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[bookmark: _Toc45273839][bookmark: _Toc45299990]Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER)
Please see Supplemental Information [SI] Table 1 for details on how this study meets the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).

[bookmark: _Toc44325828][bookmark: _Toc44488349][bookmark: _Toc44489559][bookmark: _Toc45273840][bookmark: _Toc45299991]Methods overview
Supplemental Information [SI] Figure 1 presents a schematic representation of the modeling process. The estimation of past and current deaths blends data on reported COVID-19 deaths, COVID-19 hospitalizations, and COVID-19 cases and testing rates; there are various biases (described in SI section 2) associated with reported COVID-19 deaths that must be overcome before the next step of the modeling process. By using COVID-19 cases and testing rates (and hospitalization data where available) as leading indicators of deaths, we can extend our estimates of deaths beyond that of the available death data (in particular, by up to 8 days past the last death datapoint; details are given in SI Section 4). From estimates of past and current daily deaths, we calculate past and current daily new SARS-CoV-2 infections using age-specific mortality rates, age-specific infection fatality rates, and estimates of the average time from infection to death (details are given in SI Section 4.3).
The primary model for estimating future infections and deaths is a mechanistic compartmental model. Specifically, the fraction of each location’s population that is susceptible (), infected but not infectious (exposed, ), infectious (, ), and recovered (), forming an SEIR model. Temporal variations in past transmission intensity is captured through the time-varying parameter  (details are given in SI Section 5). The association between the time-varying transmission intensity and a number of covariates is assessed in a multivariate mixed effects regression across all locations simultaneously (details are given in SI Section 5. Each of the covariates is then forecast into the future, with certain covariates forecast multiple times corresponding to unique future scenarios (details are given in SI Sections 5, 6). The forecast covariate values and the fitted regression model are then used to estimate future transmission intensity; the future transmission intensity is then used in the SEIR framework to estimate future infections. Finally, reversing the process that estimated past infections from past deaths, future deaths are estimated from future infections (details are given in SI Section 5.4).
The final component of the modeling approach uses past, current, and future infections and deaths to estimate hospitalizations, including estimates of ICU usage and invasive ventilation need (details are given in SI Section 7).
The estimation of past and current deaths model produces uncertainty. From this uncertainty, we generate 1,000 draws of past and current deaths for each location. The remaining steps of the process described above in brief and below in detail are done by draw, accumulating uncertainty in the subsequent steps (e.g., a separate regression connecting location-specific time-varying transmission intensity to covariates is conducted for each draw).
[bookmark: _Toc44325829][bookmark: _Toc44488350][bookmark: _Toc45273841][bookmark: _Toc45299992]Death, case, and hospital quantities
Our sources of COVID-19 data come from a wide range of both governmental, non-profit, and volunteer organizations. In all instances, we aim to best reflect what information is being reported by each location with respect to the various COVID-19 measures. Given the various data requirements for the model, we collated the following information:
· Basic COVID-19 epidemiological data (cases and deaths by location and date)
· COVID-19 hospital utilization data (cumulative hospitalizations or admissions data)
· Detailed COVID-19 epidemiological data (age and sex stratified data, time interval between symptom onset and clinical outcome, length of stay in hospital etc.)
· Covariate data (discussed in SI Section 3), including testing rates or data describing behaviors relevant to COVID-19 transmission (e.g. mask use and general mobility)
Such data collection processes naturally reflect the messy nature of daily data collection and processing – throughout the pandemic we have seen data systems fail and days of non-report that can lead to misleading artefacts in time series that hinder modelling. Where feasible to track (such as state-level cases and deaths) we track multiple sources of data which either allows us to replace erroneous data should one system fail or identify artefacts in common and seek out a specific resolution.
[bookmark: _Toc44488351][bookmark: _Toc44489561]All data sources are described in more detail below, as well as specific fixes and corrections required for each data type.
[bookmark: _Toc45273842][bookmark: _Toc45299993]Basic COVID-19 epidemiological data
Sources for the epidemiological data used in our model are listed by state in SI Table 2. As a first pass, given their global data collection efforts, we used the Johns Hopkins University CSSE data collection system, which uses a variety of primarily web-scraping and text parsing approaches to periodically capture reported case and death numbers. Across the pandemic, we have seen many times when data reporting mechanisms have either broken down or have been paused (e.g. for weekends) and consequently induce artefacts in daily case and death time series. For the US states and territories, we supplement JHU routine collection in two ways (a) using The COVID-19 Tracking Project (www.covidtracking.com) archive of historical data that captures screenshots of state COVID-19 dashboards several times throughout the day, allowing more flexibility in those locations where data updates were delayed and (b) manual extraction and verification of state dashboards and tracking of press-releases and footnotes of known issues and days off.
For some states, due to repeated inconsistencies between state reports and JHU time series, we have completely replaced the automated time series with a human curated alternative, supported by a library of screen captures and downloaded epidemiological bulletins and summaries (SI Table 3). Where there are only intermittent discrepancies or regular known artefacts (e.g. Oregon not reporting on weekends starting late May/early June), we have a separate mechanism that replaces erroneous values (SI Table 4). General sources for these data are listed by state in SI Table 2.

[bookmark: _Toc45273843][bookmark: _Toc45299994]Detailed COVID-19 epidemiological data
From a number of locations, far more than just total cases and deaths are reported, allowing us to inform a variety of key parameters with data collated from across the world. Not all locations report every piece of data however, so these data tend to be fragmented in space and time.
We currently source data stratified by age from 40 locations. Where feasible, this dataset continues to be updated so it most accurately reflects the current state of affairs. Supplemental Information Section 4 describes how these available data are subset and utilized in the relevant analysis for both mortality rates and infection-fatality rates. In addition, we track duration and length of stay data to inform hospital utilization statistics. To inform this, we use a mix of reported summary statistics, as well as survival analysis of individual line list data. In short, we a use the Global Line List (https://github.com/beoutbreakprepared/nCoV2019) together with publicly available, de-identified individual patient data from Ohio State, USA; Mexico; Ceara State and Rio de Janeiro State, Brazil, to estimate the distribution of days from onset of symptoms to death from COVID-19.
[bookmark: _Toc44325831][bookmark: _Toc44488354][bookmark: _Toc44489564]
[bookmark: _Toc45273844][bookmark: _Toc45299995]Data preparation
While global compilers of data on cases and deaths expedite collection of data across multiple countries and locations, for a variety of reasons these more-automated compilers can be incorrect. Similarly, even where these aggregators are faithfully documenting what is reported, local issues (such as laboratories not releasing information to state officials in a timely way) introduce a variety of artefacts into the data that have no epidemiological relevance, but reflect issues in the data generation and reporting process instead. Wherever possible, we adjust for these issues to better reflect the state-of-the-art knowledge of the epidemiological situation. Where an anomaly is identified, we cross-reference with state Department of Health dashboards, or other data aggregators (such as The COVID Tracking Project; www.covidtracking.com) to identify the source of the discrepancy. News reports and press releases are consulted when, rather than a data collection error, a reporting issue is noted, or the date when probable cases and deaths were first added to the official tally introducing a large spike in daily deaths and cases.
For some locations, due to repeated inconsistencies between Johns Hopkins data and state-level reporting, we have manually undertaken our own extraction, or sourced an alternate repository of data (SI Table 4).
Ad-hoc corrections made to the Johns Hopkins dataset are described in SI Table 5. Where artefacts are identified, the indicated cases and deaths are redistributed in the preceding time period proportionate to the daily patterning of cases and deaths. The following redistribution steps took place:
· Delaware – 23rd June, 67 deaths – Deaths from a prior period were reported on this day;
· Louisiana – 21st May, 682 cases – Louisiana reported a backlog of positive tests;
· Maryland – 14th April, 64 cases – first day of reported probable cases;
· Massachusetts – 1st June, 3,514 cases - Massachusetts added probable deaths and cases on 1st June;
· Massachusetts – 1st June, 141 deaths - Massachusetts added probable deaths and cases on 1st June;
· Massachusetts – 2nd June, 110 cases – Massachusetts continued to add probable cases;
· Michigan – 5th June, 5014 cases – Michigan started reporting probable cases;
· Michigan – 5th June, 239 deaths – Michigan started reporting probable cases;
· New Jersey – 25th June, 1854 deaths – Probable deaths included for the first time;
· Wyoming – 9th April, 73 cases – Day Wyoming first reported probable cases.
For the following locations, we removed the total associated number of cases or deaths from the preceding time period proportionate to the daily patterning of cases and deaths:
· Louisiana – 18th June 1666 cases – 1666 cases were identified as duplicates and total was revised;
· North Dakota – 25th May 82 cases – 82 positive results were considered inconclusive and asked to be re-tested due to a lab experiencing a recent malfunction on two pieces of lab equipment.

[bookmark: _Toc45273845][bookmark: _Toc44488352][bookmark: _Toc44489562][bookmark: _Toc45299996]COVID-19 hospital utilization data
Our model also estimates numbers of individuals in hospital and in intensive care. Hospitalization data therefore gets used in two ways: (i) as a leading predictor of daily deaths (ii) as a statistic used to define the number of hospitalizations that result in deaths.
Data for these metrics were collected from the respective state departments of health and associated dashboards. It is important to note that hospitalization data is typically reported in one of three formats: (i) the cumulative total of all hospitalizations to date (ii) the daily admission of newly hospitalized patients (which if a series is inclusive of the first day of admissions, a cumulative total can be recapitulated) and (iii) as a census statistic that reports the number of individuals currently in-hospital. Our current modelling framework takes advantage of data reported in formats (I) and (ii). Sources for these data are listed by state in SI Table 5.

[bookmark: _Toc45273846][bookmark: _Toc45299997]Modeling past deaths using random knot combination splines (RKCS)
In order to derive infections from deaths and the infection fatality rate (SI Section 4) for use in the transmission model, we first develop a series of spline regressions using IHME’s customized meta-regression tool MR-BRT. MR-BRT (“meta-regression—Bayesian, regularized, trimmed”) is a trimmed constrained mixed-effects model that provides an easy interface for formulating and solving common linear and nonlinear mixed effects models. It is open source, and its core computational kernel uses the mixed effects package LimeTr (https://github.com/zhengp0/limetr) and the spline package XSpline (https://github.com/zhengp0/xspline). For the statistical models and algorithmic features underlying MR-BRT, a published technical report is available1.
The spline regressions obtained from MR-BRT smooth the trend in reported deaths and leverage patterns in reported case and hospital admissions data where available to make short term (8-day) forecasts of deaths. We use MR-BRT functionality that allows the user to specify a number of potential knot combinations to be randomly generated and runs separate models for each combination, which are then evaluated for performance and combined using those scores to create a weighted composite of the sub-models. We use 50 combinations in each of the subsequently described model stages, which are run separately by location.
[bookmark: _Toc45273847][bookmark: _Toc45299998]Data and model overview
Deaths and cases by day were available for every location; hospital admissions data were also available for 27 states. Before merging with deaths for modelling we account for the lag between onset of symptoms and death based on the Global Line List (https://github.com/beoutbreakprepared/nCoV2019) by shifting dates for these measures to be 8 days later than reporting date.
[bookmark: _Toc45273848][bookmark: _Toc45299999]Deaths from reported cases and hospitalizations
In the first stage we model the log cumulative death rate with either the log cumulative case rate or the log cumulative hospital admission rate as independent variables. Where data for both of the independent variables are available, separate models are run for each measure. We use a cubic spline with six knots, but with the left- and right-most intervals forced to be linear rather than cubic. We constrain the curve such that deaths monotonically increase along with cases/hospitalizations. Because of the shift window, we have 8 days of case and hospitalization data that extend past the last day of death data used to fit the model – by linearly extrapolating the tail of the fitted curve, we produce 8-day projections of deaths in addition to our in-sample fit. These estimates capture the trend in cases or hospitalizations while effectively accounting for changing case- and hospitalization-fatality ratios due to variation in exogenous factors such as age pattern of cases and testing rates.
[bookmark: _Toc45273849][bookmark: _Toc45300000]Fitting final deaths curve with uncertainty
Using deaths estimated through cases and hospitalizations from the model described above, in addition to observed deaths, we then fit a second stage model using all three sources with time (in days) as the independent variable. For this model, we run with two alternative dependent variable transformations – log cumulative deaths and log daily deaths, with an offset of 0.01 deaths per capita. While the latter is most effective at closely following the daily time trend, it can perform poorly in settings where there are few deaths due to overdispersion. As such, we use an algorithm that creates a linear combination of the two predictions where the weight given to the daily model result is equal to the total number of deaths in a location divided by 50 (capped at 1), and the cumulative model result receives the remaining weight. This prevents an abrupt transition in modeling strategy that would occur were we to use a singular threshold. In the cumulative model, we use the same settings as the previous stage – cubic spline with 6 knots, linear tails, and constrained to be monotonically increasing with the independent variable (time, in this case). The daily model is identical but without the monotonicity constraint.
With the resultant curve, we calculate the robust standard error using residuals in log daily space and create 1000 independent samples around the mean of that curve for each day, making 1000 uncorrelated time series representative of the observed noise in the data. We refit the log daily deaths model to each of these time series, giving us smooth estimates of death with uncertainty for the full range of dates with observed deaths and extending out to an 8-day forecasts.

[bookmark: _Toc45273850][bookmark: _Toc45300001]Estimating infections from deaths
Conditioning on the death draws produced in SI Section 2.5 and the Infection Fatality Rate (IFR) and age-specific mortality rate (MR) calculated in SI Sections 4.2 and 4.1, daily infections are inferred by stratifying all-age deaths into age-specific deaths, using the age-specific IFR to determine the number of infections that would have led to this quantity of age-deaths, and then backshifting the infections in time to account for the lag between infection and deaths.
For each of the 1000 cumulative death draws time-series, , one infection-to-death lag,  is randomly sampled from a discrete uniform distribution on 17 to 21 days.
For each lowest-level location, :
1. Daily deaths time-series, , are generated by differencing the cumulative deaths time-series, 
2. The mortality probabilities,  for an individual in this location belonging to each 5-year age bins, , is calculated:
,
where , is the total population for that  at . If this is not available, we resort to using the parent location’s population.
3. The expected age-specific daily deaths time-series,  is calculated by stratifying the all-age deaths using the age-specific mortality probabilities, :
.
4. The expected age-specific daily infections time-series, , are calculated from the age-specific IFR and daily deaths:

5. The date of the infection time-series is taken to be the date of the death time series shifted back by  days.
6. The all-age daily infection time-series is prepared for the SEIR model by summing the infections across all age groups:

This process yields 1000 draws of daily new infections across all modeled locations.

[bookmark: _Toc45273851][bookmark: _Toc45300002]COVID-19 covariates
Covariates for the compartmental transmission SEIR model are predictors of the β parameter in the model that affect the transition from Susceptible to Infected states. Covariates were evaluated on the basis of biologic plausibility and on the impact on the results of the SEIR model. Given limited empirical evidence of population-level predictors of SARS-CoV-2 transmission, biologically plausible predictors of pneumonia such as population density (percentage of the population living in areas with more than 1000 individuals per square kilometer), tobacco smoking prevalence, population-weighted elevation, lower respiratory infection mortality rate, and particulate matter air pollution were considered. These covariates are representative at a population-level and are time invariant. Spatially resolved estimates for these covariates are derived from the Global Burden of Disease Study 20192. Time varying covariates include seasonality of pneumonia excess mortality, diagnostic tests per capita, population-level mobility, and personal mask use. These are described in the following sections and summarized in SI Table 6.

[bookmark: _Toc45273852][bookmark: _Toc44325833][bookmark: _Toc44488356][bookmark: _Toc44489566][bookmark: _Toc45300003]Social distancing mandates
A wide array of social distancing mandates have been implemented across the 50 states, some presenting as recommendations, others as requirements, some presenting fragmented updates that escalate over a few days or weeks, others as discrete events where a state transitions from no measures to full implementation of strict social distancing measures. To allow for comparability across different geographies, we collected and collated these mandates focusing on four components of social distancing, with six tiers of implementation. We only included those orders that were direct restrictions and had a legal basis for enforcement; executive orders that were only “recommendations” or that “urged” or “encouraged” citizens were therefore excluded. In all instances, we were interested in documenting the date of enactment, not the date of proclamation.
[bookmark: _Toc45273853][bookmark: _Toc45300004]Data processing
Following New Zealand’s Alert Level system we identified four key sectors: stay-at-home measures intended to restrict the number of direct contacts any individuals may have, business and workplace closures intended to minimize transmission among employees and with customers, educational closures intended to protect students and staff, and internal travel restrictions intended to limit the amount of non-essential movement taken by individuals. For stay-at-home measures we considered two strata – the date at which any restrictions on the gathering of people took place, and the date at which a full stay-at-home order was mandated, with interactions between households restricted. For business closures we considered two strata – the date at which the first restrictions applied to businesses were enacted, and the date on which all non-essential businesses were mandated to close. “Non-essential” is an inherently local distinction – rather than provide an exhaustive list of businesses that must have been closed in order to qualify, we followed local guidance. The necessary component however was clear exhaustive local guidance as to what businesses were essential, with an emphasis that all other businesses are non-essential and therefore closed. In reality, there exist many more nuances and subdivisions of these categorizations3 which are better captured in other measures than an exhaustive discretization of all possible legal mandate permutations.
In the last few months we have seen the de-escalation of these social distancing measures and have tracked the dates on which prior restrictions have been repealed. Additionally, some states are re-imposing social distancing measures in recent weeks, which we also track and incorporate into the model. We identified legislation that was the antithesis of the closure orders that proceeded them. Consequently, should an executive order requiring people to stay at home be relaxed so that different households could interact, or that individuals could leave home for non-essential reasons, these orders would be associated with the date of relaxation. For an executive order to be repealed, it must be repealed across the entirety of the population affected – states that were following a phased process that varied county by county were only considered to have repealed the strictest mandates once all counties had the social distancing measures relaxed.
We used two key approaches for populating the US mandate database – (i) cross-referencing the resource compiled by the University of Washington Political Sciences Department tracking state-level executive orders and (ii) supplementation of these efforts by direct searches of state legislature websites, and governor websites. Supplemental Information Table 7 provides the date of enactment and repeal by state for each the six tracked measures, as well as linking to the source used to verify (see also SI Figure 2 and SI Figure 3). Global mandates were tracked via a combination of using the World Health Organization’s Public Health Social Mandates database, supplemented by specific local searches of government websites and news resources.
[bookmark: _Toc44488358][bookmark: _Toc44489568][bookmark: _Toc45273854][bookmark: _Toc44325835][bookmark: _Toc45300005]Use in SEIR-fit
After analyzing the time trends of mandate imposition around the world, we noticed that initial mandate imposition occurred within a two-three week period during March for most of the world, indicating that mandate imposition had more to do with global pressure to enact mandates and less to do with the outbreak size in a specific location.
Rather than model each mandate individually, we looked at the mandate imposition trend in aggregate across five of the six IHME mandates: stay at home order, educational facilities closed, all non-essential businesses closed, partial business closure, and any gathering restriction. Specifically, we fit a quasibinomial model (mgcv R package) on the proportion of five mandates implemented at a given time as a function of location and date. The regression has a location specific intercept and a spline on day with six knots.

[bookmark: _Toc45273855][bookmark: _Toc45300006]Forecasting mandates
The probability that five mandates will be “on” during any given day declines towards zero over time. To ensure that mandate forecasts align with observed data, we multiplicatively intercept shift the forecast to the start at the most recent observed data for mandate status.

[bookmark: _Toc44325836][bookmark: _Toc44488359][bookmark: _Toc44489569][bookmark: _Toc45273856][bookmark: _Toc45300007]Mobility
In order to better understand and predict disease transmission, we estimate human movement relative to baseline movement patterns prior to the COVID-19 pandemic.
[bookmark: _Toc45273857][bookmark: _Toc45300008]Data processing
These data come from mobile phone users. We used four primary resources to gauge the changes in relative mobility of populations within each state: Google Community Mobility Reports4, Facebook Data for Good5, Safegraph6, and Descartes Laboratories7. Each of these sources have different definitions of mobility. For example, the data from Google reports distance traveled to six categories of locations relative to daily values from 03 January 3 to 06 February, 2020. SafeGraph reports the percent of devices that do not leave “home” relative to a baseline period of 08 February to 14 February, 2020.
Google data are reported as a percentage difference in attendance to certain destinations compared to the median value from the 5-week period 03 January to 06 February, 2020. The reports are stratified by six destinations: “Retail & recreation”, “Grocery and pharmacy”, “Parks”, “Transit stations”, “Workplaces”, and “Residential”. We took the average of the percentage change in the “Retail & recreation”, “Transit stations”, and “Workplaces” since these three destinations represent activities most strongly affected by the social distancing measures. No further processing is undertaken prior to modelling.
Descartes Laboratories release mobility statistics at state and county levels. They provide a mobility index (of values normalized for the weeks of 17 February to 07 March, 2020) that represents the maximum Haversine (great circle) distance from the initial starting points reported by devices. The top 10% of their data is removed due to possible inclusion of outlier data due to poor GPS recording. The index is reported from 01 March, 2020 through to three days prior to-date. The index is transformed by subtracting 100 from the m50_index value.
Safegraph data release a number of measures that allow for a stay-at-home metric to be calculated. Data is reported from January 1st through to three days prior to-date, derived from GPS reports from anonymous mobile devices. These are used to determine a nighttime location for each device over a six week period. Devices are aggregated by home census block group. For modelling we determine an index representing the percent difference between the number of devices that flagged as having not stayed within their home range as compared to the mean number of devices that stayed within their home range over a baseline reference period (08 February and 14 February, 2020). To calculate the number of devices that stay within home range, for each census block group, we determine the ratio of devices that never leave home to the total number of devices. Using the associated FIPS codes, we can aggregate to the various analysis locations (whether counties, or states, or territories) by taking the device-weighted mean of the census block group ratios.
Facebook Data for Good datasets are determined location-by-location or as geographic ranges. Facebook tracks the aggregate patterns of movement of Facebook users with location history turned on over a period of several hours. For this analysis, we receive patterns of movement reported by location-specific administrative regions, which vary based upon the geographic range of the dataset (which could span neighborhoods of a city, different cities, or districts, counties, or states). For each, a baseline period for future comparison is developed by considering the prior 45 days of Facebook user activity. Subsequent to the date of initiation, all future days of reporting cross-reference their own baseline activity period. For each dataset, we used latitude and longitude for a given location to match it to one of our modeled geographies using a spatial overlay. Where latitudes and longitudes were missing or did not accurately represent a location, we manually assigned a model geography by name. Using the start location from out modeled geographies, we find the mean percent change in mobility for all trips starting from that location on a given day and at a given time (0800, 1200, or 1600). We weight this mean by the number of users who normally take this trip (n_baseline). Given the variable baseline periods, we must transform Facebook data so that it is comparable to other sources – given the much broader geographic coverage of Google Community Mobility reports, we calculate the mean percent change in Google data for 45 days preceding the first day of Facebook data and apply this to the Facebook percentage change. Where the Facebook data starting date occurred before or at the same time as the Google data, no transformation was necessary. Where Facebook data was present after the initiation of Google’s time series, we calculated a baseline for Facebook using the mean percent change in Google data over the 45 days prior. To adjust Facebook data, we calculated the absolute value change for the estimated Facebook baseline, added the difference between Google and Facebook values, and divided by the Google baseline. This resulted in a new mean percent change that was consistent with the baseline from Google and the other mobility datasets, rather than the Facebook dataset specific timings, some of which cross-reference a baseline period well into the lockdown period.
There are several steps to smooth and standardize the data. We observe strong patterns in mobility by the day of the week. The data from Google is already corrected for these day-of-week patterns. For all other sources we calculate a 7-day rolling mean to account for weekly trends.
[bookmark: _Toc45273858][bookmark: _Toc45300009]Use in SEIR-fit
To account for differences in time coverage between sources we calculate the median ratio between each available pair of sources for each location across the time series. In locations where we are missing the time series for a given source, we impute based on all other sources and the median ratio in that location over time.
In the US, we calculate the indicator based on all four sources, and in the rest of the world, we calculate the indicator based on Google and Facebook data. Because the sources tend to provide systematically different estimates, and when a given location is missing data from a component source, we impute values for the missing source based on the available source(s) and the global median ratio(s) with the missing source.
After all missing dates and sources have been imputed, we average across sources and take a 5-day rolling mean using Gaussian process regression to smooth over time. For locations where we are missing data early in the time series, we use Holt smoothing back in time, linear damped with phi = 0.9 to create a full time series from 01 January, 2020 through the most recent available date of data. In sub-national and national locations where we are missing data, we impute the national and regional averages respectively.
Once we have generated a full location/time series dataset of mobility, we fit a linear regression using an open source mixed effects solver SLIME (https://github.com/zhengp0/SLIME/) to determine the effects of social distancing mandates in each location. SLIME provides functionality to incorporate bounds and a Gaussian prior to the total effects which is important for guiding the regression finding the correct coefficients. We calculate mobility as:

Where  is the percent change from baseline for a given location (l) and time (t), , , , , and  are indicator variables for five social distancing mandates—stay at home order, school closures, essential business closures, restricted gathering order, and partial business closures—set to be 1 when a policy is implemented in a given location (l) and time (t) and 0 otherwise. is an indicator variable that is set to 1 beginning 7 days before the first mandate is implemented to account for reduced mobility prior to policy intervention. estimates the location-specific (l) effect of each mandate (i) and  is the residual error. We set a prior on the variance of all random effects of 0.001 and set a bound such that  must be negative for all locations (l) and mandates (i).
[bookmark: _Toc45273859][bookmark: _Toc45300010]Forecasting mobility
For each location we forecast mobility based on the location-specific estimated effects () and any mandates that have been lifted or announced. Beyond the period for which we have documented policies, we use the mandate forecast model described in section 3.1.3, which estimates the location-specific proportion of mandates implemented. We assign an equal probability of being lifted to each of the mandates that are still implemented such that the total proportion of mandates implemented is equivalent to the predicted proportion. In the United States the model restricts the date of school reopening to no earlier than August 15, 2020. We do not allow mobility projections to go above zero, the baseline mobility prior to the Covid-19 pandemic.
[bookmark: _Toc44325840][bookmark: _Toc44488363][bookmark: _Toc44489573][bookmark: _Toc45273860][bookmark: _Toc45300011]Testing per capita
Testing for COVID-19 can impact the epidemic both directly and indirectly. Directly, a positive test result alerts an individual to their need to self-isolate and for their contacts to quarantine. Indirectly, higher levels of testing ensure that policy makers and healthcare professionals have accurate information when making decisions about social distancing mandates and resource allocation.
[bookmark: _Toc45273861][bookmark: _Toc45300012]Data processing
Data on the number of tests administered were sourced from a combination of direct reports from government health authorities; The COVID Tracking Project for the United States, except for Washington State; and Our World in Data for all locations that were present in their database that we had not sourced from direct reports, supplemented by additional country resources when missing. Sources for these data are detailed in SI Table 8.
[bookmark: _Toc45273862][bookmark: _Toc45300013]Use in SEIR-fit
When both daily and cumulative data were present on the same date for a given location, we gave preference to the cumulative data. When there were daily data reported in between gaps in cumulative data reports, we added the daily data to the preceding cumulative value to fill in the missing cumulative data. Dates where only positive tests were reported were dropped. Cumulative data preceded by days of no reports was shifted to the midpoint of the missing interval and scaled to equal the average daily tests over the interval. In locations where the date of the first confirmed case preceded the date of the first reported tests, we utilized the same approach of shifting to the midpoint of the interval and setting the level to the average daily tests over the interval. We then aggregated to weekly intervals and linearly interpolated the weekly data with knots placed at the middle of each week. Finally, we smoothed the weekly interpolated data using ten iterations of smoothing with a uniform kernel and a three-day bandwidth.
[bookmark: _Toc45273863][bookmark: _Toc45300014]Forecasting testing
We projected levels of daily testing per capita using the location-specific mean daily difference in testing per capita for locations with data; in effect assuming that future growth in daily testing per capita will match past increases in testing. For locations that were missing testing data, we used the regional average growth of daily testing per capita and the date of the location-specific first reported case to impute both the past and the future values of daily testing per capita.

[bookmark: _Toc44325844][bookmark: _Toc44488367][bookmark: _Toc44489577][bookmark: _Toc45273864][bookmark: _Toc45300015]Mask effectiveness and use
We performed a meta-analysis of 40 peer reviewed scientific studies to assess mask effectiveness for preventing respiratory viral infections. We updated systematic reviews and meta-regressions of the individual benefits of mask use. We used MR-BRT (see section 2.5 for additional information on MR-BRT) to perform a novel meta-analysis. We also analyzed survey data on the levels and trends of mask use. This analysis sought to estimate the proportion of people who self-reported always wearing a facemask when outside their homes.
[bookmark: _Toc45273865][bookmark: _Toc45300016]Data processing
In order to identify variation in mask use across both US and global locations during the timeframe of the current COVID-19 pandemic, we combined survey data from multiple sources. Our covariate for mask use is the proportion of adults that self-report always wearing a mask when outside their homes. For US estimates (all 50 states and Washington, D.C.), we analyzed volunteer survey data from PREMISE8,9 a crowd-sourcing data collection and analytics platform. The PREMISE survey asked respondents a variety of questions about behaviors, sentiments, and attitudes vis-a-vis COVID-19. We make use of the following: “When you leave your home do you typically wear a face mask (SELECT_ONE)” with responses “Yes, always; Yes, sometimes; No never”. Respondents were also asked about their reasons for not wearing a mask. The latitude and longitude for each respondent was also provided. The date range of for data incorporated in this analysis is 23 April, 2020 to 26 June, 2020.
We evaluated the maximum level of mask usage observed globally during the COVID-19 pandemic and used this value as an upper bound for what could be achieved in the United States (see SI Section 6.1 on scenario development). To evaluate mask usage in countries other than the US, we used volunteer survey data collected through the Facebook app, the social networking platform with more than 2 billion global users, as part of its COVID-19 symptom survey and Data for Good program5. COVID-19 symptom survey data are collected via the Facebook app by the University of Maryland (non-US) and Carnegie Mellon University (US). For the non-US estimates, we analyzed aggregated data hosted by the University of Maryland’s Joint Program in Survey Methodology. While the principal focus of the survey is on self-reporting of COVID-19-related symptoms experienced by the sampled user and members of their household, we make use of responses to the following question: “In the last 7 days, how often did you wear a mask when in public?” to which there are the following responses “All of the time; Most of the time; About half of the time; Sometimes; Never; I have not been in public during the last 7 days”. For this survey, daily responses are received and processed so that all respondents from the same geography are combined into one day-specific response, and then the proportion of responses for each option are determined from this composite. Facebook data have two- to three-day lags and are updated twice per week. The date of the first set of data from Facebook that we analyzed is April 23, 2020 and these continue to be updated twice per week through 26 June, 2020.
[bookmark: _Toc45273866][bookmark: _Toc45300017]Use in SEIR-fit
We used a smoothing model to produce estimates of observed mask use. This smoothing process averages each data point with its neighbors. To make smooth, flat values at the ends of the observed data, we found an average of the change in mask use over the three following days (left tail) and three preceding days (right tail).
Our analysis suggested a reduction in infection (from all respiratory viruses), for all mask-wearers, by at least one-third (Relative Risk = 0.65 (0.47-0.92)) relative to controls. The intercept only model has a point estimate of 0.48 (0.42-0.56) for all users, medical or otherwise. For all non-medical mask users, we estimate the reduction in infection is 0.57 (0.45-0.74) via univariate regression, and 0.65 (0.47-0.92) via bivariate regression.
[bookmark: _Toc45273867][bookmark: _Toc45300018]Forecasting mask use
Mask use by location is projected forward at a constant level from the last date of observed mask use data (26 June, 2020) through 01 January, 2021.
[bookmark: _Toc45273868][bookmark: _Toc45300019]Estimation of mask use effect size
We conducted a meta-analysis to determine the efficacy of masks in reducing transmission of respiratory viruses by extracting data studies from two published meta-analyses and one additional article – these analyses are reported in greater detail in a forthcoming preprint10. The resulting meta-regression calculated log-transformed relative risks and corresponding log-transformed standard errors based on raw counts and used a continuity correction for studies with zero counts in the raw data (0.001). Whereas the other meta-analyses reported one outcome per study, we extracted all relevant outcomes per study. Additionally, we included additional specifications and characteristics to account for differences in characteristics of individual studies and to identify important factors impacting mask effectiveness. These include the type of population using masks (general population versus healthcare population), country of study (Asian countries versus non-Asian countries), type of mask (paper/cloth or non-descript versus medical masks and N95 masks), type of control group (no use versus infrequent use), type of disease (SARS-CoV 1 or 2 versus H1N1/influenza/other respiratory pathogens), and type of diagnosis (clinical versus laboratory). The geographic locations of the studies included: China, Singapore, Hong Kong, Thailand, Vietnam, Saudi Arabia, South Korea, Canada, Germany, Canada, and a multinational airline flight. The region with the largest proportion of studies was Southeast Asia, where 24 of 40 studies were conducted. More than half the observations (36 or 65 observations, or 55%) were of SARS-CoV 1 or 2, six of which examined SARS-CoV 2. One observation studied cloth masks, 19 studied non-descript masks, and 44 looked at surgical, medical, or N95 masks; 52 observations were diagnosed via laboratory methods. We pooled “other” masks and cloth masks so that they could represent the range of the most common masks that members of the general public might wear in a non-medical setting. Moreover, 18 observations were in the general population, while 47 examined healthcare workers or healthcare settings. We were particularly interested in studies of the general population (i.e. non-healthcare setting), including households, student populations, and airplanes. With regards to control groups, 49 observations considered “no use” as the control, while 14 considered infrequent use and one looked at pre-/-post/study design. The re-extraction and inclusion of articles not included in the other meta-analyses resulted in 65 rows of data from 41 papers. We retained one additional study from the unavailable papers for sensitivity analyses; one paper was excluded due to our inability to recreate 2x2 table and the reported odds ratio; two papers were excluded due to incorrect control groups. We calculated relative risks and corresponding log-transformed standard errors based on raw counts where available.
We used MR-BRT (SI Section 2.5) to perform a meta-analysis that considered the various characteristics of each study. Our MR-BRT analysis used random effects with gamma terms accounting for between-study heterogeneity and quantified remaining between-study heterogeneity into the width of the uncertainty interval. We considered several analyses, but in the end settled on univariate models, an intercept-only model, and several multivariate models. Our analysis considered intercept-only model, all univariate associates, and multivariate models, as well as sub-analyses for key variables like population and mask types. We also performed various sensitivity analyses to verify the robustness of the modeled estimates and found that the estimate of the effectiveness of mask use did not change significantly when we explored four alternative analyses, including changing the continuity correction assumption, using odds ratio versus relative risk from published studies, using a fixed effects versus a mixed effects model, and including studies without covariate information.
[bookmark: _Toc44076949][bookmark: _Toc44076950][bookmark: _Toc44076951][bookmark: _Toc44076952][bookmark: _Toc44076953][bookmark: _Toc44076954][bookmark: _Toc44076955][bookmark: _Toc44076956][bookmark: _Toc44076957][bookmark: _Toc44076958][bookmark: _Toc44076959][bookmark: _Toc44076960][bookmark: _Toc44076961][bookmark: _Toc44325845][bookmark: _Toc44488368][bookmark: _Toc44489578][bookmark: _Toc45273869][bookmark: _Toc45300020]Pneumonia seasonality
Pneumonia is one of the main clinical syndromes associated with respiratory SARS-CoV-2 infection and its seasonality is marked in many locations, particularly those far from the equator. This could be due to climatic variation (relative humidity, average air temperature) or due to human behavior (greater time spent indoors). We modelled the ratio of pneumonia deaths in a given week to the average weekly pneumonia deaths by location. As such, ratios above 1 indicate that more pneumonia deaths than the yearly average occur in that week, and ratios below 1 indicate that fewer deaths than the yearly average occur.
For locations where we have weekly vital registration data for pneumonia deaths, we used the data to directly model this ratio. For the United States, we used weekly pneumonia mortality data from the National Center for Health Statistics Mortality Surveillance System from 2013 to 2019 by each state. Pneumonia deaths include all deaths classified by the full range of ICD codes in J12 - J18.9. To account for uncertainty in vital registration data and model type, all ratios were estimated 1000 times in the meta-regression model. The proportion of deaths in each week was calculated as the weekly number of deaths over the annual number of deaths in a location. The standard error was calculated using the formula for binomial variance:

For locations without data on pneumonia deaths, the strategy included additional models and calculations to generate estimates for all locations. We modelled the global seasonality trend pooling all pneumonia deaths data, calculated the amplitude of the seasonality time series in specific locations to model and predict the relationship between amplitude and latitude, and then used the estimated amplitude values by latitude to manipulate the amplitude of the global pattern. As such all locations without data have the same general seasonality pattern (higher in October to April in Northern Hemisphere; higher in April to October in Southern Hemisphere), but the amplitude varies by location, depending on the latitude.
In order to preserve the cyclical trend of the pneumonia deaths in the model, the same 52 weeks of data were triplicated, and added to the beginning and the end of the time series. We then modelled the logit ratio of weekly deaths to annual deaths (shown in SI Figure 4) in a meta-regression tool developed at the Institute for Health Metrics and Evaluation called MR-BRT (Meta-Regression, Bayesian, Regularized, Trimmed) (see section 2.5 for additional detail). The meta-regression used a cubic spline on week and 1% trimming of the data inputs.

[bookmark: _Toc45273870][bookmark: _Toc45300021]Time-invariant covariates
[bookmark: _Toc45273871][bookmark: _Toc45300022]Lower Respiratory Infection Mortality
In the transmission model, the mortality rate due to lower respiratory infections (LRI) is captured as the location-specific age-standardized mortality death rate in the population 15 years or older. The 15+ years age-standardized LRI death rate is assumed to represent transmission of respiratory communicable diseases amongst adults.
Estimates of the LRI mortality rate come from the Global Burden of disease study, and methods for estimation are described elsewhere11–13. Briefly, we used vital registration and verbal autopsy data in a Bayesian ensemble model which uses out of sample validity to produce a variety of plausible models which are weighted based on their performance in the final ensemble. Estimates are produced for each age, sex, year, and location. For this analysis, we used the age-standardized rate for both sexes by location in the year 2019 (most recent complete year of estimates).
[bookmark: _Toc44325849][bookmark: _Toc44488372][bookmark: _Toc44489582][bookmark: _Toc45273872][bookmark: _Toc45300023]Altitude
The incidence and severity of lower respiratory infections, including pneumonia, is greater at higher elevation14–16. Altitude and humidity are believed to be a predictor of transmission and several studies have found greater mortality due to pneumonia at higher elevations, possibly due to decreased oxygen concentration at higher altitudes. The proportion of the population living below 100 meters above sea-level by country was obtained from the Global Burden of Disease study2.
[bookmark: _Toc44325851][bookmark: _Toc44488374][bookmark: _Toc44489584][bookmark: _Toc45273873][bookmark: _Toc45300024]Smoking
The adult (15+ years) age-standardized tobacco smoking prevalence in 2019 was used as a covariate. This covariate is from the Global Burden of Disease study 201917 and described in detail there. Briefly, we estimated the prevalence of current smokers (daily or occasional) using individual-level and aggregated available survey data. The prevalence was modeled using Space-time Gaussian Process Regression to produce smoothed estimates by space, time, age, and sex. For this analysis, we used age-standardized prevalence among both sexes. Smoking prevalence is location-specific.
[bookmark: _Toc44325852][bookmark: _Toc44488375][bookmark: _Toc44489585][bookmark: _Toc45273874][bookmark: _Toc45300025]Ambient particulate matter pollution
Ambient particulate matter pollution is a covariate from the Global Burden of Disease study 201917 and is defined as the population-weighted mean exposure to air particles with an aerodynamic diameter less than 2.5 micrometers per cubic meter of air. Input data for this model come from satellite observations, ground measurements, land use data, and chemical transport model simulations. Estimates are produced on a geospatial resolution and aggregated to the national level by population-weighting. This covariate is location-specific.
[bookmark: _Toc44325850][bookmark: _Toc44488373][bookmark: _Toc44489583][bookmark: _Toc45273875][bookmark: _Toc45300026]Population density
Population density per pixel was calculated using Worldpop total population rasters and an area raster,18 and is represented as the percentage of the population living in areas denser than 1,000 people per square kilometer (km2). By country, we determined the proportion of the population living in discrete categories of density and aggregated categories less than 1000 per km2 for this analysis, using 2020 estimates to approximate population.
[bookmark: _Toc45273876][bookmark: _Toc45300027]Demography
Demographic data on state populations, namely the age structure of the population, is used in estimating the age-specific mortality rate calculated in SI section 4.1 to stratify all-age deaths into age-specific deaths. Age distributions were obtained from the Global Burden of Disease study11,17,19.
[bookmark: _Toc45273877][bookmark: _Toc45300028]Altitude
Altitude is captured as the proportion of the population living below a given threshold of sea level. For the sake of this analysis, we incorporated altitude as the proportion of the population living below 100 meters above sea-level by state; this value was derived from the Global Burden of Disease study2.

[bookmark: _Toc45273878][bookmark: _Toc45300029]Intermediate quantity modeling
[bookmark: _Toc45273879][bookmark: _Toc45300030][bookmark: _Toc44488376][bookmark: _Toc44489586]Mortality rate by age estimation
To determine the age-pattern of mortality, we assembled available data from multiple global locations (SI Table 10). A continuous model relating age and mortality from which the average mortality for any discrete age bins can be aggregated. We assume a Poisson model for death counts and fit a monotonically increasing (shape-constrained) generalized additive model (SCAM) for mortality as a function of age, using the medians of each of the  age bins, :

where  are monotonically increasing P-splines, and , the number of bases functions, is between 6 and 8 and tuned for different locations. This yields continuous mortality rates by age: . 
Similarly, assuming a Poisson model, we fit a generalized additive model (GAM) to population as a function of age, using the age groups specified in the mortality data for each location:

where  are penalized thin-plate regression splines, and , the number of bases functions, is between 6 and 8 and tuned for different locations. This yields continuous population by age: . 
The estimated continuous mortality rate curves are then aggregated using population weights to the pre-determined s:


[bookmark: _Toc45273881][bookmark: _Toc45300031]Infection fatality ratio
We estimated the ratio of deaths to infections using random effects meta-analysis, with random intercepts by location and a spline to estimate the non-linear effect of age. The spline method allows for the estimation of a continuous age effect from observations recorded as age groups20. In addition to data on the quantity of interest – deaths divided by infections – the model incorporated data on deaths divided by population to better estimate the age trend. The final estimate comes from the location with the lowest estimated IFR, New Zealand. We chose this approach because asymptomatic infections are often not detected, so we expect that reported IFRs are systematically higher than the true IFR. The Diamond Princess cruise ship was included among the locations used for this analysis (see SI TABLE 9).


[bookmark: _Toc45273882][bookmark: _Toc45300032]Infection to death duration
To estimate the time from infection to death, we brought together two distinct sources of information: published studies of time from infection to symptoms21 and individual patient data on time from symptom onset to death. Due to a paucity of data on the time from infection to symptom onset, we used the median time reported from a single source (5.1 days) for the first part of this duration and added it to a distribution for the second derived by pooling data from the Global Line List (https://github.com/beoutbreakprepared/nCoV2019); Ohio, USA (https://coronavirus.ohio.gov/wps/portal/gov/covid-19/dashboards); Rio de Janeiro State, Brazil (http://painel.saude.rj.gov.br/monitoramento/covid19.html); Ceara State, Brazil (https://indicadores.integrasus.saude.ce.gov.br/indicadores/indicadores-coronavirus/coronavirus-ceara); and Mexico. This pooled dataset included data on 5,125 individuals, with a median time from onset of symptoms to death of 11 days. Informed by this, we use a uniform distribution over 17 to 21 days of lag between infection and death.

[bookmark: _Toc44325855][bookmark: _Toc44488378][bookmark: _Toc44489588][bookmark: _Toc45273883][bookmark: _Toc45300033]Hospitalizations to death ratio
To determine hospitalization, we use cumulative hospital to cumulative deaths ratios estimated directly from hospitalization and mortality data in the US and Europe through April 2020. We assembled data on COVID-19 hospitalizations from a number of countries and US states as detailed in SI Table 5. We analyzed hospitalization to death ratios using random effects meta-analysis. We used the location-specific random effect in the estimate for locations with data. In the absence of data we used the corresponding pooled effect for other countries. 
As the hospitalization to death ratios are for all-ages only, to estimate the age-pattern of the hospitalization to death ratio, we used the age distribution of hospitalization to death () in the US to estimate the age-distribution for other countries and states:


[bookmark: _Toc45273884][bookmark: _Toc45300034]Fitting and predicting transmission dynamics
[bookmark: _Toc45273885][bookmark: _Toc45300035]SEIR-fit
[bookmark: _Toc44488382][bookmark: _Toc44489592][bookmark: _Toc45273886][bookmark: _Toc45300036]Model formulation
To project the full time-series of deaths and infections to the future, we use a transmission model with the following compartments: susceptible, exposed, infected, and removed (SEIR). In particular, each location’s population is tracked through the following system of differential equations:

where  represents a mixing coefficient to account for imperfect mixing within each location,  is the rate at which infected individuals become infectious,  is the rate at which infectious people transition out of the pre-symptomatic phase, and  is the rate at which individuals recover. This model does not distinguish between symptomatic and asymptomatic infections but has two infectious compartments ( and ) to allow for interventions that would avoid focus on those who could not be symptomatic.  is thus the pre-symptomatic compartment.
 and the effective reproductive number 

In this section, we derive the time-varying basic reproductive number under control, , and the time-varying effective reproductive number, . For a compartmental model with static coefficients, we can calculate the basic reproductive number as the largest singular value of the next generation operator

where  is the Jacobian of the vector of appearance rates for compartments that actively possess the virus (, , and  in our case), and  is the Jacobian of the vector of transport rates of the individuals between these compartments. Both Jacobians are evaluated at the state of disease-free equilibrium (i.e., when ). The appearance and transport rate vectors for our SEIR model formulation are:

We can then directly calculate the Jacobians at disease-free equilibrium:



Thus, the next generation operator is
 
which yields


[bookmark: _Toc44488383][bookmark: _Toc44489593][bookmark: _Toc45273888][bookmark: _Toc45300038]Fitting 

We denote the new daily infections output from the previous step as:

For each draw we take as constant the parameters governing the transmission dynamics other than  (i.e., , , , and ). These parameter values are drawn from distributions based on existing literature and can be found in SI Table 11.
With a known , we can solve a single simple linear ODE to get :

This ODE can be solved in closed form using integrating factors, or numerically. In practice we use the 4th order Runge-Kutta method (RK-4). However, it is useful to solve it in ‘closed form’ using the integration factor approach. Defining

we have the closed form solution

Having obtained , we repeat the process, solving for  and :

where  is known when solving , and then  is known when solving for . While useful for formulation to think of the exact solutions, the integrals must still be solved numerically. We therefore solve all the differential equations using Runge-Kutta order 4. With  in hand, we also obtain  by simple integration and subtraction. Having solved for , , and , we then have:

[bookmark: _Toc45273889][bookmark: _Toc45300039] regression
With  fit to the data, we next perform a linear regression using the open source mixed effects solver SLIME (https://github.com/zhengp0/SLIME) to determine the strength of the relationship between  and the various covariates. All covariates are assumed to have fixed effects while the intercept is allowed to vary by location. For location , the regression is calculated as:

[bookmark: _Toc45273890]such that the mean squared error between  and  (our fit from the previous stage) is minimized by location .  is the random intercept for location ,  is a matrix with a column for each covariate in the regression and a row for each day, and  is the coefficient indicating the strength of the relationship between  and the covariate. Several coefficients in the model are bounded as described in their corresponding sections, while others are only constrained by directional bounds. As noted in (previous sections), not all covariates are time varying. These non-time varying covariates are used to explain some of the location specific variance otherwise absorbed into the random intercept. The time-variance and bounds of the coefficients are denoted in SI Table 11. Using the fitted  and the forecasted covariates, we produce, by draw, estimates of future transmission intensity .
[bookmark: _Toc45300040] adjustments
To ensure continuity from our fitted  from SEIR-fit to the predicted  into the future, we shift the predicted . Generally speaking, we shift  towards  by first ensuring that on the day of transition, say , . Then, over a window of time we slowly transition from the hard adjustment based on the residual at time , we shift by the average residual between  and  over a window of time in the past. More specifically, define  as

and  and  as:

and transition weights  as

Then, for a given  and , we define  as

Based on out-of-sample tests similar to those described in the sensitivity analyses for optimal values of  and , we found that the optimal  was 42 and the optimal  was for  to be, by draw, drawn from a uniform distribution of windows from 7 to 28 days.

[bookmark: _Toc45273891][bookmark: _Toc45300041]SEIR-predict
The general format of our predictions is relatively simple: we take the final predicted  and run our system of ODEs forward in time using our fitted compartment values at time  as the initial conditions of the second SEIR model.
There are however a number of simplifications made within our modeling formulation. First, we ignore the potential for importation which may be more likely in larger, more dense locations. Second, we assume a well-mixed population which may be more egregious in smaller, less dense locations. As two intermediate solutions for this, we introduce two correction factors. In each location we only use one or the other correction factor, and the use and magnitude of the correction is based on OOS predictive validity dropping 8 weeks of data and comparing the predicted outbreak to the observed one. The first correction factor allows for the addition of a small number of additional infections above and beyond those from the interaction between  and  and . These can be envisaged as individuals traveling outside the location, becoming infected, and returning as exposed individuals. The second correction factor removes a small fraction of exposed individuals from the  compartment and moves them directly to the recovered compartment. Our model acts on the fraction of individuals who are infectious, exposed, etc, and the results of allowing for fractional infectious individuals (and no possibility for truly ‘zero’ infections) can alter the dynamics for small locations. These corrections can be mathematically described using  and  for the importation correction and the small location correction, respectively. Again, each location receives only one of these and they alter the SEIR model formulation for prediction as:

With these correction factors identified, we can then run our ODEs forward (again using the Runge-Kutta 4 algorithm), to have a complete time-series of infections through the end of the year.
[bookmark: _Toc45273892][bookmark: _Toc45300042]Final data combination and summarization
The transmission model produces 1,000 full time series (including projections) of infections and deaths. We summarize draws into means and 95% UIs for reporting. To control for extreme values, the top 2.5% and bottom 2.5% of draws are dropped and replaced through random resampling of the remaining 950 draws. The summarized deaths and infections are then used as inputs to the hospital resource use microsimulation (see SI Section 7).
[bookmark: _Toc44597358][bookmark: _Toc44597359][bookmark: _Toc45273893][bookmark: _Toc45300043]Scenarios
In all scenarios, schools are assumed to reopen on 15 August, 2020 and mobility is projected to increase as outlined in SI Sections 3.1 and 3.2.
We estimate the trajectory of the epidemic by state under a “mandates easing” scenario that models what would happen in each state if the current pattern of lifting social distancing mandates continues and new mandates are not imposed; the model identifier for this scenario is 2020_07_06.13.
As a more plausible scenario, we use observations from the first phase of the pandemic to predict the likely response of state and local governments during the second phase. This plausible reference scenario assumes that in each location the trend of easing SDM will continue at its current trajectory until the daily death rate reaches a threshold of 8 deaths per million. If the daily death rate in a location exceeds that threshold, we assume that SDM will be reintroduced for a six-week period. The choice of threshold (of a rate of daily deaths of 8 per million) represents the 90th percentile of the distribution of daily death rate at which US states implemented their mandates during the first months of the COVID-19 pandemic. We selected the 90th percentile rather than the 50th percentile to capture an anticipated increased reluctance from governments to re-impose mandates because of the economic effects of the first set of mandates. In locations that do not exceed the threshold of a daily death rate of 8 per million, the projection is based on the covariates in model and the forecasts for these to December 31. In locations were the daily death rate exceeded 8 per million at the time of our final model run for this manuscript (04 July, 2020), we are assuming that mandates will be introduced within 7 days. The model identifier for this scenario is 2020_07_06.16.
	The scenario of universal mask wearing models what would happen if 95% of the population in each state always wore a mask when they were in public. This value was chosen to represent the highest observed rate of mask use observed globally during the COVID-19 pandemic through June of 2020 (SI Section 3.4). In this scenario, we also assume that if the daily death rate in a state exceeds 8 deaths per million, SDMs will be reintroduced for a six-week period. The model identifier for this scenario is 2020_07.06.18.

[bookmark: _Toc44325859][bookmark: _Toc44488386][bookmark: _Toc44489596][bookmark: _Toc45273894][bookmark: _Toc45300044]Hospital resource use microsimulation
The hospital use microsimulation is run for each projected death across time and across death-draws.
For each death, we:
1. Simulate the age of the deceased using normalized estimated mortality rates as the probability for belonging to that age. That is, we assign the death to  with probability . Call this . See Section 5.1 for more details.
2. We determine how many days prior to death the deceased entered the hospital. Based on data from New York State we set this to be 6 days prior to death.
3. We assign the deceased to an ICU bed for their entire admittance period. 
4. Based on , we use  to estimate the number of individuals of the same age group that would have entered the hospital on the same day as the deceased to result in 1 death in that age group on the date of death. This age-hospital-cohort will pass through the hospital and all are assumed to survive. See section 5.4 for further details. 
5. For each individual in the age-hospital-cohort, they have a 6.3% chance of getting admitted to the ICU (see note below on derivation of 6.3%).
a. Those that visit the ICU are assumed to have a hospital stay of 20 days, the middle 13 of which are in the ICU.
b. Those that don’t visit the ICU are released after eight days.
6. To determine ventilation use, we assume 85% of individuals in the ICU require invasive mechanical ventilation based on data from New York State.
By performing this simulation for each death, and each associated member of the age-hospital-cohort, we are able to summarize future hospital usage needs for general beds, ICU beds, and ventilators. Finally, using a combination of data sources, we compare the estimated number of general beds and ICU beds with availability.
Notes:
1. Based on hospital data from New York State up through Mar 31, 2020, the average ICU bed counts to hospital census was 25%. Given the assumptions about lengths of stay for those who die, those who recover, and their duration in the ICU, the conditional probability of a recovering patient going to the ICU was back calculated to be 6.3% to keep the long-term ICU usage at 25%. When possible, location-specific hospitalization data is used to calculate the probability of a recovering patient going to the ICU. In the absence of data from a particular location, the mode is used and the ICU admission probability is calculated to be 8.8% for a recovering patient.
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[bookmark: _Toc45273898][bookmark: _Toc45300048]SI Figure 1. Schematic representation of modelling process. Numbers correspond to Supplementary Information sections detailing each portion.
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[bookmark: _Toc45300049]SI Figure 2 Trends of the number of mandates (out of 6) on for each location in the modeling hierarchy
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[bookmark: _Toc45273900][bookmark: _Toc45300050]SI Figure 3 Time trends of the average number of mandates on for each region of the world. 
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[bookmark: _Toc45273901][bookmark: _Toc45300051]SI Figure 4: MR-BRT model of the US pattern of seasonality of logit ratio vs week; the black line shows the model estimates, the blue points are data included in the model, and the red points are data excluded from the model
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	#
	Checklist item
	Location

	Objectives and funding

	1
	Define the indicators, populations, and time periods for which estimates were made.
	Main manuscript

	2
	List the funding sources for the work.
	Main manuscript

	Data Inputs

	For all data inputs from multiple sources that are synthesized as part of the study:

	3
	Describe how the data were identified and how the data were accessed. 
	SI Sections 2-3

	4
	Specify the inclusion and exclusion criteria. Identify all ad-hoc exclusions.
	SI Sections 2-3 

	5
	Provide information on all included data sources and their main characteristics. For each data source used, report reference information or contact name/institution, population represented, data collection method, year(s) of data collection, sex and age range, diagnostic criteria or measurement method, and sample size, as relevant. 
	SI Sections 2, SI Tables 2-10

Online data citation tool: https://covid19.healthdata.org

	6
	Identify and describe any categories of input data that have potentially important biases (e.g., based on characteristics listed in item 5).
	SI Sections 2, SI Tables 2-10


	For data inputs that contribute to the analysis but were not synthesized as part of the study:

	7
	Describe and give sources for any other data inputs. 
	SI Sections 2, SI Tables 2-10

Online data citation tool: https://covid19.healthdata.org

	For all data inputs:

	8
	Provide all data inputs in a file format from which data can be efficiently extracted (e.g., a spreadsheet as opposed to a PDF), including all relevant meta-data listed in item 5. For any data inputs that cannot be shared due to ethical or legal reasons, such as third-party ownership, provide a contact name or the name of the institution that retains the right to the data.
	Online data citation and visualization tools: https://covid19.healthdata.org

	Data analysis

	9
	Provide a conceptual overview of the data analysis method. A diagram may be helpful. 
	Main manuscript, SI Section 2, SI Tables 2-10

	10
	Provide a detailed description of all steps of the analysis, including mathematical formulae. This description should cover, as relevant, data cleaning, data pre-processing, data adjustments and weighting of data sources, and mathematical or statistical model(s). 
	SI Sections 2, 4-7

	11
	Describe how candidate models were evaluated and how the final model(s) were selected.
	SI Sections 2, 4-7

	12
	Provide the results of an evaluation of model performance, if done, as well as the results of any relevant sensitivity analysis.
	SI Sections 2, 4-7

	13
	Describe methods for calculating uncertainty of the estimates. State which sources of uncertainty were, and were not, accounted for in the uncertainty analysis.
	SI Sections 2, 4-7

	14
	State how analytic or statistical source code used to generate estimates can be accessed.
	Code is provided in an online repository: https://covid19.healthdata.org

	Results and Discussion

	15
	Provide published estimates in a file format from which data can be efficiently extracted.
	SI Tables 2-10

Online data visualization tool: https://covid19.healthdata.org

	16
	Report a quantitative measure of the uncertainty of the estimates (e.g. uncertainty intervals).
	Main manuscript

Online data visualization tool: https://covid19.healthdata.org

	17
	Interpret results in light of existing evidence. If updating a previous set of estimates, describe the reasons for changes in estimates.
	Main manuscript

	18
	Discuss limitations of the estimates. Include a discussion of any modelling assumptions or data limitations that affect interpretation of the estimates.
	Main manuscript, SI Sections 4-5
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	Location
	Source

	United States of America, California
	United States - California Department of Public Health Daily COVID-19 Updates 2020

	United States of America, South Dakota
	United States - South Dakota Department of Health Novel Coronavirus (COVID-19) Updates and Information 2020

	United States of America, Texas
	United States - Texas Department of State Health Service COVID-19 Fatalities Over Time by County

	United States of America, West Virginia
	United States - West Virginia Department of Health and Human Resources Coronavirus Disease (COVID-19) Cases 2020

	United States of America, Minnesota
	United States - Minnesota Department of Health Situation Update for Coronavirus Disease 2019 (COVID-19) 2020

	United States of America, Texas
	United States - Texas Department of State Health Service COVID-19 Cases Over Time by County

	United States of America, Hawaii
	United States - Hawaii Department of Health COVID-19 Current Situation 2020

	United States of America, Florida
	United States - Florida Division of Emergency Management COVID-19 Data Report 2020

	United States of America, Maryland
	United States - Maryland Department of Health COVID-19 Statistics 2020

	United States of America, Alabama
	United States - Alabama Department of Public Health COVID-19 Data and Surveillance 2020

	United States of America, New Mexico
	United States - New Mexico Department of Health 2019 Novel Coronavirus Disease (COVID-19) Updates 2020

	United States of America, Nebraska
	United States - Nebraska Department of Health and Human Services Coronavirus COVID-19 Cases 2020

	United States of America, Delaware
	United States - Delaware Division of Public Health Coronavirus Disease (COVID-19) Data Dashboard 2020

	United States of America, Pennsylvania
	United States - Pennsylvania Department of Health COVID-19 Cases 2020

	United States of America, Maine
	United States - Maine Division of Disease Surveillance Novel Coronavirus 2019 (COVID-19) Situation 2020

	United States of America, New Jersey
	United States - New Jersey Department of Health COVID-19 Data 2020

	United States of America, Massachusetts
	United States - Massachusetts Department of Public Health COVID-19 Cases, Quarantine and Monitoring 2020

	United States of America, New Hampshire
	United States - New Hampshire Department of Health and Human Services 2019 Novel Coronavirus (COVID-19) Summary Report 2020

	United States of America, Oregon
	United States - Oregon Health Authority COVID-19 Updates 2020

	United States of America, Nevada
	United States - Nevada Department of Health and Human Services COVID-19 (Coronavirus) Data 2020

	United States of America, Connecticut
	United States - Connecticut Department of Public Heath COVID-19 Update 2020

	United States of America, Utah
	United States - Utah Department of Health Overview of COVID-19 Surveillance 2020

	United States of America, Colorado
	United States - Colorado Department of Public Health and Environment COVID-19 Updates 2020

	United States of America, Arizona
	United States - Arizona Department of Health Services COVID-19 Data 2020

	United States of America, Wyoming
	United States - Wyoming Department of Health COVID-19 Map and Statistics 2020

	United States of America, Montana
	United States - Montana Department of Health and Human Services COVID-19 Cases 2020

	United States of America, Oklahoma
	United States - Oklahoma State Department of Health COVID-19 Current Situation 2020

	United States of America, Michigan
	United States - Michigan Department of Health and Human Services Coronavirus Data 2020

	United States of America, Illinois
	United States - Illinois Department of Public Health Coronavirus Disease 2019 (COVID-19) Statistics 2020

	United States of America, Tennessee
	United States - Tennessee Department of Health Epidemiology and Surveillance Data 2020

	United States of America, New York City (as a subset of New York State)
	United States - New York City Department of Health and Mental Hygiene Coronavirus Disease 2019 (COVID-19) Data 2020

	United States of America, Georgia
	United States - Georgia Department of Public Health COVID-19 Daily Status Report 2020

	United States of America, Iowa
	United States - Iowa Department of Public Health Novel Coronavirus (COVID-19) Cases 2020

	United States of America, Wisconsin
	United States - Wisconsin Department of Health Services COVID-19 Data 2020

	United States of America, Louisiana
	United States - Louisiana Department of Health Coronavirus (COVID-19) Information 2020

	United States of America, Mississippi
	United States - Mississippi State Department of Health Coronavirus Disease 2019 (COVID-19) Current Cases and Statistics 2020

	United States of America, North Dakota
	United States - North Dakota Department of Health Coronavirus Cases 2020

	United States of America, Arkansas
	United States - Arkansas Department of Health COVID-19 Status Updates 2020

	United States of America, Idaho
	United States - Idaho Division of Public Health COVID-19 Case Data 2020

	United States of America, North Carolina
	United States - North Carolina Department of Health and Human Services COVID-19 Dashboard 2020

	United States of America, Missouri
	United States - Missouri Department of Health and Senior Services COVID-19 Outbreak Data 2020

	United States of America, Alaska
	United States - Alaska Department of Public Health and Social Services Coronavirus Response Hub 2020

	United States of America, South Carolina
	United States - South Carolina Department of Health and Environmental Control COVID-19 Demographic Data by Case 2020

	United States of America, Virginia
	United States - Virginia Department of Health COVID-19 Cases 2020

	United States of America, Ohio
	United States - Ohio Department of Health COVID-19 Dashboard 2020

	United States of America, Rhode Island
	United States - Rhode Island Department of Health COVID-19 Data Tracker 2020

	United States of America, Vermont
	United States - Vermont Department of Health COVID-19 Data 2020

	United States of America, Indiana
	United States - Indiana COVID-19 Statewide Test, Case, and Death Trends 2020

	United States of America, Kansas
	United States - Kansas Department of Health and Environment Coronavirus Disease 2019 (COVID-19) Case Summary 2020

	United States of America, Kentucky
	United States - Kentucky Department for Public Health COVID-19 Dashboard 2020

	United States of America, Washington
	United States - Washington State Department of Health COVID-19 Cases by County and CDC Event Date 2020

	United States of America, Washington
	United States - Washington State Department of Health COVID-19 Deaths by County, Date, Age Group and Sex 2020






[bookmark: _Toc45273905][bookmark: _Toc45300055]SI Table 3 Alternate data repositories for state-level reporting

	Location
	Source

	Illinois
	United States - Illinois Department of Public Health Coronavirus Disease 2019 (COVID-19) Statistics 2020

	Maryland
	United States - Maryland Department of Health COVID-19 Statistics 2020

	Kentucky
	United States - Kentucky Department for Public Health COVID-19 Dashboard 2020

	Hawaii
	United States - Hawaii Department of Health COVID-19 Current Situation 2020

	Nebraska
	United States - Nebraska Department of Health and Human Services Coronavirus COVID-19 Cases 2020

	North Carolina
	United States - North Carolina Department of Health and Human Services COVID-19 Dashboard 2020

	Indiana
	United States - Indiana COVID-19 Statewide Test, Case, and Death Trends 2020

	Washington
	United States - Washington State Department of Health COVID-19 Cases by County and CDC Event Date 2020; United States - Washington State Department of Health COVID-19 Deaths by County, Date, Age Group and Sex 2020

	New York City (as a subset of New York State)
	United States - New York City Department of Health and Mental Hygiene Coronavirus Disease 2019 (COVID-19) Data 2020
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	Location
	Date
	Count
	Metric
	Reason for correction

	Alabama
	20.04.2020
	5055
	cases
	Inconsistent extraction

	Alabama
	21.04.2020
	5296
	cases
	Inconsistent extraction

	Alabama
	22.04.2020
	5572
	cases
	Inconsistent extraction

	Alabama
	23.04.2020
	5816
	cases
	Inconsistent extraction

	Alabama
	24.04.2020
	5832
	cases
	Inconsistent extraction

	Alabama
	25.04.2020
	6207
	cases
	Inconsistent extraction

	Alabama
	26.04.2020
	6270
	cases
	Inconsistent extraction

	Arizona
	02.05.2020
	348
	deaths
	Inconsistent extraction

	Arizona
	23.05.2020
	799
	deaths
	Inconsistent extraction

	Arizona
	24.05.2020
	800
	deaths
	Inconsistent extraction

	Arizona
	25.05.2020
	806
	deaths
	Inconsistent extraction

	Arizona
	26.05.2020
	807
	deaths
	Inconsistent extraction

	Connecticut
	03.05.2020
	cases
	Connecticut did not release data on this day

	Connecticut
	08.04.2020
	8781
	cases
	JHU missed collection

	Connecticut
	27.05.2020
	41288
	cases
	JHU missed collection

	Delaware
	10.05.2020
	224
	deaths
	Inconsistent extraction

	Delaware
	23.05.2020
	322
	deaths
	Inconsistent extraction

	Idaho
	11.05.2020
	69
	deaths
	Death removed the following day

	Idaho
	27.04.2020
	1917
	cases
	Inconsistent extraction

	Idaho
	29.04.2020
	1984
	cases
	Inconsistent extraction

	Idaho
	30.04.2020
	2015
	cases
	Inconsistent extraction

	Idaho
	01.05.2020
	2035
	cases
	Inconsistent extraction

	Idaho
	08.05.2020
	2205
	cases
	Inconsistent extraction

	Idaho
	09.05.2020
	2230
	cases
	Inconsistent extraction

	Idaho
	13.05.2020
	2324
	cases
	Inconsistent extraction

	Idaho
	15.05.2020
	2389
	cases
	Inconsistent extraction

	Idaho
	19.05.2020
	2476
	cases
	Inconsistent extraction

	Idaho
	21.05.2020
	2534
	cases
	Inconsistent extraction

	Idaho
	23.05.2020
	2626
	cases
	Inconsistent extraction

	Idaho
	26.05.2020
	2699
	cases
	Inconsistent extraction

	Idaho
	27.05.2020
	2731
	cases
	Inconsistent extraction

	Idaho
	28.05.2020
	2769
	cases
	Inconsistent extraction

	Idaho
	29.05.2020
	2803
	cases
	Inconsistent extraction

	Idaho
	30.05.2020
	2839
	cases
	Inconsistent extraction

	Idaho
	01.06.2020
	2906
	cases
	Inconsistent extraction

	Idaho
	03.06.2020
	2990
	cases
	Inconsistent extraction

	Idaho
	04.06.2020
	3054
	cases
	Inconsistent extraction

	Idaho
	03.05.2020
	cases
	No update on this day

	Idaho
	10.05.2020
	cases
	No update on this day

	Idaho
	17.05.2020
	cases
	No update on this day

	Idaho
	24.05.2020
	cases
	No update on this day

	Idaho
	25.05.2020
	cases
	No update on this day

	Idaho
	31.05.2020
	cases
	No update on this day

	Idaho
	03.05.2020
	deaths
	No update on this day

	Idaho
	10.05.2020
	deaths
	No update on this day

	Idaho
	17.05.2020
	deaths
	No update on this day

	Idaho
	24.05.2020
	deaths
	No update on this day

	Idaho
	25.05.2020
	deaths
	No update on this day

	Idaho
	31.05.2020
	deaths
	No update on this day

	Idaho
	27.04.2020
	58
	deaths
	Inconsistent extraction

	Idaho
	30.04.2020
	63
	deaths
	Inconsistent extraction

	Idaho
	15.05.2020
	73
	deaths
	Inconsistent extraction

	Idaho
	19.05.2020
	77
	deaths
	Inconsistent extraction

	Idaho
	26.05.2020
	81
	deaths
	Inconsistent extraction

	Idaho
	27.05.2020
	82
	deaths
	Inconsistent extraction

	Idaho
	01.06.2020
	83
	deaths
	Inconsistent extraction

	Idaho
	11.06.2020
	3353
	cases
	Inconsistent extraction

	Idaho
	12.06.2020
	3399
	cases
	Inconsistent extraction

	Idaho
	13.06.2020
	cases
	No update on this day

	Idaho
	11.06.2020
	87
	deaths
	Inconsistent extraction

	Idaho
	13.06.2020
	deaths
	No update on this day

	Idaho
	14.06.2020
	cases
	No update on this day

	Idaho
	15.06.2020
	3462
	cases
	Inconsistent extraction

	Idaho
	16.06.2020
	3540
	cases
	Inconsistent extraction

	Idaho
	14.06.2020
	deaths
	No update on this day

	Idaho
	15.06.2020
	88
	deaths
	Inconsistent extraction

	Idaho
	21.06.2020
	cases
	No update on this day

	Idaho
	21.06.2020
	deaths
	No update on this day

	Idaho
	23.06.2020
	4402
	cases
	Inconsistent extraction

	Idaho
	24.06.2020
	4645
	cases
	Inconsistent extraction

	Idaho
	24.06.2020
	90
	deaths
	Inconsistent extraction

	Idaho
	26.06.2020
	5148
	cases
	Inconsistent extraction

	Kansas
	10.04.2020
	50
	deaths
	Inconsistent extraction

	Louisiana
	23.05.2020
	37040
	cases
	Inconsistent extraction

	Louisiana
	29.05.2020
	cases
	No report on this day

	Louisiana
	18.06.2020
	49394
	cases
	No update on this day

	Louisiana
	18.06.2020
	3069
	deaths
	No update on this day

	Louisiana
	27.06.2020
	cases
	"Planned power outage" prevented report

	Louisiana
	27.06.2020
	deaths
	"Planned power outage" prevented report

	Massachusetts
	20.04.2020
	39543
	cases
	Inconsistent extraction

	Massachusetts
	14.04.2020
	957
	deaths
	Inconsistent extraction

	Massachusetts
	16.04.2020
	1245
	deaths
	Inconsistent extraction

	Massachusetts
	17.04.2020
	1404
	deaths
	Inconsistent extraction

	Massachusetts
	18.04.2020
	1560
	deaths
	Inconsistent extraction

	Massachusetts
	20.04.2020
	1809
	deaths
	Inconsistent extraction

	Michigan
	05.06.2020
	5855
	deaths
	Duplicate counting of probable cases

	Michigan
	06.06.2020
	5891
	deaths
	Duplicate counting of probable cases

	Michigan
	07.06.2020
	5895
	deaths
	Duplicate counting of probable cases

	Michigan
	05.06.2020
	63539
	cases
	Duplicate counting of probable cases

	Michigan
	06.06.2020
	63983
	cases
	Duplicate counting of probable cases

	Michigan
	07.06.2020
	64413
	cases
	Duplicate counting of probable cases

	Michigan
	08.06.2020
	64701
	cases
	Duplicate counting of probable cases

	Mississippi
	11.06.2020
	deaths
	No update on this day

	Mississippi
	11.06.2020
	cases
	No update on this day

	Mississippi
	18.06.2020
	cases
	No update on this day

	Mississippi
	19.06.2020
	cases
	No update on this day

	Mississippi
	18.06.2020
	deaths
	No update on this day

	Mississippi
	19.06.2020
	deaths
	No update on this day

	Mississippi
	20.06.2020
	deaths
	No update on this day

	Mississippi
	20.06.2020
	cases
	No update on this day

	Mississippi
	21.06.2020
	deaths
	No update on this day

	Mississippi
	21.06.2020
	cases
	No update on this day

	Nevada
	23.06.2020
	13997
	cases
	Inconsistent extraction

	Nevada
	23.06.2020
	492
	deaths
	Inconsistent extraction

	Nevada
	24.06.2020
	14362
	cases
	Inconsistent extraction

	Nevada
	24.06.2020
	494
	deaths
	Inconsistent extraction

	New Hampshire
	27.03.2020
	2
	deaths
	Inconsistent extraction

	New Hampshire
	01.04.2020
	4
	deaths
	Inconsistent extraction

	New Hampshire
	02.04.2020
	5
	deaths
	Inconsistent extraction

	New Hampshire
	03.04.2020
	7
	deaths
	Inconsistent extraction

	New Hampshire
	04.04.2020
	9
	deaths
	Inconsistent extraction

	New Hampshire
	07.04.2020
	13
	deaths
	Inconsistent extraction

	New Hampshire
	08.04.2020
	18
	deaths
	Inconsistent extraction

	New Hampshire
	29.04.2020
	66
	deaths
	Inconsistent extraction

	New Hampshire
	06.05.2020
	111
	deaths
	Inconsistent extraction

	New Hampshire
	15.05.2020
	159
	deaths
	Inconsistent extraction

	New Hampshire
	19.05.2020
	182
	deaths
	Inconsistent extraction

	New Hampshire
	30.05.2020
	242
	deaths
	Inconsistent extraction

	New Hampshire
	24.03.2020
	cases
	Inconsistent extraction

	New Hampshire
	25.03.2020
	137
	cases
	Inconsistent extraction

	New Hampshire
	26.03.2020
	cases
	Inconsistent extraction

	New Hampshire
	27.03.2020
	187
	cases
	Inconsistent extraction

	New Hampshire
	28.03.2020
	214
	cases
	Inconsistent extraction

	New Hampshire
	29.03.2020
	258
	cases
	Inconsistent extraction

	New Hampshire
	31.03.2020
	367
	cases
	Inconsistent extraction

	New Hampshire
	01.04.2020
	415
	cases
	Inconsistent extraction

	New Hampshire
	02.04.2020
	479
	cases
	Inconsistent extraction

	New Hampshire
	03.04.2020
	540
	cases
	Inconsistent extraction

	New Hampshire
	04.04.2020
	621
	cases
	Inconsistent extraction

	New Hampshire
	05.04.2020
	669
	cases
	Inconsistent extraction

	New Hampshire
	07.04.2020
	747
	cases
	Inconsistent extraction

	New Hampshire
	08.04.2020
	788
	cases
	Inconsistent extraction

	New Hampshire
	10.04.2020
	885
	cases
	Inconsistent extraction

	New Hampshire
	11.04.2020
	929
	cases
	Inconsistent extraction

	New Hampshire
	12.04.2020
	985
	cases
	Inconsistent extraction

	New Hampshire
	13.04.2020
	1020
	cases
	Inconsistent extraction

	New Hampshire
	14.04.2020
	1091
	cases
	Inconsistent extraction

	New Hampshire
	25.04.2020
	1787
	cases
	Inconsistent extraction

	New Hampshire
	15.05.2020
	3464
	cases
	Inconsistent extraction

	New Hampshire
	30.05.2020
	4545
	cases
	Inconsistent extraction

	New Hampshire
	16.04.2020
	1211
	cases
	Inconsistent extraction

	New Hampshire
	16.04.2020
	34
	deaths
	Inconsistent extraction

	New Hampshire
	09.06.2020
	5132
	cases
	Inconsistent extraction

	New Hampshire
	09.06.2020
	294
	deaths
	Inconsistent extraction

	New Jersey
	13.06.2020
	12589
	deaths
	Inconsistent extraction

	New Jersey
	14.06.2020
	12625
	deaths
	Inconsistent extraction

	New Jersey
	15.06.2020
	12676
	deaths
	Inconsistent extraction

	New Jersey
	16.06.2020
	12727
	deaths
	Inconsistent extraction

	New Jersey
	17.06.2020
	12769
	deaths
	Inconsistent extraction

	New Jersey
	18.06.2020
	12800
	deaths
	Inconsistent extraction

	New Jersey
	19.06.2020
	12835
	deaths
	Inconsistent extraction

	New Jersey
	20.06.2020
	12857
	deaths
	Inconsistent extraction

	New Jersey
	21.06.2020
	12870
	deaths
	Inconsistent extraction

	New Jersey
	22.06.2020
	12895
	deaths
	Inconsistent extraction

	New Jersey
	23.06.2020
	12949
	deaths
	Inconsistent extraction

	New Jersey
	24.06.2020
	12995
	deaths
	Inconsistent extraction

	New Mexico
	23.05.2020
	6795
	cases
	Inconsistent extraction

	New Mexico
	23.05.2020
	308
	deaths
	Inconsistent extraction

	New Mexico
	13.04.2020
	1345
	cases
	Inconsistent extraction

	New Mexico
	13.04.2020
	31
	deaths
	Inconsistent extraction

	New Mexico
	14.04.2020
	1407
	cases
	Inconsistent extraction

	New Mexico
	14.04.2020
	36
	deaths
	Inconsistent extraction

	New Mexico
	16.04.2020
	cases
	No update on this day

	New Mexico
	16.04.2020
	deaths
	No update on this day

	New Mexico
	21.04.2020
	2072
	cases
	Inconsistent extraction

	New Mexico
	21.04.2020
	65
	deaths
	Inconsistent extraction

	New Mexico
	27.04.2020
	2823
	cases
	Inconsistent extraction

	New Mexico
	27.04.2020
	104
	deaths
	Inconsistent extraction

	New Mexico
	28.04.2020
	110
	deaths
	Inconsistent extraction

	New Mexico
	14.04.2020
	1407
	cases
	Inconsistent extraction

	New Mexico
	14.04.2020
	36
	deaths
	Inconsistent extraction

	North Dakota
	17.04.2020
	439
	cases
	Inconsistent extraction

	Oklahoma
	18.04.2020
	2570
	cases
	Inconsistent extraction

	Oklahoma
	19.04.2020
	2599
	cases
	Inconsistent extraction

	Oklahoma
	31.05.2020
	6506
	cases
	Inconsistent extraction

	Oklahoma
	18.04.2020
	139
	deaths
	Inconsistent extraction

	Oregon
	21.03.2020
	137
	cases
	Inconsistent extraction

	Oregon
	06.04.2020
	1132
	cases
	Inconsistent extraction

	Oregon
	07.04.2020
	1181
	cases
	Inconsistent extraction

	Oregon
	08.04.2020
	1239
	cases
	Inconsistent extraction

	Oregon
	09.04.2020
	1321
	cases
	Inconsistent extraction

	Oregon
	10.04.2020
	1371
	cases
	Inconsistent extraction

	Oregon
	11.04.2020
	1447
	cases
	Inconsistent extraction

	Oregon
	04.04.2020
	999
	cases
	Inconsistent extraction

	Oregon
	06.06.2020
	cases
	No update on this day

	Oregon
	07.06.2020
	cases
	No update on this day

	Oregon
	06.06.2020
	deaths
	No update on this day

	Oregon
	07.06.2020
	deaths
	No update on this day

	Oregon
	13.06.2020
	5535
	cases
	Inconsistent extraction

	Oregon
	13.06.2020
	174
	deaths
	Inconsistent extraction

	Oregon
	14.06.2020
	5636
	cases
	Inconsistent extraction

	Oregon
	14.06.2020
	176
	deaths
	Inconsistent extraction

	Oregon
	20.06.2020
	cases
	No update on this day

	Oregon
	20.06.2020
	deaths
	No update on this day

	Oregon
	21.06.2020
	cases
	No update on this day

	Oregon
	21.06.2020
	deaths
	No update on this day

	Rhode Island
	10.04.2020
	2015
	cases
	Inconsistent extraction

	Rhode Island
	13.04.2020
	2976
	cases
	Inconsistent extraction

	Rhode Island
	15.04.2020
	3529
	cases
	Inconsistent extraction

	Rhode Island
	16.04.2020
	3838
	cases
	Inconsistent extraction

	Rhode Island
	25.05.2020
	14170
	cases
	Inconsistent extraction

	Rhode Island
	10.04.2020
	49
	deaths
	Inconsistent extraction

	Rhode Island
	13.04.2020
	73
	deaths
	Inconsistent extraction

	Rhode Island
	15.04.2020
	87
	deaths
	Inconsistent extraction

	Rhode Island
	16.04.2020
	105
	deaths
	Inconsistent extraction

	Rhode Island
	06.06.2020
	cases
	No update on this day

	Rhode Island
	07.06.2020
	cases
	No update on this day

	Rhode Island
	13.06.2020
	cases
	No update on this day

	Rhode Island
	14.06.2020
	cases
	No update on this day

	Rhode Island
	06.06.2020
	deaths
	No update on this day

	Rhode Island
	07.06.2020
	deaths
	No update on this day

	Rhode Island
	13.06.2020
	deaths
	No update on this day

	Rhode Island
	14.06.2020
	deaths
	No update on this day

	Rhode Island
	20.06.2020
	cases
	No update on this day

	Rhode Island
	20.06.2020
	deaths
	No update on this day

	Rhode Island
	21.06.2020
	cases
	No update on this day

	Rhode Island
	21.06.2020
	deaths
	No update on this day

	Rhode Island
	27.06.2020
	cases
	No update on this day

	Rhode Island
	27.06.2020
	deaths
	No update on this day

	South Carolina
	03.06.2020
	518
	deaths
	Inconsistent extraction

	South Carolina
	04.06.2020
	525
	deaths
	Inconsistent extraction

	South Carolina
	05.06.2020
	538
	deaths
	Inconsistent extraction

	South Carolina
	06.06.2020
	545
	deaths
	Inconsistent extraction

	South Carolina
	03.06.2020
	12651
	cases
	Inconsistent extraction

	South Carolina
	04.06.2020
	13005
	cases
	Inconsistent extraction

	South Carolina
	06.06.2020
	13916
	cases
	Inconsistent extraction

	South Dakota
	21.05.2020
	4250
	cases
	Inconsistent extraction

	Tennessee
	31.05.2020
	23006
	cases
	Inconsistent extraction

	Tennessee
	01.06.2020
	23554
	cases
	Inconsistent extraction

	Tennessee
	01.06.2020
	367
	deaths
	Inconsistent extraction

	Tennessee
	12.05.2020
	264
	deaths
	Inconsistent extraction

	Tennessee
	22.04.2020
	7842
	cases
	Inconsistent extraction

	Tennessee
	22.04.2020
	166
	deaths
	Inconsistent extraction

	Tennessee
	08.05.2020
	241
	deaths
	Inconsistent extraction

	Tennessee
	20.05.2020
	18532
	cases
	Inconsistent extraction

	Tennessee
	20.05.2020
	309
	deaths
	Inconsistent extraction

	Utah
	13.04.2020
	18
	deaths
	Inconsistent extraction

	Utah
	01.04.2020
	1012
	cases
	Inconsistent extraction

	Utah
	01.04.2020
	7
	deaths
	Inconsistent extraction

	Utah
	09.04.2020
	1976
	cases
	Inconsistent extraction

	Utah
	09.04.2020
	13
	deaths
	Inconsistent extraction

	Virginia
	06.05.2020
	cases
	No update on this day

	Virginia
	06.05.2020
	deaths
	No update on this day

	West Virginia
	25.04.2020
	1025
	cases
	Inconsistent extraction

	West Virginia
	25.04.2020
	33
	deaths
	Inconsistent extraction

	West Virginia
	09.05.2020
	1347
	cases
	Inconsistent extraction

	West Virginia
	09.05.2020
	53
	deaths
	Inconsistent extraction

	West Virginia
	19.05.2020
	1514
	cases
	Inconsistent extraction

	West Virginia
	23.05.2020
	1717
	cases
	Inconsistent extraction

	West Virginia
	23.05.2020
	72
	deaths
	Inconsistent extraction

	West Virginia
	26.05.2020
	1854
	cases
	Inconsistent extraction

	West Virginia
	26.05.2020
	74
	deaths
	Inconsistent extraction

	West Virginia
	05.05.2020
	1242
	cases
	Inconsistent extraction

	West Virginia
	05.05.2020
	50
	deaths
	Inconsistent extraction

	West Virginia
	06.05.2020
	1276
	cases
	Inconsistent extraction

	West Virginia
	06.05.2020
	51
	deaths
	Inconsistent extraction

	West Virginia
	07.05.2020
	1297
	cases
	Inconsistent extraction

	West Virginia
	07.05.2020
	51
	deaths
	Inconsistent extraction

	Wyoming
	09.04.2020
	303
	cases
	Switched probables with confirmed and probables

	Wyoming
	10.04.2020
	340
	cases
	Switched probables with confirmed and probables

	Wyoming
	11.04.2020
	343
	cases
	Switched probables with confirmed and probables

	Wyoming
	12.04.2020
	364
	cases
	Switched probables with confirmed and probables

	Wyoming
	13.04.2020
	373
	cases
	Switched probables with confirmed and probables

	Wyoming
	14.04.2020
	383
	cases
	Switched probables with confirmed and probables

	Wyoming
	15.04.2020
	393
	cases
	Switched probables with confirmed and probables

	Wyoming
	16.04.2020
	401
	cases
	Switched probables with confirmed and probables

	Wyoming
	17.04.2020
	412
	cases
	Switched probables with confirmed and probables

	Wyoming
	18.04.2020
	422
	cases
	Switched probables with confirmed and probables

	Wyoming
	19.04.2020
	426
	cases
	Switched probables with confirmed and probables

	Wyoming
	20.04.2020
	428
	cases
	Switched probables with confirmed and probables
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	Location
	Data source

	United States of America, Georgia
	United States - Georgia Department of Public Health COVID-19 Daily Status Report 2020

	United States of America, Mississippi
	United States - Mississippi State Department of Health Coronavirus Disease 2019 (COVID-19) Current Cases and Statistics 2020

	United States of America, Oklahoma
	United States - Oklahoma State Department of Health COVID-19 Current Situation 2020

	United States of America, Hawaii
	United States - Hawaii Department of Health COVID-19 Current Situation 2020

	United States of America, Minnesota
	United States - Minnesota Department of Health Situation Update for Coronavirus Disease 2019 (COVID-19) 2020

	United States of America, Nebraska
	United States - Nebraska Department of Health and Human Services Coronavirus COVID-19 Cases 2020

	United States of America, Wyoming
	United States - Wyoming Department of Health COVID-19 Map and Statistics 2020

	United States of America, North Dakota
	United States - North Dakota Department of Health Coronavirus Cases 2020

	United States of America, Arkansas
	United States - Arkansas Department of Health COVID-19 Status Updates 2020

	United States of America, Utah
	United States - Utah Department of Health Overview of COVID-19 Surveillance 2020

	United States of America, Maryland
	United States - Maryland Department of Health COVID-19 Statistics 2020

	United States of America, New Mexico
	United States - New Mexico Department of Health 2019 Novel Coronavirus Disease (COVID-19) Updates 2020

	United States of America, Tennessee
	United States - Tennessee Department of Health Epidemiology and Surveillance Data 2020

	United States of America, Maine
	United States - Maine Division of Disease Surveillance Novel Coronavirus 2019 (COVIDâ€‘19) Situation 2020

	United States of America, Florida
	United States - Florida Division of Emergency Management COVID-19 Data Report 2020

	United States of America, New Hampshire
	United States - New Hampshire Department of Health and Human Services 2019 Novel Coronavirus (COVID-19) Summary Report 2020

	United States of America, Alabama
	United States - Alabama Department of Public Health COVID-19 Data and Surveillance 2020

	United States of America, South Dakota
	United States - South Dakota Department of Health Novel Coronavirus (COVID-19) Updates and Information 2020

	United States of America, Arizona
	United States - Arizona Department of Health Services COVID-19 Data 2020

	United States of America, Colorado
	United States - Colorado Department of Public Health and Environment COVID-19 Updates 2020

	United States of America, Montana
	United States - Montana Department of Health and Human Services COVID-19 Cases 2020

	United States of America, Massachusetts
	United States - Massachusetts Department of Public Health COVID-19 Cases, Quarantine and Monitoring 2020

	United States of America, Oregon
	United States - Oregon Health Authority COVID-19 Updates 2020

	United States of America, Wisconsin
	United States - Wisconsin Department of Health Services COVID-19 Data 2020

	United States of America, Virginia
	United States - Virginia Department of Health COVID-19 Cases 2020

	United States of America, Virginia
	United States - Virginia Hospital and Healthcare Association COVID-19 Dashboard 2020

	United States of America, Alaska
	United States - Alaska Department of Public Health and Social Services Coronavirus Response Hub 2020

	United States of America, Ohio
	United States - Ohio Department of Health COVID-19 Dashboard 2020

	United States of America, Kansas
	United States - Kansas Department of Health and Environment Coronavirus Disease 2019 (COVID-19) Case Summary 2020

	United States of America, Idaho
	United States - Idaho Division of Public Health COVID-19 Case Data 2020
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	Covariate Name
	Definition

	Time varying
	Social distancing mandates
	Categorical classification of social distancing mandates imposition and lifting

	
	Mobility
	Composite indicator of multiple mobility sources, expressed as percent reduction from "norm". Projected based on social distancing mandates

	
	Testing per capita
	Number of tests administered daily divided by population per location

	
	Mask Use
	Percentage of the population who "always" wear a mask

	
	Pneumonia seasonality
	Proportion of pneumonia deaths to total deaths by week of the calendar year; by location

	Time invariant
	LRI mortality
	age 15+ age-standardized LRI mortality rate by location (time invariant, based on 2019 results)

	
	Altitude
	Proportion population below 100 m altitude

	
	Population density
	Percentage of population living in areas more dense than 1,000 ppl per square km

	
	Smoking
	Smoking exposure per capita (time invariant) (Adult age-standardized [15+ years], both sexes)

	
	Air pollution
	Population-weighted annual mean PM2.5 exposure
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Table uploaded as separate file due to large size.
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	Location
	Source
	Tests reported

	Albania
	Albania Ministry of Health and Social Protection Updated Information on COVID-19 2020
	Individuals tested

	Angola
	Angola Ministry of Health COVID-19 News 2020
	Tests processed 

	Armenia
	Armenia National Center for Disease Control Coronavirus Disease (COVID-19) Confirmed Cases by Days 2020
	Cases + Negatives

	Australia
	Coronavirus (COVID-19) in Australia 2020
	Tests processed

	Barbados
	Barbados Government Information Service COVID-19 Update 2020
	Tests processed

	Benin
	Benin Coronavirus Information (COVID-19) 2020
	Tests processed

	Botswana
	Botswana COVID-19 Updates 2020
	Tests processed

	Canadian subnationals
	Canada Coronavirus Disease 2019 (COVID-19) Daily Epidemiology Update 2020
	Individuals tested

	Canadian subnationals
	Canada Public Health Infobase Number of Total Cases of COVID-19 2020
	Individuals tested

	Comoros
	Comoros Ministry of Health, Solidarity, Social Protection and Gender Promotion COVID-19 Press Release
	Tests processed

	Congo
	Congo COVID-19 Epidemiological Situation 2020
	Tests processed

	Costa Rica
	Costa Rica COVID-19 National Situation - Distance State University 2020
	Tests processed

	Cote d'Ivoire
	Cote d'Ivoire COVID-19: Update on the Situation of Coronavirus Disease 2020
	Tests processed

	Cyprus
	Cyprus Announcement of the Ministry of Health Regarding New Cases of COVID-19 Disease 2020
	Tests processed

	Djibouti
	Djibouti COVID-19 Statistics 2020
	Tests processed

	Dominican Republic
	Dominican Republic General Directorate of Epidemiology Coronavirus Disease 2019 (COVID-19) Special Bulletin 2020
	Tests processed

	Democratic Republic of the Congo
	Democratic Republic of the Congo Multisectoral Committee on the Response to COVID-19 Bulletin 2020
	Tests processed

	Equatorial Guinea
	Equatorial Guinea COVID-19 News - AhoraEG
	Tests processed

	Eswatini
	Eswatini COVID-19 Dashboard 2020
	Individuals tested

	Gabon
	Gabon COVID-19 Epidemiological Situation 2020
	Tests processed

	Gambia
	Gambia COVID-19 Situational Outbreak Report 2020
	Tests processed

	Ghana
	Ghana Health Service Coronavirus Disease (COVID-19) Updates 2020
	Tests processed

	Guinea
	Guinea Ministry of Health COVID-19 Epidemiological Situation 2020
	Individuals tested

	Guinea Bissau
	Guinea-Bissau INFOCOVID-19 Update 2020
	Tests processed

	Guyana
	Guyana Ministry of Public Health COVID-19 Dashboard 2020
	Individuals tested

	Honduras
	Honduras National Risk Management System COVID-19 Statement 2020
	Tests processed

	Italian subnationals
	Italy COVID-19 Situation Monitoring - Department of Civil Protection
	Tests processed

	Japan
	Japan Coronavirus Disease (COVID-19) Situation Report 2020 - Toyo Kazei Online
	Tests processed

	Madagascar
	Madagascar Ministry of Public Health Coronavirus Situation 2020
	Tests processed

	Mali
	Mali Ministry of Health and Social Affairs Communique on the Monitoring of Prevention and Response Actions to Coronavirus Disease 2020
	Tests processed

	Mauritania
	Mauritania COVID-19 Situation Report 2020
	Tests processed

	Mauritius
	Mauritius Ministry of Health and Wellness COVID-19 Statistics 2020
	Tests processed

	Mexico
	Mexico General Directorate of Epidemiology COVID-19 Database 2020
	Individuals tested

	Moldova
	Moldova Epidemiological Situation Due to Infection with the New Type of Coronavirus (COVID-19) 2020
	Tests processed

	Mozambique
	Mozambique National Institute of Health COVID-19 Daily Surveillance Bulletin 2020
	Individuals tested

	Niger
	Niger Ministry of Public Health General Secretariat COVID-19 Communications 2020
	Tests processed

	Pakistan - Sindh
	Pakistan - Sindh COVID-19 Statistics 2020
	Tests processed

	Pakistan - Punjab
	Pakistan - Punjab COVID-19 Statistics 2020
	Tests processed

	Pakistan - Khyber Pakhtunkhwa
	Pakistan - Khyber Pakhtunkhwa COVID-19 Statistics 2020
	Tests processed

	Pakistan - Islamabad
	Pakistan - Islamabad COVID-19 Statistics 2020
	Tests processed

	Pakistan - Gilgit-Baltistan
	Pakistan - Gilgit-Baltistan COVID-19 Statistics 2020
	Tests processed

	Pakistan - Balochistan
	Pakistan - Balochistan COVID-19 Statistics 2020
	Tests processed

	Pakistan - Azad Jammu and Kashmir
	Pakistan - Azad Jammu and Kashmir COVID-19 Statistics 2020
	Tests processed

	Brazil - Pernambuco
	COVID-19 in the World, in Brazil and in Pernambuco 2020
	Tests processed

	Peru
	Peru Ministry of Health COVID-19 Situation 2020
	Individuals tested

	Saint Kitts
	Saint Kitts and Nevis COVID-19 Situation Report 2020
	Positives + Negatives

	Brazil - Santa Catarina
	Brazil - Santa Catarina Coronavirus Epidemiological Bulletin 2020
	Tests processed

	Brazil - Sergipe
	Brazil - Sergipe Epidemiological Bulletin for Update on Coronavirus Disease 2019 (Covid-19) 2020
	Tests processed

	Sierra Leone
	Sierra Leone Coronavirus Disease (COVID-19) Situational Report, April-May 2020
	Tests processed

	South Africa subnationals
	South Africa National Institute for Communicable Diseases COVID-19 Weekly Epidemiological Brief 2020
	Tests processed

	Spain - Aragon
	Spain - Aragon Open Data: Daily Facts and Figures About the Coronavirus 2020
	Tests processed

	Spain - Cantabria
	Spain - Cantabria Epidemiological Situation of COVID-19 2020
	Total PCR tests

	Spain - Navarra
	Spain - Navarra COVID-19 Tests Results Data 2020
	Total PCR + Antibody Tests

	Spain - Navarra
	Spain - Navarra New COVID-19 Series Evolution Data 2020
	Total PCR + Antibody Tests

	Spain - Castile y Leon
	Spain - Castile and León Open Data: Coronavirus Tests 2020
	Total PCR tests

	Spain
	Spain Ministry of Health, Consumption, and Social Welfare Coronavirus Disease (COVID-19) Current Situation Update 2020
	Total PCR tests

	Togo
	Coronavirus in Togo: Evolution in Graphics 2020
	Tests processed

	United States of America States (apart from Washington)
	United States COVID Tracking Project API - Historic State Data 2020
	Various

	Washington
	United States - Washington State Department of Health COVID-19 Tests by County and Specimen Collection Date 2020
	Tests processed

	Yemen
	Yemen Covid-19 Daily Report for the Period from January to June 2020
	Tests processed

	Spain - La Rioja
	Spain - La Rioja Epidemiological Situation of COVID-19 2020
	Tests processed

	Spain - Balearic Islands
	Spain - Balearic Islands Ministry of Health and Consumption News About the Coronavirus COVID-19 2020
	Tests processed

	Spain - Asturias
	Spain - Asturias Open Data: COVID-19 Evolution 2020
	Tests processed

	Georgia
	Georgia National Center for Disease Control and Public Health COVID-19 Update 2020
	Tests processed

	Malawi
	Malawi COVID-19 National Information Dashboard 2020
	Tests processed

	Cape Verde
	Cape Verde COVID-19 Epidemiological Bulletin 2020
	Tests processed

	Namibia
	Namibia COVID-19 National Statistics 2020
	Individuals tested

	Sudan
	Sudan Health Observatory COVID-19 Situation and Updates 2020
	Tests processed

	Central African Republic
	Central African Republic COVID-19 Daily Situation Report 2020
	Individuals tested

	Philippines
	Philippines Department of Health COVID-19 Tracker 2020
	Tests processed

	Niger
	Niger Ministry of Public Health General Secretariat COVID-19 Communications 2020
	Tests processed

	Brail - Minas Gerais
	Brazil - Minas Gerais Coronavirus Epidemiological Bulletin 2020
	Tests processed in public facilities

	Brail - Rondonia
	Brazil - Rondonia Daily Newsletter on Coronavirus 2020
	Tests processed

	Jamaica
	Jamaica Ministry of Health and Wellness COVID-19 Update 2020
	Tests processed

	Jordan
	Jordan Ministry of Health COVID-19 Updates 2020
	Tests processed

	Zambia
	Zambia Coronavirus Disease (COVID-19) Outbreak Situation Report 2020
	Tests processed

	Indian subnationals
	India COVID-19 Crowdsourced Patient Database: State Level Testing Data 2020
	Various

	Palestine
	Palestine Ministry of Health COVID-19 Surveillance System 2020
	Tests processed

	Bermuda
	Bermuda COVID-19 Update 2020
	Tests processed

	Lebanon
	Lebanon Ministry of Public Health COVID-19 Surveillance Data 2020
	Tests processed

	Oman
	Oman Ministry of Health COVID-19 Statement 2020
	Tests processed

	Guatemala
	Guatemala Ministry of Public Health and Social Assistance COVID-19 Case Update 2020
	Tests processed

	Palau
	Palau Ministry of Health Coronavirus Disease 2019 (COVID-19) Situation Report 2020
	Tests processed
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	Location
	Date
	Source

	Canada
	13th April
	Canada Coronavirus Disease 2019 (COVID-19) Daily Epidemiology Update 2020

	China
	11th February
	The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) - China, 2020


	Germany
	13th April
	Coronavirus Disease 2019 (COVID-19) Daily Situation Report - Robert Koch Institute

	Diamond Princess passengers
	28th March
	Estimating the infection and case fatality ratio for coronavirus disease (COVID-19) using age-adjusted data from the outbreak on the Diamond Princess cruise ship, February 2020; 
Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises Ship, 2020; 
Third death from Japan cruise ship as health minister vows to set virus strategy; 
[About death of patient associated with cruise ship under quarantine at Yokohama Port] 23 March 2020; 
Two Diamond Princess passengers infected with coronavirus die as Japan reports new cases; 
[About death of patient associated with cruise ship under quarantine at Yokohama Port] 20 March 2020; 
Coronavirus: man evacuated from Diamond Princess becomes first Australian to die of Covid-19; 
[About death of patient associated with cruise ship under quarantine at Yokohama Port] 28 February 2020

	Denmark
	20th April
	Denmark State Serum Institute Monitoring of COVID-19 2020

	Ecuador
	20th April
	Ecuador Coronavirus Covid-19 Epidemiological Gazette 2020

	France
	16th April
	France COVID-19 Weekly Epidemiological Update 2020

	Greece
	23rd April
	Greece Daily Epidemiological Surveillance Report of New Coronavirus Infection (COVID-19) 2020

	Iceland
	19th April
	Iceland COVID-19 Statistics 2020

	Japan
	18th April
	Japan Ministry of Health, Labor and Welfare Current Situation of Novel Coronavirus Infectious Disease Press Release 2020


	South Korea
	23rd April
	South Korea Centers for Disease Control and Prevention Updates of COVID-19 2020

	Netherlands
	23rd April
	Netherlands Epidemiological Situation of COVID-19 2020

	Norway
	20th April
	Norway Coronavirus Disease (COVID-19) Daily Status Report 2020 - Norwegian Institute of Public Health

	New Zealand
	29th March
	New Zealand Ministry of Health COVID-19 Confirmed and Probable Case Data 2020

	Philippines
	19th April
	Philippines Department of Health COVID-19 Tracker 2020

	Portugal
	22nd April
	Portugal New Coronavirus COVID-19 Epidemiological Situation Report 2020

	Singapore
	11th April
	Singapore COVID-19 Tracker - Visualizing COVID-19/Coronavirus Cases and Cluster Zones 2020

	Sweden
	23rd April
	Sweden Public Health Agency COVID-19 Confirmed Cases Daily Update 2020

	Alabama, USA
	20th April
	United States - Alabama Department of Public Health COVID-19 Data and Surveillance 2020

	Arizona, USA
	20th April
	United States - Arizona Department of Health Services COVID-19 Data 2020

	Colorado, USA
	19th April
	United States - Colorado Department of Public Health and Environment COVID-19 Updates 2020

	Connecticut, USA
	19th April
	United States - Connecticut Department of Public Heath COVID-19 Update 2020

	Florida, USA
	2nd April
	United States - Florida Division of Emergency Management COVID-19 Data Report 2020

	Georgia, USA
	14th April
	United States - Georgia Department of Public Health COVID-19 Daily Status Report 2020

	Illinois, USA
	19th April
	United States - Illinois Department of Public Health Coronavirus Disease 2019 (COVID-19) Statistics 2020

	Indiana, USA
	19th April
	United States - Indiana State Department of Health COVID-19 Data Report 2020

	Kentucky, USA
	19th April
	United States - Kentucky Department for Public Health COVID-19 Dashboard 2020

	Louisiana, USA
	23rd April
	United States - Louisiana Department of Health Coronavirus (COVID-19) Information 2020

	Maryland, USA
	20th April
	United States - Maryland Department of Health COVID-19 Statistics 2020


	Michigan, USA
	19th April
	United States - Michigan Department of Health and Human Services Coronavirus Data 2020

	Montana, USA
	19th April
	United States NVSS Provisional Death Counts for Coronavirus Disease (COVID-19): Weekly Updates by Select Demographic and Geographic Characteristics 2020

	Mississippi, USA
	18th April
	United States - Mississippi State Department of Health Coronavirus Disease 2019 (COVID-19) Current Cases and Statistics 2020

	North Carolina, USA
	20th April
	United States - North Carolina Department of Health and Human Services COVID-19 Dashboard 2020

	Ohio, USA
	23rd April
	United States - Ohio Department of Health COVID-19 Dashboard 2020

	Oklahoma, USA
	13th April
	United States - Oklahoma State Department of Health COVID-19 Current Situation 2020

	Oregon, USA
	23rd April
	United States - Oregon Health Authority COVID-19 Updates 2020

	South Carolina, USA
	17th April
	United States - South Carolina Department of Health and Environmental Control COVID-19 Demographic Data by Case 2020

	Tennessee, USA
	19th April
	United States - Tennessee Department of Health Epidemiology and Surveillance Data 2020

	Virginia, USA
	19th April
	United States - Virginia Department of Health COVID-19 Cases 2020

	Washington, USA
	12th April
	United States - Washington State Department of Health 2019 Novel Coronavirus Outbreak (COVID-19) Data 2020


	Wisconsin, USA
	19th April
	United States - Wisconsin Department of Health Services COVID-19 Data 2020
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	Location
	Date
	Source

	Belgium
	13th April
	Belgium COVID-19 Mortality by Date, Age, Sex, and Region 2020 - Sciensano

	Canada
	13th April
	Canada Coronavirus Disease 2019 (COVID-19) Daily Epidemiology Update 2020

	China
	11th April
	The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) - China, 2020

	Germany
	13th April
	Coronavirus Disease 2019 (COVID-19) Daily Situation Report - Robert Koch Institute

	Denmark
	20th April
	Denmark State Serum Institute Monitoring of COVID-19 2020

	Ecuador
	20th April
	Ecuador Coronavirus Covid-19 Epidemiological Gazette 2020

	France
	16th April
	France COVID-19 Weekly Epidemiological Update 2020

	Greece
	23rd April
	Greece Daily Epidemiological Surveillance Report of New Coronavirus Infection (COVID-19) 2020

	Iceland
	19th April
	Iceland COVID-19 Statistics 2020

	Italy
	20th April
	Italy COVID-19 Epidemic National Update Bulletin 2020

	Japan
	18th April
	Japan Ministry of Health, Labor and Welfare Current Situation of Novel Coronavirus Infectious Disease Press Release 2020

	South Korea
	23rd April
	South Korea Centers for Disease Control and Prevention Updates of COVID-19 2020

	Netherlands
	23rd April
	Netherlands Epidemiological Situation of COVID-19 2020

	Norway
	20th April
	Norway Coronavirus Disease (COVID-19) Daily Status Report 2020 - Norwegian Institute of Public Health

	New Zealand
	29th March
	New Zealand Ministry of Health COVID-19 Confirmed and Probable Case Data 2020

	Philippines
	19th April
	Philippines Department of Health COVID-19 Tracker 2020

	Portugal
	22nd April
	Portugal New Coronavirus COVID-19 Epidemiological Situation Report 2020

	Singapore
	11th April
	Singapore COVID-19 Tracker - Visualizing COVID-19/Coronavirus Cases and Cluster Zones 2020

	Sweden
	23rd April
	Sweden Public Health Agency COVID-19 Confirmed Cases Daily Update 2020

	Alabama, USA
	20th April
	United States - Alabama Department of Public Health COVID-19 Data and Surveillance 2020

	Arizona, USA
	20th April
	United States - Arizona Department of Health Services COVID-19 Data 2020

	United States of America
	18th April
	United States NVSS Provisional Death Counts for Coronavirus Disease (COVID-19): Weekly Updates by Select Demographic and Geographic Characteristics 2020

	Colorado, USA
	19th April
	United States - Colorado Department of Public Health and Environment COVID-19 Updates 2020

	Connecticut, USA
	19th April
	United States - Connecticut Department of Public Heath COVID-19 Update 2020

	Florida, USA
	2nd April
	United States - Florida Division of Emergency Management COVID-19 Data Report 2020

	Georgia, USA
	14th April
	United States - Georgia Department of Public Health COVID-19 Daily Status Report 2020

	Illinois, USA
	19th April
	United States - Illinois Department of Public Health Coronavirus Disease 2019 (COVID-19) Statistics 2020

	Indiana, USA
	19th April
	United States - Indiana State Department of Health COVID-19 Data Report 2020

	Kentucky, USA
	19th April
	United States - Kentucky Department for Public Health COVID-19 Dashboard 2020

	Louisiana, USA
	23rd April
	United States - Louisiana Department of Health Coronavirus (COVID-19) Information 2020

	Maryland, USA
	20th April
	United States - Maryland Department of Health COVID-19 Statistics 2020

	Michigan, USA
	19th April
	United States - Michigan Department of Health and Human Services Coronavirus Data 2020

	Montana, USA
	19th April
	United States NVSS Provisional Death Counts for Coronavirus Disease (COVID-19): Weekly Updates by Select Demographic and Geographic Characteristics 2020

	Mississippi, USA
	18th April
	United States - Mississippi State Department of Health Coronavirus Disease 2019 (COVID-19) Current Cases and Statistics 2020

	North Carolina, USA
	20th April
	United States - North Carolina Department of Health and Human Services COVID-19 Dashboard 2020

	New York, USA
	18th April
	United States - New York State Department of Health COVID-19 Tracker 2020

	Ohio, USA
	23rd April
	United States - Ohio Department of Health COVID-19 Dashboard 2020

	Oklahoma, USA
	13th April
	United States - Oklahoma State Department of Health COVID-19 Current Situation 2020

	Oregon, USA
	23rd April
	United States - Oregon Health Authority COVID-19 Updates 2020

	South Carolina, USA
	17th April
	United States - South Carolina Department of Health and Environmental Control COVID-19 Demographic Data by Case 2020

	Tennessee, USA
	19th April
	United States - Tennessee Department of Health Epidemiology and Surveillance Data 2020

	Virginia, USA
	19th April
	United States - Virginia Department of Health COVID-19 Cases 2020

	Washington, USA
	12th April
	United States - Washington State Department of Health 2019 Novel Coronavirus Outbreak (COVID-19) Data 2020

	Wisconsin, USA
	19th April
	United States - Wisconsin Department of Health Services COVID-19 Data 2020





[bookmark: _Toc45300063]SI Table 11.  regression coefficient constraints.

	Covariate
	Time-varying
	Lower Bound
	Upper Bound

	Pneumonia Seasonality
	Yes
	0.9
	1.31

	Mobility
	Yes
	0
	

	Mask Use
	Yes
	-0.52
	0

	Testing
	Yes
	-80
	0

	Air Quality
	No
	0
	

	Smoking Prevalence
	No
	0
	1

	LRI Mortality
	No
	0
	

	Altitude
	No
	0
	

	Population Density
	No
	0
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