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Fig. S1 Molecular variation associated with COVID-19 pathophysiology.

(A) Scores of principal components 2 and 3 (PC2 and PC3) of each sample from the RNA-

seq, proteome, metabolome, and exRNA-seq principal component analyses.

(B) Systematic summary of the proteins and signaling cascades significantly altered in

healthy control patients (TCA, PEP) and in mild or severe patients (HIF-1a). Values for each

protein in all samples analyzed (columns) are color-coded based on expression levels: low

(blue) and high (red) z-scored FOT.

(C) Network indicating protein-protein interactions among module 1 enriched proteins.

(D) Network indicating protein-protein interactions among module 2 enriched proteins.
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Fig. S2 Comparative analysis of tissue injury in mild and severe COVID-19 patients.

(A and B) The heatmap indicates expression patterns of tissue-enhanced biomarkers among

the healthy control, mild and severe patient groups. A, tissue-enhanced proteins upregulated

in severe patients; B, tissue-enhanced proteins upregulated in mild patients. Values for each

protein in all samples analyzed (columns) are color-coded based on expression levels: low

(blue) and high (red) z-scored FOT. The bar plots indicate GO processes and pathways

enriched by tissue-specific proteins upregulated in mild patients (a) and severe patients (b).

(C) exRNA data related to tissue injury were collected from publications. Differentially

expressed exRNAs were identified using a t-test <0.05 and fold change >2 or <0.5. The

maijority of tissue-injury related exRNAs across all tissues analyzed showed differential

expression.
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Fig. S3 Immune characteristics in COVID-19 patients.

(A) Normalized gene expression of innate immune signaling negative regulators in mild
versus severe COVID-19 patient comparisons.

(B) Level of plasma cytokines IL-8 between mild and severe patient groups.

(C) Absolute neutrophil count (NEUT) between mild and severe patient groups.
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(D) Normalized expression of neutrophil activation genes in mild versus severe COVID-19

patient comparisons.

(E) Cell type enrichment analysis of the RNA sequencing data using the xCell tool among

COVID-19 patient subgroups from longitudinal samples.

(F) Expression levels of immune checkpoints, normalized to CD3G mild versus severe

patient comparisons.

(G) Expression levels of ARG1 between control and COVID-19 patient subgroups.

(H) Comparison of TCR diversity between healthy controls and COVID-19 patient

subgroups. FC, fold change. Data are represented as means + SEM. ** p < 0.01; ***p <

0.001 (t-test).
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Fig. S4 COVID-19-caused changes in plasma metabolomics and clinical biochemistry

associated with disease severity.

(A-C) COVID-19 severity was associated with plasma metabolomic phenotypes defined by

all MS-detectable lipidomic compounds (a), hydrophilic metabolites (b), and all NMR-

detectable metabolite signals (c).

(D) PCA scores revealed a variation in plasma metabolomic trajectory among healthy

controls, patients with mild and severe COVID-19, and upon discharge. The discharge group

comprised all patients (mild and severe) that were recovered and discharged.

(E-H) COVID-19 severities are associated with changes in levels of the compositional

components of lipoprotein subclasses (E and F), lactate (G), lactate dehydrogenase (H) in

blood plasma. AU: The metabolite concentration of each sample is normalized using the
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average of the control group; LDH: lactate dehydrogenase; H1: HDL1; H2: HDL2; H3: HDLS3;

H4: HDL4; L: LDL; L2: LDL2; TG: triglycerides; FC: free cholesterol; CE: cholesteryl esters;

CH: total cholesterol (i.e., FC + CE); PL: total phospholipids; L5CE, L5FC, L5PL: cholesteryl

esters (CE), free cholesterol (FC) and total phospholipids (PL) in LDL5 (L5); ApoA2: total

ApoA2 (in both nascent and mature HDL); CH: total cholesterol (both FC and CE); H4A1,

H4A2, H4CH, H4FC, H4CE, H4PL: ApoA1, ApoA2, CH, FC, CE and PL in HDL4; LDPL,

LDL-CH, LDL-CE: PL, CH, CE in LDL; L-CE%, L-FC%: percentages of CE and FC in all

lipids of LDL. ***p < 0.001.
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(A)  Workflow of prediction model construction.

(B) Performance of Al models in the training and validation set based on exRNA,

transcriptome, proteome, and the corresponding clinical covariate data sets. The model

performance of 5-fold cross-validation was assessed using Matthews correlation coefficient

(MCC), AUC, accuracy, sensitivity, specificity, positive predictive value (PPV) and negative

predictive value (NPV).

(C) Learning curve model comparison (LCMC) revealing sample size effects on the

accuracy and variability of the predictive models using cross-validation. Each individual root

means square error (RMSE) learning curve and the average for each of 8 models is shown.

The LCMC suggested that with up to 15 samples, 8 partition tree models reached AUC as 1

for clinical endpoints, but more than 23 samples were needed for one model and more than

30 samples need for three models to reach AUC as 1 for microRNA.
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Fig. S6 A drug-protein network for predicting novel drug candidates.
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(B) Network indicating the interactions between Ribavrin, IMPDH1 (target of Ribavrin) and

predicted druggable proteins in mild COVID-19 patients.

(C) Network indicating the interactions between Sunitinib, KIT (target of Sunitinib) and

predicted druggable proteins in severe COVID-19 patients.
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