	0.027	0.004	212176	$1.08 \mathrm{E}-12$	0.001	0.012	310537	$6.31 \mathrm{E}-01$
rs319564	C	T	0.450	0.014	0.003	212137	$3.42 \mathrm{E}-05$	0.012	0.010	310537	$4.00 \mathrm{E}-10$
rs3786897	G	A	0.417	0.022	0.003	212009	$3.95 \mathrm{E}-11$	-0.002	0.010	310537	$2.46 \mathrm{E}-01$
rs4471313	T	G	0.720	0.020	0.004	180767	$6.92 \mathrm{E}-07$	0.025	0.012	310537	$6.19 \mathrm{E}-33$
rs459193	A	G	0.264	0.026	0.004	212101	$6.02 \mathrm{E}-12$	-0.008	0.013	310537	$3.67 \mathrm{E}-04$
rs4640244a	G	A	0.396	0.021	0.004	198799	$3.11 \mathrm{E}-08$	0.013	0.011	310537	$1.06 \mathrm{E}-11$
rs4646404	G	A	0.661	0.020	0.004	201330	$3.81 \mathrm{E}-07$	-0.002	0.011	310537	$3.19 \mathrm{E}-01$
rs4715208a	G	A	0.740	0.019	0.004	212191	7.91E-07	-0.004	0.012	310537	$7.70 \mathrm{E}-02$
rs4846565	G	A	0.672	0.023	0.004	212157	$4.75 \mathrm{E}-11$	0.009	0.011	310537	$5.30 \mathrm{E}-06$
rs4929927	G	A	0.646	0.020	0.003	212152	$7.60 \mathrm{E}-09$	0.004	0.011	310537	$4.70 \mathrm{E}-02$
rs7801581a	T	C	0.244	0.023	0.004	198342	$4.95 \mathrm{E}-08$	-0.022	0.012	310537	7.73E-24
rs863750	T	C	0.593	0.016	0.003	212134	$1.56 \mathrm{E}-06$	0.003	0.011	310537	$1.33 \mathrm{E}-01$
rs929641	A	G	0.587	0.020	0.003	212102	$4.25 \mathrm{E}-09$	-0.015	0.011	310537	$3.58 \mathrm{E}-16$
rs9491696	G	C	0.482	0.038	0.003	211988	$4.88 \mathrm{E}-30$	0.005	0.010	310537	$1.37 \mathrm{E}-02$
rs9860730	A	G	0.703	0.023	0.004	212062	$2.84 \mathrm{E}-10$	0.005	0.011	310537	$1.14 \mathrm{E}-02$

$E A=$ effect allele, $E A F=$ effect allele frequency, $L D=$ linkage disequilibrium, $M R=$ Mendelian randomization,
$\mathrm{OA}=$ other allele, $\mathrm{SE}=$ standard error, WHR = waist-hip-ratio
a) These 5 SNPs exceeded the LD threshold $\left(\mathrm{R}_{2}<0.001\right)$ and were excluded from the two-sample summary MR analysis
b) The effect allele (EA) is the WHR increasing allele
c) Coefficients are given per WHR SD (0.07)
d) Coefficients are given on the logarithmic scale, obtained from a quasi-Poisson regression of hospital
admission count on the relevant SNP, using person-years on study as an offset and adjusting for age, sex and the first 40 genetic principle components

Table S12. WHRadjBMI-SNP and hospital admission count-SNP associations as used for the univariate twosample MR analysis of the effect of WHRadjBMI on yearly hospital admission rate. The WHRadjBMI-SNP association coefficients were used as external weights for the genetic risk score in the one-sample MR analysis
WHRadjBMI-SNP associations
(European ancestry GIANT
consortium meta-analysis, Shungin

et al. (2015) | Hospital admission count - SNP |
| :--- |
| associations (UK Biobank) |

SNP	EAb	OA	EAF	β c	SE	N	P	$\boldsymbol{\beta}$ d	SE	N	P
rs10195252	T	C	0.587	0.031	0.004	142102	$1.03 \mathrm{E}-15$	0.005	0.011	310537	$9.27 \mathrm{E}-03$
rs10245353	A	C	0.196	0.037	0.005	142708	$6.88 \mathrm{E}-14$	0.006	0.013	310537	$9.64 \mathrm{E}-03$
rs1045241	C	T	0.714	0.022	0.004	142400	3.18E-07	-0.008	0.012	310537	$8.74 \mathrm{E}-05$
rs10804591	A	C	0.794	0.025	0.005	142653	$1.93 \mathrm{E}-07$	-0.005	0.013	310537	$1.63 \mathrm{E}-02$
rs10842707	T	C	0.227	0.036	0.005	142708	$4.39 \mathrm{E}-15$	-0.003	0.013	310537	$1.53 \mathrm{E}-01$
rs10919388	C	A	0.721	0.025	0.004	142721	$5.33 \mathrm{E}-09$	0.025	0.012	310537	8.67E-33
rs10991437	A	C	0.117	0.033	0.006	142661	$9.74 \mathrm{E}-08$	-0.003	0.016	310537	$2.41 \mathrm{E}-01$
rs11231693	A	G	0.061	0.048	0.009	130856	8.20E-08	0.008	0.023	310537	$3.54 \mathrm{E}-02$
rs12454712	T	C	0.615	0.017	0.006	102489	$3.26 \mathrm{E}-03$	0.004	0.011	310537	$1.84 \mathrm{E}-02$
rs12608504	A	G	0.354	0.020	0.004	142678	$1.20 \mathrm{E}-06$	0.010	0.011	310537	$6.65 \mathrm{E}-07$
rs12679556	G	T	0.245	0.024	0.005	142669	$1.12 \mathrm{E}-07$	0.006	0.012	310537	$3.20 \mathrm{E}-03$
rs1294	C	T	0.633	0.034	0.004	142548	$1.42 \mathrm{E}-17$	-0.003	0.011	310537	$6.55 \mathrm{E}-02$
rs1358980	T	C	0.461	0.039	0.004	139579	$3.01 \mathrm{E}-20$	0.014	0.010	310537	$1.48 \mathrm{E}-13$
rs1385167	G	A	0.142	0.032	0.006	139368	$9.40 \mathrm{E}-09$	-0.028	0.015	310537	$7.87 \mathrm{E}-25$
rs1440372	C	T	0.705	0.023	0.004	141188	$7.84 \mathrm{E}-08$	0.014	0.012	310537	$4.20 \mathrm{E}-11$
rs1443512	A	C	0.233	0.031	0.005	142694	5.38E-12	0.001	0.013	310537	7.11E-01
rs1569135	A	G	0.528	0.020	0.004	142674	$3.58 \mathrm{E}-07$	0.012	0.010	310537	$2.61 \mathrm{E}-10$
rs17451107	T	C	0.61	0.027	0.00	140959	$1.48 \mathrm{E}-10$	-0.005	0.011	310537	$1.26 \mathrm{E}-02$
rs1776897	G	T	0.082	0.041	0.008	110603	$5.50 \mathrm{E}-07$	0.011	0.018	310537	$1.24 \mathrm{E}-03$
rs17819328	G	T	0.431	0.022	0.004	141503	$5.82 \mathrm{E}-08$	0.029	0.010	310537	$2.35 \mathrm{E}-55$
rs1936805	T	C	0.50	0.04	0.00	142540	$6.13 \mathrm{E}-28$	0.006	0.010	310537	$1.69 \mathrm{E}-03$
rs224333	G	A	0.634	0.022	0.004	142206	$2.76 \mathrm{E}-07$	0.002	0.011	310537	$2.90 \mathrm{E}-01$
rs2276824	C	G	0.433	0.022	0.004	141626	7.12E-08	-0.007	0.010	310537	$6.07 \mathrm{E}-05$
rs2294239	A	G	0.586	0.028	0.004	142140	$1.86 \mathrm{E}-12$	0.016	0.010	310537	$1.26 \mathrm{E}-17$
rs2371767	G	C	0.723	0.034	0.005	130378	$9.49 \mathrm{E}-14$	0.000	0.012	310537	$8.52 \mathrm{E}-01$
rs2645294	T	C	0.575	0.034	0.004	142526	$4.42 \mathrm{E}-18$	0.002	0.010	310537	$3.07 \mathrm{E}-01$
rs2820443	T	C	0.714	0.041	0.004	142663	$1.50 \mathrm{E}-21$	0.002	0.011	310537	$2.86 \mathrm{E}-01$
rs2925979	T	C	0.305	0.018	0.004	140533	$1.44 \mathrm{E}-05$	0.010	0.011	310537	$2.29 \mathrm{E}-07$
rs303084	A	G	0.798	0.024	0.005	142629	$5.30 \mathrm{E}-07$	-0.006	0.013	310537	$5.39 \mathrm{E}-03$
rs3805389	A	G	0.279	0.018	0.004	141909	$4.16 \mathrm{E}-05$	0.011	0.012	310537	$3.00 \mathrm{E}-08$
rs4081724	G	A	0.856	0.031	0.006	140159	$1.25 \mathrm{E}-07$	0.018	0.015	310537	$1.40 \mathrm{E}-11$
rs4646404	G	A	0.665	0.026	0.005	131007	$3.46 \mathrm{E}-08$	-0.002	0.011	310537	$3.19 \mathrm{E}-01$
rs4765219	C	A	0.667	0.030	0.004	142549	$5.99 \mathrm{E}-14$	0.005	0.011	310537	$1.02 \mathrm{E}-02$
rs6090583	A	G	0.474	0.020	0.004	142152	$2.47 \mathrm{E}-07$	0.028	0.010	310537	$1.56 \mathrm{E}-50$
rs6556301a	T	G	0.356	0.022	0.004	140524	$2.60 \mathrm{E}-07$	-0.006	0.011	310537	$3.89 \mathrm{E}-03$
rs714515a	G	A	0.428	0.031	0.004	142435	$6.72 \mathrm{E}-16$	-0.010	0.010	310537	$2.89 \mathrm{E}-08$
rs7705502	A	G	0.320	0.023	0.004	142668	$2.38 \mathrm{E}-08$	-0.021	0.011	310537	$9.98 \mathrm{E}-26$
rs7759742	A	T	0.505	0.024	0.004	140972	$1.50 \mathrm{E}-09$	0.013	0.010	310537	$6.67 \mathrm{E}-13$
rs7801581a	T	C	0.242	0.027	0.005	129075	$5.02 \mathrm{E}-08$	-0.022	0.012	310537	$7.73 \mathrm{E}-24$
rs7830933	A	G	0.766	0.021	0.005	142458	$4.73 \mathrm{E}-06$	0.013	0.012	310537	$7.00 \mathrm{E}-10$

rs7917772	A	G	0.620	0.017	0.004	142345	$3.20 \mathrm{E}-05$	0.003	0.011	310537	$9.90 \mathrm{E}-02$
rs 8030605	A	G	0.150	0.029	0.006	141175	$1.66 \mathrm{E}-06$	0.003	0.016	310537	$2.47 \mathrm{E}-01$
rs 8042543	C	T	0.795	0.024	0.005	141009	$3.45 \mathrm{E}-06$	-0.003	0.013	310537	$1.36 \mathrm{E}-01$
rs 8066985	A	G	0.507	0.019	0.004	142684	$1.28 \mathrm{E}-06$	0.001	0.010	310537	$8.06 \mathrm{E}-01$
rs 905938	T	C	0.738	0.030	0.005	140583	$1.73 \mathrm{E}-10$	-0.013	0.012	310537	$8.45 \mathrm{E}-10$
rs 9687846	A	G	0.186	0.027	0.005	142400	$8.28 \mathrm{E}-08$	-0.002	0.013	310537	$4.01 \mathrm{E}-01$
rs 979012	T	C	0.347	0.026	0.004	142646	$4.22 \mathrm{E}-10$	0.013	0.011	310537	$5.13 \mathrm{E}-12$
rs 9991328	T	C	0.480	0.019	0.004	142624	$5.87 \mathrm{E}-07$	-0.014	0.010	310537	$4.62 \mathrm{E}-14$

$\mathrm{BMI}=$ body mass index, $\mathrm{EA}=$ effect allele, EAF = effect allele frequency, $\mathrm{LD}=$ linkage disequilibrium, $\mathrm{MR}=$ Mendelian randomization, $\mathrm{OA}=$ other allele, $\mathrm{SE}=$ standard error, $\mathrm{WHRadjBMI}=$ waist-hip-ratio adjusted for BMI
a) These 3 SNPs exceeded the LD threshold $\left(\mathrm{R}_{2}<0.001\right)$ and were excluded from the two-sample summary MR analysis
b) The effect allele (EA) is the WHR increasing allele
c) Coefficients are given per WHR SD (0.07)
d) Coefficients are given on the logarithmic scale, obtained from a quasi-Poisson regression of hospital admission count on the relevant SNP, using person-years on study as an offset and adjusting for age, sex and the first 40 PCAs

Table S13. BMI-SNP, WHR-SNP and hospital admission count-SNP associations as used for the multivariable two-sample MR analysis of the effect of BMI and WHR on yearly hospital admission rate. Given are the 70 SNPs remaining after LD correction ($\mathrm{R}_{2}<0.001$) to the joint set of BMI and WHR SNPs.

SNP		$\begin{aligned} & \mathbf{O} \\ & \mathbf{A} \end{aligned}$	EAF	BMI-SNP associations (European ancestry GIANT consortium meta-analysis, Locke et al. (2016)				WHR-SNP associations (European ancestry GIANT consortium meta-analysis, Shungin et al. (2015)				Hospital admission count - SNP associations (UK Biobank, $N=310537$)		
				$\beta_{\text {a }}$	SE	\boldsymbol{P}	N	$\beta_{\text {a }}$	SE	\boldsymbol{P}	N	$\boldsymbol{\beta}$ b	SE	\boldsymbol{P}
rs1000940	G	A	0.225	0.019	0.003	$1.28 \mathrm{E}-08$	321836	0.008	0.004	$2.30 \mathrm{E}-02$	211915	-0.012	0.011	9.25E-09
rs1011731	G	A	0.458	-0.006	0.003	$3.88 \mathrm{E}-02$	321942	0.019	0.003	1.10E-08	212094	-0.010	0.010	$7.08 \mathrm{E}-08$
rs10132280	A	C	0.333	-0.023	0.003	$1.14 \mathrm{E}-11$	321797	-0.012	0.004	$8.40 \mathrm{E}-04$	212105	0.003	0.011	$1.76 \mathrm{E}-01$
rs1016287	T	C	0.325	0.023	0.003	$2.25 \mathrm{E}-11$	321969	0.013	0.004	$6.20 \mathrm{E}-04$	212119	0.015	0.011	$9.98 \mathrm{E}-14$
rs10182181	A	G	0.500	-0.031	0.003	$8.78 \mathrm{E}-24$	321759	-0.005	0.003	$1.60 \mathrm{E}-01$	211882	-0.009	0.010	$1.11 \mathrm{E}-06$
rs10245353	A	C	0.183	-0.002	0.004	$5.88 \mathrm{E}-01$	322088	0.027	0.004	$1.60 \mathrm{E}-10$	212151	0.006	0.013	$9.64 \mathrm{E}-03$
rs10733682	A	G	0.425	0.017	0.003	$1.83 \mathrm{E}-08$	320727	0.010	0.003	$2.90 \mathrm{E}-03$	211864	-0.003	0.010	$1.24 \mathrm{E}-01$
rs10938397	A	G	0.567	-0.040	0.003	$3.20 \mathrm{E}-38$	320955	-0.018	0.003	$2.40 \mathrm{E}-07$	211843	-0.004	0.010	$5.44 \mathrm{E}-02$
rs10968576	G	A	0.292	0.025	0.003	$6.61 \mathrm{E}-14$	322061	0.017	0.004	$2.40 \mathrm{E}-06$	212162	-0.001	0.011	$6.46 \mathrm{E}-01$
rs11030104	A	G	0.800	0.041	0.004	$5.56 \mathrm{E}-28$	322103	0.020	0.004	$8.50 \mathrm{E}-07$	212160	0.014	0.013	$1.43 \mathrm{E}-09$
rs11048470	T	G	0.23	-0.009	0.003	$6.35 \mathrm{E}-03$	322043	0.025	0.004	$6.30 \mathrm{E}-12$	212159	-0.001	0.012	$6.45 \mathrm{E}-01$
rs11165643	C	T	0.425	-0.022	0.003	$2.07 \mathrm{E}-12$	320730	-0.009	0.003	$6.60 \mathrm{E}-03$	212148	0.012	0.011	5.15E-10
rs1167827	A	G	0.458	-0.020	0.003	$6.33 \mathrm{E}-10$	306238	-0.006	0.004	8.00E-02	204123	-0.004	0.010	$4.97 \mathrm{E}-02$
rs11727676	C	T	0.07	0.036	0.006	$2.55 \mathrm{E}-08$	296401	0.005	0.007	$4.30 \mathrm{E}-01$	191737	-0.011	0.017	$8.04 \mathrm{E}-04$
rs12286929	G	A	0.433	0.022	0.003	1.31E-12	321903	0.010	0.003	4.10E-03	212086	0.016	0.010	$1.37 \mathrm{E}-18$
rs12429545	G	A	0.900	0.033	0.005	$1.09 \mathrm{E}-12$	312934	-0.015	0.005	$2.90 \mathrm{E}-03$	203113	-0.003	0.016	$2.15 \mathrm{E}-01$
rs12940622	A	G	0.458	-0.018	0.003	$2.49 \mathrm{E}-09$	322032	-0.007	0.003	$2.60 \mathrm{E}-02$	212119	-0.007	0.011	$8.00 \mathrm{E}-33$
rs1294421	G	T	0.600	-0.005	0.003	$1.42 \mathrm{E}-01$	321751	0.025	0.003	$6.90 \mathrm{E}-14$	212054	0.005	0.014	$4.15 \mathrm{E}-04$
rs13021737	A	G	0.125	-0.060	0.004	$1.11 \mathrm{E}-50$	318287	-0.023	0.004	$1.90 \mathrm{E}-07$	209902	-0.011	0.013	$4.17 \mathrm{E}-02$
rs13078960	T	G	0.817	-0.030	0.004	$1.74 \mathrm{E}-14$	322135	-0.010	0.004	$2.10 \mathrm{E}-02$	212190	-0.011	0.020	$2.48 \mathrm{E}-06$
rs13107325	C	T	0.883	-0.048	0.007	$1.82 \mathrm{E}-12$	321461	0.000	0.007	$1.00 \mathrm{E}+00$	211675	-0.002	0.016	$2.57 \mathrm{E}-03$
rs13191362	A	G	0.800	0.028	0.005	$7.34 \mathrm{E}-09$	321902	0.018	0.005	$6.00 \mathrm{E}-04$	212035	0.005	0.015	$4.12 \mathrm{E}-01$
rs1516725	T	C	0.092	-0.045	0.005	$1.89 \mathrm{E}-22$	320644	-0.014	0.005	$4.40 \mathrm{E}-03$	210725	0.012	0.010	5.97E-02
rs1569135	A	G	0.533	0.011	0.003	$5.24 \mathrm{E}-04$	322000	0.024	0.003	$1.00 \mathrm{E}-12$	212086	-0.008	0.021	$2.61 \mathrm{E}-10$
rs16851483	G	T	0.908	-0.048	0.008	$3.55 \mathrm{E}-10$	233929	-0.019	0.008	$2.20 \mathrm{E}-02$	144591	0.007	0.012	$2.41 \mathrm{E}-02$
rs16951275	C	T	0.225	-0.031	0.004	$1.91 \mathrm{E}-17$	322098	-0.016	0.004	$5.00 \mathrm{E}-05$	212172	0.014	0.011	$6.99 \mathrm{E}-04$
rs16996700	T	C	0.700	0.018	0.003	$1.74 \mathrm{E}-07$	322063	0.021	0.004	$1.60 \mathrm{E}-08$	212159	0.015	0.015	8.92E-12
rs17001654	C	G	0.842	-0.031	0.005	$7.76 \mathrm{E}-09$	233722	-0.010	0.006	$9.30 \mathrm{E}-02$	144378	0.016	0.032	$1.65 \mathrm{E}-08$
rs17024393	C	T	0.042	0.066	0.009	$7.03 \mathrm{E}-14$	297874	0.029	0.009	$1.80 \mathrm{E}-03$	189151	0.001	0.013	$4.78 \mathrm{E}-03$
rs17094222	C	T	0.208	0.025	0.004	$5.94 \mathrm{E}-11$	321770	0.013	0.004	$2.00 \mathrm{E}-03$	212078	0.002	0.011	7.17E-01
rs17405819	C	T	0.367	-0.022	0.003	$2.07 \mathrm{E}-11$	322085	-0.002	0.004	$6.80 \mathrm{E}-01$	212166	-0.005	0.011	$4.39 \mathrm{E}-01$
rs17451107	T	C	0.625	0.005	0.003	$1.58 \mathrm{E}-01$	320725	0.023	0.004	$3.50 \mathrm{E}-11$	211586	0.020	0.012	$1.26 \mathrm{E}-02$
rs17724992	A	G	0.692	0.019	0.004	$3.42 \mathrm{E}-08$	319588	0.019	0.004	$9.30 \mathrm{E}-07$	210660	0.001	0.010	$3.19 \mathrm{E}-22$
rs1808579	T	C	0.475	-0.017	0.003	$4.17 \mathrm{E}-08$	322032	-0.004	0.003	$1.80 \mathrm{E}-01$	212105	0.001	0.010	$4.37 \mathrm{E}-01$
rs1928295	C	T	0.425	-0.019	0.003	$7.91 \mathrm{E}-10$	321979	-0.012	0.003	$3.90 \mathrm{E}-04$	212089	-0.002	0.011	$5.46 \mathrm{E}-01$
rs2033529	G	A	0.258	0.019	0.003	$1.39 \mathrm{E}-08$	321917	0.016	0.004	6.00E-06	212146	-0.000	0.012	$3.73 \mathrm{E}-01$
rs2033732	C	T	0.758	0.019	0.004	$4.89 \mathrm{E}-08$	321406	0.009	0.004	$1.80 \mathrm{E}-02$	211985	0.025	0.012	$9.30 \mathrm{E}-01$
rs205262	A	G	0.733	-0.022	0.004	$1.75 \mathrm{E}-10$	315542	0.000	0.004	$9.80 \mathrm{E}-01$	205608	0.013	0.011	$7.63 \mathrm{E}-32$
rs2112347	G	T	0.375	-0.026	0.003	$6.19 \mathrm{E}-17$	322019	-0.013	0.003	$2.50 \mathrm{E}-04$	212132	0.015	0.015	$2.56 \mathrm{E}-11$

rs2121279	T	C	0.117	0.024	0.004	$2.31 \mathrm{E}-08$	322065	0.010	0.005	$4.20 \mathrm{E}-02$	212154	0.004	0.012	$1.86 \mathrm{E}-08$
rs2176598	T	C	0.200	0.020	0.004	$2.97 \mathrm{E}-08$	316848	0.016	0.004	$3.50 \mathrm{E}-05$	206987	0.016	0.011	$8.57 \mathrm{E}-02$
rs2179129	A	G	0.550	-0.002	0.003	$5.87 \mathrm{E}-01$	321616	0.021	0.003	$1.20 \mathrm{E}-09$	212181	0.009	0.014	$1.54 \mathrm{E}-18$
rs2207139	G	A	0.100	0.045	0.00	$4.13 \mathrm{E}-29$	322019	0.025	0.00	$1.40 \mathrm{E}-08$	212163	0.008	0.014	$1.68 \mathrm{E}-04$
rs2245368	T	C	0.758	-0.032	0.006	$3.19 \mathrm{E}-08$	205675	-0.009	0.006	$1.30 \mathrm{E}-01$	133817	0.013	0.014	$1.00 \mathrm{E}-03$
rs2287019	C	T	0.850	0.036	0.004	$4.58 \mathrm{E}-18$	300921	0.026	0.004	$4.30 \mathrm{E}-09$	199713	0.013	0.014	$8.26 \mathrm{E}-08$
rs2365389	C	T	0.658	0.020	0.003	$1.63 \mathrm{E}-10$	316768	0.008	0.003	$2.20 \mathrm{E}-02$	208487	-0.007	0.011	$3.20 \mathrm{E}-04$
rs2820292	A	C	0.492	-0.020	0.003	$1.83 \mathrm{E}-10$	321707	-0.011	0.003	$7.80 \mathrm{E}-04$	212043	0.003	0.010	$6.24 \mathrm{E}-02$
rs3101336	T	C	0.351	-0.033	0.003	$2.66 \mathrm{E}-26$	316872	-0.016	0.003	$3.60 \mathrm{E}-06$	206980	0.005	0.011	$4.49 \mathrm{E}-03$
rs3736485	A	G	0.425	0.018	0.003	$7.41 \mathrm{E}-09$	321398	0.015	0.003	$6.60 \mathrm{E}-06$	212010	0.017	0.010	$1.62 \mathrm{E}-19$
rs378689	G	A	0.408	0.007	0.003	$3.43 \mathrm{E}-02$	321528	0.022	0.003	$4.00 \mathrm{E}-11$	212009	-0.002	0.010	$2.46 \mathrm{E}-01$
rs3817334	C	T	0.550	-0.026	0.003	$5.14 \mathrm{E}-17$	321959	-0.009	0.003	$6.10 \mathrm{E}-03$	212046	-0.004	0.010	$5.00 \mathrm{E}-02$
rs3849570	A	C	0.367	0.019	0.003	$2.60 \mathrm{E}-08$	284339	0.011	0.004	$2.20 \mathrm{E}-03$	182853	0.010	0.011	$2.95 \mathrm{E}-07$
rs388819	A	C	0.35	0.031	0.003	$3.14 \mathrm{E}-23$	321930	0.016	0.003	$1.40 \mathrm{E}-06$	212068	0.013	0.011	$1.71 \mathrm{E}-11$
rs4256980	G	C	0.725	0.021	0.003	$2.90 \mathrm{E}-11$	320028	0.019	0.003	$5.30 \mathrm{E}-08$	210672	0.003	0.011	$8.63 \mathrm{E}-02$
rs459193	A	G	0.21	0.007	0.004	$4.29 \mathrm{E}-02$	321858	0.026	0.004	$6.00 \mathrm{E}-12$	212101	-0.008	0.013	$3.67 \mathrm{E}-04$
rs4640244	G	A	0.375	0.016	0.00	$4.57 \mathrm{E}-06$	305292	0.021	0.004	$3.10 \mathrm{E}-08$	198799	0.013	0.011	$1.06 \mathrm{E}-11$
rs4740619	T	C	0.533	0.018	0.003	$4.56 \mathrm{E}-09$	321887	0.011	0.003	$1.10 \mathrm{E}-03$	212076	0.023	0.010	$3.67 \mathrm{E}-36$
rs543874	G	A	0.267	0.048	0.004	$2.62 \mathrm{E}-35$	322008	0.020	0.004	$2.00 \mathrm{E}-06$	212160	-0.005	0.013	$3.75 \mathrm{E}-02$
rs6477694	C	T	0.358	0.017	0.003	$2.67 \mathrm{E}-08$	322048	0.015	0.003	$1.50 \mathrm{E}-05$	212114	0.013	0.011	$5.67 \mathrm{E}-12$
rs6567160	C	T	0.283	0.056	0.004	$3.93 \mathrm{E}-53$	321958	0.025	0.004	$5.90 \mathrm{E}-10$	212147	0.012	0.012	$9.65 \mathrm{E}-09$
rs657452	A	G	0.417	0.023	0.003	$5.48 \mathrm{E}-13$	313651	0.014	0.004	$4.20 \mathrm{E}-05$	204624	0.014	0.011	$9.58 \mathrm{E}-14$
rs6804842	A	G	0.425	-0.018	0.003	$2.48 \mathrm{E}-09$	321463	-0.006	0.003	$5.80 \mathrm{E}-02$	212015	-0.015	0.010	$2.87 \mathrm{E}-16$
rs7138803	G	A	0.558	-0.032	0.003	8.15E-24	322092	-0.014	0.004	$3.50 \mathrm{E}-05$	212167	-0.016	0.011	$4.60 \mathrm{E}-16$
rs7141420	T	C	0.617	0.024	0.003	$1.23 \mathrm{E}-14$	321970	0.017	0.003	$5.10 \mathrm{E}-07$	212098	0.004	0.010	$2.70 \mathrm{E}-02$
rs758747	C	T	0.733	-0.022	0.004	$7.47 \mathrm{E}-10$	308688	-0.007	0.004	$6.30 \mathrm{E}-02$	200285	-0.009	0.012	$5.07 \mathrm{E}-06$
rs7599312	G	A	0.708	0.022	0.003	$1.17 \mathrm{E}-10$	322024	0.009	0.004	1.70E-02	212134	0.006	0.012	$3.37 \mathrm{E}-03$
rs7899106	A	G	0.950	-0.040	0.007	$2.96 \mathrm{E}-08$	321770	-0.011	0.008	$1.40 \mathrm{E}-01$	212004	-0.009	0.024	$3.19 \mathrm{E}-02$
rs7903146	T	C	0.250	-0.023	0.003	$1.11 \mathrm{E}-11$	322130	-0.003	0.004	$4.30 \mathrm{E}-01$	212185	-0.000	0.011	$9.53 \mathrm{E}-01$
rs929641	A	G	0.617	0.017	0.003	$1.11 \mathrm{E}-07$	322004	0.020	0.003	$4.20 \mathrm{E}-09$	212102	-0.015	0.011	$3.58 \mathrm{E}-16$
rs9400239	C	T	0.700	0.019	0.003	$1.61 \mathrm{E}-08$	321988	0.015	0.004	$2.10 \mathrm{E}-05$	212123	0.017	0.011	$7.57 \mathrm{E}-18$

$\mathrm{BMI}=$ body mass index, $\mathrm{EA}=$ effect allele, $\mathrm{EAF}=$ effect allele frequency, $\mathrm{LD}=$ linkage disequilibrium, $\mathrm{MR}=$ Mendelian randomization, $\mathrm{OA}=$ other allele, $\mathrm{SE}=$ standard error, $\mathrm{WHR}=$ waist-hip-ratio
a) Coefficients are given per SD unit, $4.6 \mathrm{~kg} / \mathrm{m}_{2}$ and 0.07 , for BMI and WHR, respectively, consistent with the Locke (2016) and Shungin (2015) GWAS meta-analyses. For the analyses the coefficients were used on the SD scale for both exposures and rescaled to whole units for BMI and 0.1 units for WHR.
b) Coefficients are given on the logarithmic scale, obtained from a quasi-Poisson regression of hospital admission count on the relevant SNP, using person-years on study as an offset and adjusting for age, sex and the first 40 PCAs

BMI

A

Rucker's Q

B

Figure S1. Plots for two-sample MR analysis of BMI effect (per SD, with SDвмı=4.6) on yearly hospital admission count in UK Biobank participants of White British ancestry. Effects are shown on the $\log (r a t e)$ scale. A) Cochran's Q is plotted against Rucker's Q for each SNP, as calculated in a leave-one-out analysis. Outliers have been visually identified and are labeled. Q-statistics for the model with the full set of 64 SNPs (red) and with outliers removed (61 SNPs, blue) are shown. B) SNP effect on yearly hospital admission count is plotted against the SNP effect on BMI. Fitted lines are displayed for the random effects MR-Egger, penalized weighted median, weighted mode and random effects exact weight IVW models. The outliers identified in plot A are shown in blue. * denotes a significant slope.

WHR

A

B

Figure S2. Plots for two-sample MR analysis of WHR effect (per SD, with SDwHR=0.07) on yearly hospital admission count in UK Biobank participants of White British ancestry. Effects are shown on the $\log (r a t e)$ scale. A) Cochran's Q is plotted against Rucker's Q for each SNP, as calculated in a leave-one-out analysis. Outliers have been visually identified and are labeled. Q-statistics for the model with the full sets of 34 SNPs (red) and with outliers removed (30 SNPs, blue) are shown. B) SNP effect on yearly hospital admission count is plotted against the SNP effect on WHR. Fitted lines are displayed for the random effects MR-Egger, penalized weighted median, weighted mode and random effects exact weight IVW models. The outliers identified in plot A are shown in blue. * denotes a significant slope.

WHRadjBMI

A

B

Figure S3. Plots for two-sample MR analysis of WHRadjBMI effect (per SD, with SDwHR=0.07) on yearly hospital admission count in UK Biobank participants of White British ancestry. Effects are shown on the $\log (r a t e)$ scale. A) Cochran's Q is plotted against Rucker's Q for each SNP, as calculated in a leave-one-out analysis. Outliers have been visually identified and are labeled. Qstatistics for the model with the full set of 45 SNPs (red) and with outliers removed (41 SNPs, blue) are shown. B) SNP effect on yearly hospital admission count is plotted against the SNP effect on WHRadjBMI. Fitted lines are displayed for the random effects MR-Egger, penalized weighted median, weighted mode and random effects exact weight IVW models. The outliers identified in plot A are shown in blue. ${ }^{*}$ denotes a significant slope.

