Supplementary Information for:

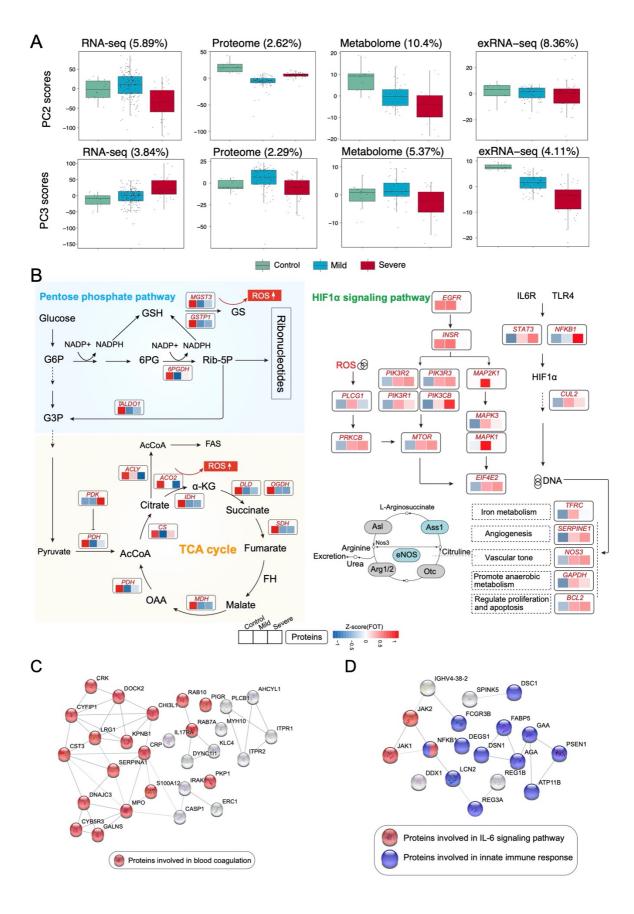
2 COVID-19 severity is associated with immunopathology and multi-

3 organ damage

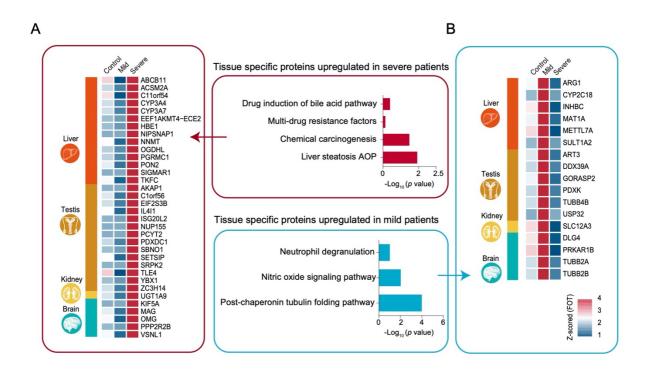
4

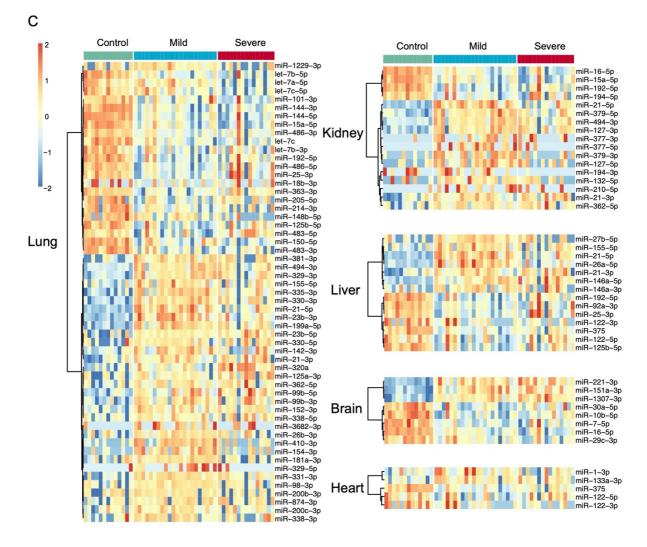
5	Yan-Mei Chen ^{1,4} , Yuanting Zheng ^{1,4} , Ying Yu ^{1,4} , Yunzhi Wang ^{1,4} , Qingxia Huang ^{1,4} , Feng
6	Qian ^{1, 4} , Lei Sun ^{2, 4} , Zhi-Gang Song ¹ , Ziyin Chen ¹ , Jinwen Feng ¹ , Yanpeng An ¹ , Jingcheng
7	Yang ¹ , Zhenqiang Su ¹ , Shanyue Sun ¹ , Fahui Dai ¹ , Qinsheng Chen ¹ , Qinwei Lu ¹ , Pengcheng
8	Li ¹ , Yun Ling ¹ , Zhong Yang ¹ , Huiru Tang ¹ , Leming Shi ¹ , Li Jin ¹ , Edward C. Holmes ³ , Chen
9	Ding ¹ *, Tong-Yu Zhu ¹ *, Yong-Zhen Zhang ¹ *
10	
11	¹ Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering,
12	School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.
13	² Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai,
14	China.
15	³ Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and
16	Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney,
17	New South Wales, Australia.
18	
19	⁴ These authors contributed equally: Yan-Mei Chen, Yuanting Zheng, Ying Yu, Yunzhi Wang,
20	Qingxia Huang, Feng Qian, Lei Sun
21	*Correspondence to: Yong-Zhen Zhang, Email: zhangyongzhen@shphc.org.cn ; Tong-Yu-
22	Zhu, Email: zhutongyu@shphc.org.cn; Chen Ding, Email: chend@fudan.edu.cn.

23 SUPPLEMENTARY FIGURES

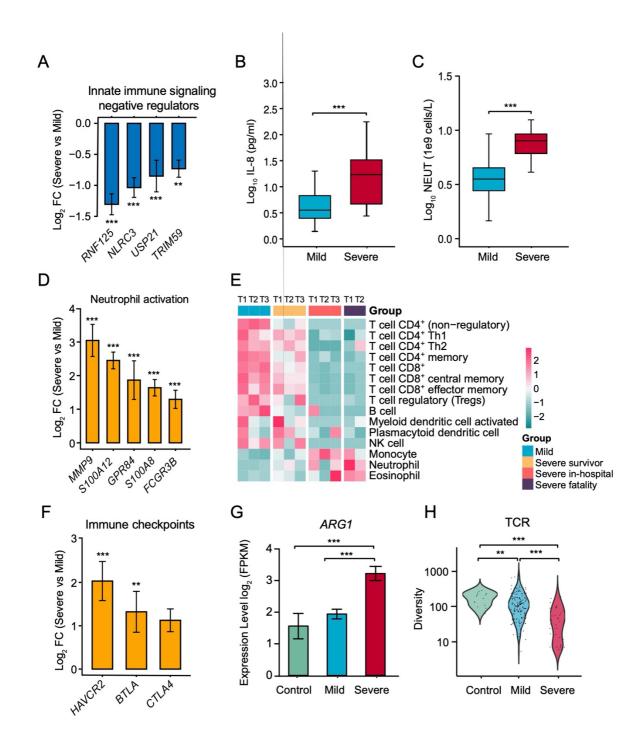


- 25 Fig. S1 Molecular variation associated with COVID-19 pathophysiology.
- 26 (A) Scores of principal components 2 and 3 (PC2 and PC3) of each sample from the RNA-
- seq, proteome, metabolome, and exRNA-seq principal component analyses.
- 28 (B) Systematic summary of the proteins and signaling cascades significantly altered in
- 29 healthy control patients (TCA, PEP) and in mild or severe patients (HIF-1α). Values for each
- 30 protein in all samples analyzed (columns) are color-coded based on expression levels: low
- 31 (blue) and high (red) z-scored FOT.
- 32 (C) Network indicating protein-protein interactions among module 1 enriched proteins.
- 33 (D) Network indicating protein-protein interactions among module 2 enriched proteins.





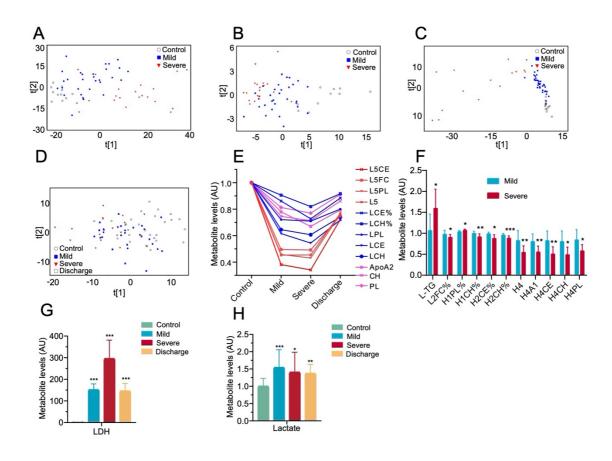
36	Fig. S2 Comparative analysis of tissue injury in mild and severe COVID-19 patients.
37	(A and B) The heatmap indicates expression patterns of tissue-enhanced biomarkers among
38	the healthy control, mild and severe patient groups. A, tissue-enhanced proteins upregulated
39	in severe patients; B, tissue-enhanced proteins upregulated in mild patients. Values for each
40	protein in all samples analyzed (columns) are color-coded based on expression levels: low
41	(blue) and high (red) z-scored FOT. The bar plots indicate GO processes and pathways
42	enriched by tissue-specific proteins upregulated in mild patients (a) and severe patients (b).
43	(C) exRNA data related to tissue injury were collected from publications. Differentially
44	expressed exRNAs were identified using a t-test < 0.05 and fold change >2 or < 0.5. The
45	majority of tissue-injury related exRNAs across all tissues analyzed showed differential
46	expression.



49 Fig. S3 Immune characteristics in COVID-19 patients.

- 50 (A) Normalized gene expression of innate immune signaling negative regulators in mild
- 51 versus severe COVID-19 patient comparisons.
- 52 (B) Level of plasma cytokines IL-8 between mild and severe patient groups.
- 53 (C) Absolute neutrophil count (NEUT) between mild and severe patient groups.

- 54 (D) Normalized expression of neutrophil activation genes in mild versus severe COVID-19
- 55 patient comparisons.
- 56 (E) Cell type enrichment analysis of the RNA sequencing data using the xCell tool among
- 57 COVID-19 patient subgroups from longitudinal samples.
- 58 (F) Expression levels of immune checkpoints, normalized to CD3G mild versus severe
- 59 patient comparisons.
- 60 (G) Expression levels of *ARG1* between control and COVID-19 patient subgroups.
- 61 (H) Comparison of TCR diversity between healthy controls and COVID-19 patient
- 62 subgroups. FC, fold change. Data are represented as means \pm SEM. ** p < 0.01; ***p <
- 63 **0.001 (t-test)**.
- 64

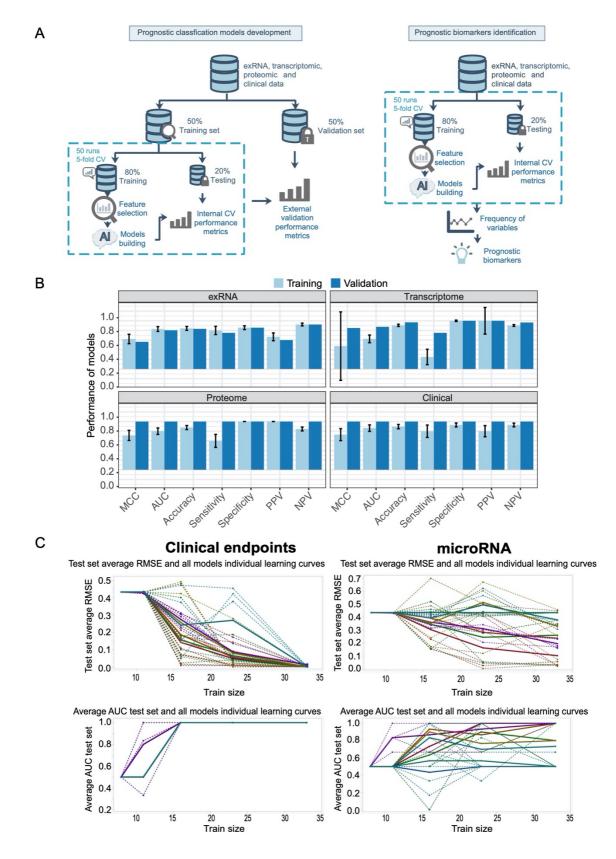


66 Fig. S4 COVID-19-caused changes in plasma metabolomics and clinical biochemistry

67 associated with disease severity.

- 68 (A-C) COVID-19 severity was associated with plasma metabolomic phenotypes defined by
- all MS-detectable lipidomic compounds (a), hydrophilic metabolites (b), and all NMR-
- 70 detectable metabolite signals (c).
- 71 (D) PCA scores revealed a variation in plasma metabolomic trajectory among healthy
- controls, patients with mild and severe COVID-19, and upon discharge. The discharge group
- 73 comprised all patients (mild and severe) that were recovered and discharged.
- 74 (E-H) COVID-19 severities are associated with changes in levels of the compositional
- components of lipoprotein subclasses (E and F), lactate (G), lactate dehydrogenase (H) in
- ⁷⁶ blood plasma. AU: The metabolite concentration of each sample is normalized using the

77	average of the control group; LDH: lactate dehydrogenase; H1: HDL1; H2: HDL2; H3: HDL3;
78	H4: HDL4; L: LDL; L2: LDL2; TG: triglycerides; FC: free cholesterol; CE: cholesteryl esters;
79	CH: total cholesterol (i.e., FC + CE); PL: total phospholipids; L5CE, L5FC, L5PL: cholesteryl
80	esters (CE), free cholesterol (FC) and total phospholipids (PL) in LDL5 (L5); ApoA2: total
81	ApoA2 (in both nascent and mature HDL); CH: total cholesterol (both FC and CE); H4A1,
82	H4A2, H4CH, H4FC, H4CE, H4PL: ApoA1, ApoA2, CH, FC, CE and PL in HDL4; LDPL,
83	LDL-CH, LDL-CE: PL, CH, CE in LDL; L-CE%, L-FC%: percentages of CE and FC in all
84	lipids of LDL. *** <i>p</i> < 0.001.



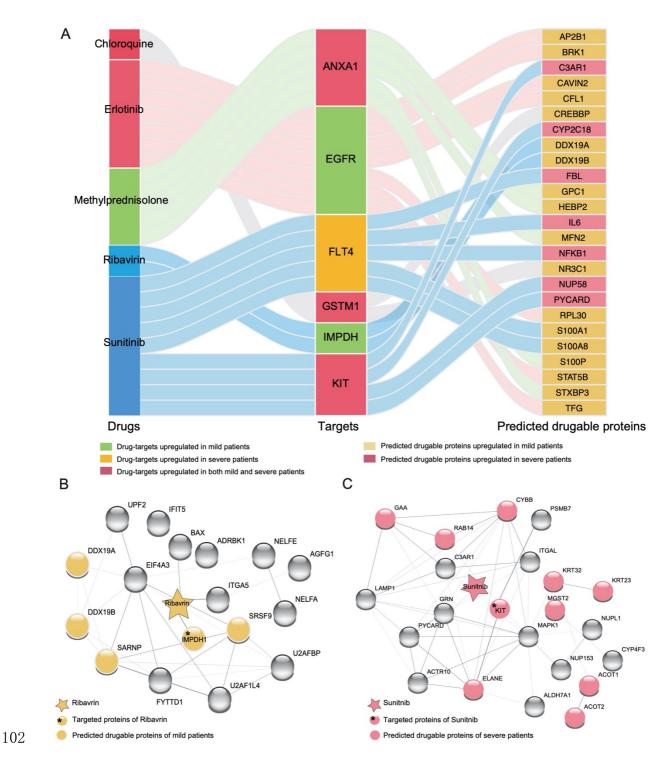
86

87 Fig. S5 Training and validation set performance in exRNA-, transcriptome-, proteome-,

⁸⁸ and clinical- models.

89 (A) Workflow of prediction model construction.

90	(B) Performance of AI models in the training and validation set based on exRNA,
91	transcriptome, proteome, and the corresponding clinical covariate data sets. The model
92	performance of 5-fold cross-validation was assessed using Matthews correlation coefficient
93	(MCC), AUC, accuracy, sensitivity, specificity, positive predictive value (PPV) and negative
94	predictive value (NPV).
95	(C) Learning curve model comparison (LCMC) revealing sample size effects on the
96	accuracy and variability of the predictive models using cross-validation. Each individual root
97	means square error (RMSE) learning curve and the average for each of 8 models is shown.
98	The LCMC suggested that with up to 15 samples, 8 partition tree models reached AUC as 1
99	for clinical endpoints, but more than 23 samples were needed for one model and more than
100	30 samples need for three models to reach AUC as 1 for microRNA.
101	



103 Fig. S6 A drug-protein network for predicting novel drug candidates.

- 104 (A) The snaky plot indicates the correlation network of drug, drug targets and predicted-
- 105 drug targets.

- 106 (B) Network indicating the interactions between Ribavrin, IMPDH1 (target of Ribavrin) and
- 107 predicted druggable proteins in mild COVID-19 patients.
- 108 (C) Network indicating the interactions between Sunitinib, KIT (target of Sunitinib) and
- 109 predicted druggable proteins in severe COVID-19 patients.