Identification of immunodominant linear epitopes from SARS-

CoV-2 patient plasma

Lluc Farrera-Soler ${ }^{1}$, Jean-Pierre Daguer ${ }^{1}$, Sofia Barluenga ${ }^{1}$, Patrick Cohen ${ }^{2}$, Sabrina
Pagano 2, Sabine Yerly ${ }^{2}$, Laurent Kaiser ${ }^{2,3}$, Nicolas Vuilleumier ${ }^{2}$, Nicolas Winssinger ${ }^{1 *}$

SUPLEMENTARY INFORMATION

1. Design of the 200-member PNA-peptide library

The Spike ectodomain protein of SARS-CoV-2 (residues 1-1213; strain Wuhan-Hu-1; GenBank: QHD43416.1)(1) was divided into 200 different 12mer peptides (1-100 starting in amino acid 1 and overlapping with 6 amino acids 101-200 starting at amino acid 7). All the peptides were synthesized with a unique PNA tag to allow for microarray analysis.

[^0]Synthesis of the PNA-peptide conjugate was started with the peptide on the C^{\prime} terminus followed by a PEG spacer and followed by a unique 14mer coding PNA.

	Peptide N^{\prime} to C^{\prime}	PNA C' to N^{\prime}
1	mfvflvilplvs	GCCGTGGGTGCGAA
2	sqcvnlttrtql	GCCGTGGGTGGAGA
3	yypdkvfrssvl	GCCGTGGGTGCAGG
4	hstqdilflpffs	GCCGTGGGTGGACG
5	nvtwfhaihvsg	GCCGTGGGCACGAA
6	tngtkrfdnpvl	GCCGTGGGCAGAGA
7	pfndgvyfaste	GCCGTGGGCACAGG
8	ksniirgwifgt	GCCGTGGGCAGACG
9	tldsktqsiliv	GCCGTGGACGCGAA
10	nnatnvvikvce	GCCGTGGACGGAGA
11	fqfondpflgvy	GCCGTGGACGCAGG
12	yhknnkswmese	GCCGTGGACGGACG
13	frvyssannctf	GCCGTGGCGACGAA
14	eyvsqpflmdle	GCCGTGGCGAGAGA
15	gkqgnfknlref	GCCGTGGCGACAGG
16	vfknidgyfkiy	GCCGTGGCGAGACG
17	skhtpinlvrdl	GCCGTGGAGCCGAA
18	pqgfsaleplvd	GCCGTGGAGCGAGA
19	Ipiginitrfqt	GCCGTGGAGCCAGG
20	Ilalhrsyltpg	GCCGTGGAGCGACG
21	dsssgwtagaaa	GCCGCCGGTGCGAA

22	yyvgylqprtfl	GCCGCCGGTGGAGA
23	Ikynengtitda	GCCGCCGGTGCAGG
24	vdcaldplsetk	GCCGCCGGTGGACG
25	ctlksftvekgi	GCCGCCGGCACGAA
26	yqtsnfrvqpte	GCCGCCGGCAGAGA
27	sivrfpnitnlc	GCCGCCGGCACAGG
28	pfgevfnatrfa	GCCGCCGGCAGACG
29	svyawnrkrisn	GCCGCCGACGCGAA
30	cvadysvlynsa	GCCGCCGACGGAGA
31	sfstfkcygvsp	GCCGCCGACGCAGG
32	tkIndlcftnvy	GCCGCCGACGGACG
33	adsfvirgdevr	GCCGCCGCGACGAA
34	qiapgqtgkiad	GCCGCCGCGAGAGA
35	ynyklpddftgc	GCCGCCGCGACAGG
36	viawnsnnldsk	GCCGCCGCGAGACG
37	vggnynylyrlf	GCCGCCGAGCCGAA
38	rksnlkpferdi	GCCGCCGAGCGAGA
39	steiyqagstpc	GCCGCCGAGCCAGG
40	ngvegfncyfpl	GCCGCCGAGCGACG
41	qsygfqptngvg	GCCGGCAGTGCGAA
42	yqpyrvvvlsfe	GCCGGCAGTGGAGA
43	llhapatvcgpk	GCCGGCAGTGCAGG
44	kstnlvknkcvn	GCCGGCAGTGGACG
45	fnfngltgtgvl	GCCGGCAGCACGAA
46	tesnkkflpfqq	GCCGGCAGCAGAGA
47	fgrdiadttdav	GCCGGCAGCACAGG
48	rdpqtleildit	GCCGGCAGCAGACG
49	pcsfggvsvitp	GCCGGCAACGCGAA
50	gtntsnquavly	GCCGGCAACGGAGA
51	qdvnctevpvai	GCCGGCAACGCAGG

52	hadqltptwrvy	GCCGGCAACGGACG
53	stgsnvfqtrag	GCCGGCACGACGAA
54	cligaehvnnsy	GCCGGCACGAGAGA
55	ecdipigagica	GCCGGCACGACAGG
56	syqtqtnsprra	GCCGGCACGAGACG
57	rsvasqsiiayt	GCCGGCAAGCCGAA
58	mslgaensvays	GCCGGCAAGCGAGA
59	nnsiaiptnfti	GCCGGCAAGCCAGG
60	svtteilpvsmt	GCCGGCAAGCGACG
61	ktsvdctmyicg	GCCGCGAGTGCGAA
62	dstecsnlllay	GCCGCGAGTGGAGA
63	gsfctqInralt	GCCGCGAGTGCAGG
64	giaveqdkntqe	GCCGCGAGTGGACG
65	vfaqvkqiyktp	GCCGCGAGCACGAA
66	pikdfggfnfsq	GCCGCGAGCAGAGA
67	ilpdpskpskrs	GCCGCGAGCACAGG
68	fiedllfnkvtl	GCCGCGAGCAGACG
69	adagfikqygdc	GCCGCGAACGCGAA
70	Igdiaardlica	GCCGCGAACGGAGA
71	qkfngltvlppl	GCCGCGAACGCAGG
72	Itdemiaqytsa	GCCGCGAACGGACG
73	llagtitsgwtf	GCCGCGACGACGAA
74	gagaalqipfam	GCCGCGACGAGAGA
75	qmayrfngigvt	GCCGCGACGACAGG
76	qnvlyenqklia	GCCGCGACGAGACG
77	nqfnsaigkiqd	GCCGCGAAGCCGAA
78	slsstasalgkl	GCCGCGAAGCGAGA
79	qdvvnqnaqaln	GCCGCGAAGCCAGG
80	tlvkqlssnfga	GCCGCGAAGCGACG
81	issvIndilsrl	GCCGGGCGTGCGAA

82	dkveaevqidrl	GCCGGGCGTGGAGA
83	itgrlqslatyv	GCCGGGCGTGCAGG
84	tqqliraaeira	GCCGGGCGTGGACG
85	sanlaatkmsec	GCCGGGCGCACGAA
86	vlgqskrvdfcg	GCCGGGCGCAGAGA
87	kgyhlmsfpqsa	GCCGGGCGCACAGG
88	phgvvflhvtyv	GCCGGGCGCAGACG
89	paqeknfttapa	GCCGGGCACGCGAA
90	ichdgkahfpre	GCCGGGCACGGAGA
91	gvfvsngthwfv	GCCGGGCACGCAGG
92	tqrnfyepqiit	GCCGGGCACGGACG
93	tdntfvsgncdv	GCCGGGCCGACGAA
94	vigivnntvydp	GCCGGGCCGAGAGA
95	Iqpeldsfkeel	GCCGGGCCGACAGG
96	dkyfknhtspdv	GCCGGGCCGAGACG
97	dlgdisginasv	GCCGGGCAGCCGAA
98	vniqkeidrlne	GCCGGGCAGCGAGA
99	vaknIneslidl	GCCGGGCAGCCAGG
100	qelgkyeqyikw	GCCGGGCAGCGACG
101	Ilplvssqcvnl	GAACTGGGTGCGAA
102	ttrtqlppaytn	GAACTGGGTGGAGA
103	sftrgvyypdkv	GAACTGGGTGCAGG
104	frssvlhstqdl	GAACTGGGTGGACG
105	flpffsnvtwfh	GAACTGGGCACGAA
106	aihvsgtngtkr	GAACTGGGCAGAGA
107	fdnpvlpfndgv	GAACTGGGCACAGG
108	yfasteksniir	GAACTGGGCAGACG
109	gwifgttldskt	GAACTGGACGCGAA
110	qsllivnnatnv	GAACTGGACGGAGA
111	vikvcefqfend	GAACTGGACGCAGG

112	pflgvyyhknnk	GAACTGGACGGACG
113	swmesefrvyss	GAACTGGCGACGAA
114	annctfeyvsqp	GAACTGGCGAGAGA
115	flmdlegkqgnf	GAACTGGCGACAGG
116	knlrefvfknid	GAACTGGCGAGACG
117	gyfkiyskhtpi	GAACTGGAGCCGAA
118	nlvrdlpqgfsa	GAACTGGAGCGAGA
119	leplvdlpigin	GAACTGGAGCCAGG
120	itrfqtllalhr	GAACTGGAGCGACG
121	syltpgdsssgw	GAACCCGGTGCGAA
122	tagaaayyvgyl	GAACCCGGTGGAGA
123	qprtfllkynen	GAACCCGGTGCAGG
124	gtitdavdcald	GAACCCGGTGGACG
125	plsetkctlksf	GAACCCGGCACGAA
126	tvekgiyqtsnf	GAACCCGGCAGAGA
127	rvqptesivrfp	GAACCCGGCACAGG
128	nitnlcpfgevf	GAACCCGGCAGACG
129	natrfasvyawn	GAACCCGACGCGAA
130	rkrisncvadys	GAACCCGACGGAGA
131	vlynsasfstfk	GAACCCGACGCAGG
132	cygvsptkIndl	GAACCCGACGGACG
133	cftnvyadsfvi	GAACCCGCGACGAA
134	rgdevrqiapgq	GAACCCGCGAGAGA
135	tgkiadynyklp	GAACCCGCGACAGG
136	ddftgcviawns	GAACCCGCGAGACG
137	nnldskvggnyn	GAACCCGAGCCGAA
138	ylyrlfrksnlk	GAACCCGAGCGAGA
139	pferdisteiyq	GAACCCGAGCCAGG
140	agstpengvegf	GAACCCGAGCGACG
141	ncyfplqsygfq	GAACGCAGTGCGAA

142	ptngvgyqpyrv	GAACGCAGTGGAGA
143	vvlsfellhapa	GAACGCAGTGCAGG
144	tvcgpkkstnlv	GAACGCAGTGGACG
145	knkcvnfnfngl	GAACGCAGCACGAA
146	tgtgvltesnkk	GAACGCAGCAGAGA
147	flpfqqfgrdia	GAACGCAGCACAGG
148	dttdavrdpqtl	GAACGCAGCAGACG
149	eilditpcsfgg	GAACGCAACGCGAA
150	vsvitpgtntsn	GAACGCAACGGAGA
151	qvavlyqdvnct	GAACGCAACGCAGG
152	evpvaihadqlt	GAACGCAACGGACG
153	ptwrvystgsnv	GAACGCACGACGAA
154	fqtragcligae	GAACGCACGAGAGA
155	hvnnsyecdipi	GAACGCACGACAGG
156	gagicasyqtqt	GAACGCACGAGACG
157	nsprrarsvasq	GAACGCAAGCCGAA
158	siiaytmslgae	GAACGCAAGCGAGA
159	nsvaysnnsiai	GAACGCAAGCCAGG
160	ptnftisvttei	GAACGCAAGCGACG
161	Ipvsmtktsvdc	GAACCGAGTGCGAA
162	tmyicgdstecs	GAACCGAGTGGAGA
163	nlllqygsfctq	GAACCGAGTGCAGG
164	Inraltgiaveq	GAACCGAGTGGACG
165	dkntqevfaqvk	GAACCGAGCACGAA
166	qiyktppikdfg	GAACCGAGCAGAGA
167	gfnfsqilpdps	GAACCGAGCACAGG
168	kpskrsfiedll	GAACCGAGCAGACG
169	fnkvtladagfi	GAACCGAACGCGAA
170	kqygdclgdiaa	GAACCGAACGGAGA
171	rdlicaqkfngl	GAACCGAACGCAGG

172	tvlpplltdemi	GAACCGAACGGACG
173	aqytsallagti	GAACCGACGACGAA
174	tsgwtfgagaal	GAACCGACGAGAGA
175	qipfamqmayrf	GAACCGACGACAGG
176	ngigvtqnvlye	GAACCGACGAGACG
177	nqklianqfnsa	GAACCGAAGCCGAA
178	igkiqdslssta	GAACCGAAGCGAGA
179	salgklqdvvnq	GAACCGAAGCCAGG
180	naqalntlvkql	GAACCGAAGCGACG
181	ssnfgaissvln	GAACGGCGTGCGAA
182	dilsrldkveae	GAACGGCGTGGAGA
183	vqidrlitgrlq	GAACGGCGTGCAGG
184	slqtyvtqqlir	GAACGGCGTGGACG
185	aaeirasanlaa	GAACGGCGCACGAA
186	tkmsecvlgqsk	GAACGGCGCAGAGA
187	rvdfcgkgyhlm	GAACGGCGCACAGG
188	sfpqsaphgvvf	GAACGGCGCAGACG
189	Ihvtyvpaqekn	GAACGGCACGCGAA
190	fttapaichdgk	GAACGGCACGGAGA
191	ahfpregvfvsn	GAACGGCACGCAGG
192	sgncdvvigivn	GAACGGCACGGACG
193	epqiittdntfv	GAACGGCCGACGAA
194	sgncdvvigivn	GAACGGCCGAGAGA
195	ntvydplqpeld	GAACGGCCGACAGG
196	sfkeeldkyfkn	GAACGGCCGAGACG
197	htspdvdlgdis	GAACGGCAGCCGAA
198	ginasvvniqke	GAACGGCAGCGAGA
199	idrInevaknln	GAACGGCAGCCAGG
200	eslidlqelgky	GAACGGCAGCGACG

2. Synthesis of the PNA-Peptide conjugates

All reagents and solvents for the organic synthesis were purchased from commercial sources and were used without further purification. Automated solid phase synthesis was carried out on an Intavis AG Multipep RS instrument. MALDI-TOF Mass spectra were measured using a Bruker Daltonics Autoflex spectrometer operated in positive mode. HPLC purification was performed with an Agilent Technologies 1260 infinity HPLC using a ZORBAX 300SB-C18 column (9.4 x 250 mm).

2.1 General procedure for synthesis of the library and individual members

 2.0 mg of NovaPEG ${ }^{\circledR}$ Rink amide resin ($0.44 \mathrm{mmol} / \mathrm{g}$, NovaBiochem) were added into 200 different wells of 96 -well plates for the Automated solid phase synthesis. The resin was swollen in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 10 min and washed two times with DMF. Iterative cycles of amide coupling (Procedure 1), capping of the resin (Procedure 3) and deprotection of the main chain protecting group (Procedure 2) were done in order to synthesize the PNA-peptide sequences. Each member of the library was checked at the end of the synthesis and finally all members were mixed together and cleaved from the resin and deprotected using Procedure 4.
Procedure 1: Amide coupling

The Fmoc protected PNA monomer or amino acid (4.0 equiv, 0.2M in NMP) was incubated for 5 min with HATU (3.5 equiv) and a base solution [DIPEA (4.0 equiv) and 2,6-lutidine (6.0 equiv) NMP. The mixture was then added to the corresponding resin. After 20 minutes the mixture was filtered, the resin was washed with DMF, and a new premixed reaction solution was added to the resin for another 20 minutes. Finally, the resin was washed with $2 \times$ DMF, $2 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $2 \times$ DMF.

Procedure 2: Fmoc deprotection

A solution of 20\% piperidine in DMF was added to the resin and allowed to react for 5 minutes. The mixture was filtered, the resin was washed with DMF and the sequence was repeated a second time for another 5 minutes. Finally, the resin was washed with 2 x DMF and $2 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $2 \times$ DMF.

Procedure 3: Capping

The resin was treated with a capping mixture (0.92 mL of acetic anhydride and 1.3 mL of 2,6 lutidine in 18 mL of DMF; 10 mL of solution/g of resin) for 5 minutes. After flushing the solution, the resin was washed with $2 \times \mathrm{DMF}, 2 \times \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $2 \times$ DMF.

Procedure 4: Cleavage from the resin and deprotection of the PNA/amino acid protecting groups

Resin ($5.0 \mathrm{mg}, 1.0 \mu \mathrm{~mol}$) was treated with $125 \mu \mathrm{~L}$ of a mixture of TFA and scavengers ($440 \mu \mathrm{~L}$ of TFA +25 mg phenol $+25 \mu \mathrm{~L}$ water $+10 \mu \mathrm{~L}$ triisopropylsilane) for 2.5 hours. The resin was filtered and washed with TFA (50 $\mu \mathrm{L}$) and the collected fractions of cleavage product were precipitated in cold ether (1.5 mL). After centrifugation, the pellet was vortexed with cold $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL}$) and centrifuged again (14 000 rpm). The resulted pellet was dissolved in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3 / 1,1.5 \mathrm{~mL})$ and lyophilized to obtain a white powder.
2.2 Characterization of the PNA-peptide library by MALDI. Expected molecular weights.

Member	MW	$\mathbf{2 6}$	5442	$\mathbf{5 2}$	5459	$\mathbf{7 8}$	5131
$\mathbf{1}$	5379	$\mathbf{2 7}$	5325	$\mathbf{5 3}$	5181	$\mathbf{7 9}$	5286
$\mathbf{2}$	5422	$\mathbf{2 8}$	5304	$\mathbf{5 4}$	5316	$\mathbf{8 0}$	5237
$\mathbf{3}$	5509	$\mathbf{2 9}$	5426	$\mathbf{5 5}$	5134	$\mathbf{8 1}$	5333
$\mathbf{4}$	5473	$\mathbf{3 0}$	5277	56	5381	$\mathbf{8 2}$	5458
$\mathbf{5}$	5355	$\mathbf{3 1}$	5271	$\mathbf{5 7}$	5252	$\mathbf{8 3}$	5398
$\mathbf{6}$	5389	$\mathbf{3 2}$	5379	$\mathbf{5 8}$	5207	$\mathbf{8 4}$	5389
$\mathbf{7}$	5350	$\mathbf{3 3}$	5296	$\mathbf{5 9}$	5277	$\mathbf{8 5}$	5180
$\mathbf{8}$	5395	$\mathbf{3 4}$	5171	60	5232	86	5321
$\mathbf{9}$	5305	$\mathbf{3 5}$	5384	$\mathbf{6 1}$	5290	87	5336
$\mathbf{1 0}$	5331	$\mathbf{3 6}$	5309	$\mathbf{6 2}$	5413	$\mathbf{8 8}$	5356
$\mathbf{1 1}$	5453	$\mathbf{3 7}$	5411	$\mathbf{6 3}$	5314	$\mathbf{8 9}$	5247
$\mathbf{1 2}$	5538	$\mathbf{3 8}$	5476	$\mathbf{6 4}$	5335	$\mathbf{9 0}$	5422
$\mathbf{1 3}$	5396	$\mathbf{3 9}$	5205	$\mathbf{6 5}$	5379	$\mathbf{9 1}$	5338
$\mathbf{1 4}$	5480	$\mathbf{4 0}$	5308	$\mathbf{6 6}$	5353	$\mathbf{9 2}$	5498
$\mathbf{1 5}$	5441	$\mathbf{4 1}$	5242	$\mathbf{6 7}$	5297	$\mathbf{9 3}$	5244
$\mathbf{1 6}$	5511	$\mathbf{4 2}$	5528	$\mathbf{6 8}$	5425	$\mathbf{9 4}$	5316
$\mathbf{1 7}$	5380	$\mathbf{4 3}$	5210	$\mathbf{6 9}$	5244	$\mathbf{9 5}$	5436
$\mathbf{1 8}$	5300	$\mathbf{4 4}$	5351	$\mathbf{7 0}$	5227	$\mathbf{9 6}$	5439
$\mathbf{1 9}$	5377	$\mathbf{4 5}$	5196	$\mathbf{7 1}$	5299	$\mathbf{9 7}$	5133
$\mathbf{2 0}$	5344	$\mathbf{4 6}$	5463	$\mathbf{7 2}$	5297	$\mathbf{9 8}$	5483
$\mathbf{2 1}$	5044	$\mathbf{4 7}$	5253	$\mathbf{7 3}$	5223	$\mathbf{9 9}$	5317
$\mathbf{2 2}$	5524	$\mathbf{4 8}$	5386	$\mathbf{7 4}$	5125	$\mathbf{1 0 0}$	5574
$\mathbf{2 3}$	5318	$\mathbf{4 9}$	5120	$\mathbf{7 5}$	5311	$\mathbf{1 0 1}$	5312
$\mathbf{2 4}$	5270	$\mathbf{5 0}$	5263	$\mathbf{7 6}$	5405	$\mathbf{1 0 2}$	5429
$\mathbf{2 5}$	5258	$\mathbf{5 1}$	5260	$\mathbf{7 7}$	5291	$\mathbf{1 0 3}$	5474

104	5432	129	5340	154	5270	179	5252
105	5538	130	5392	155	5384	180	5293
106	5276	131	5320	156	5180	181	5207
107	5345	132	5266	157	5293	182	5439
108	5440	133	5319	158	5242	183	5440
109	5321	134	5306	159	5233	184	5478
110	5321	135	5339	160	5303	185	5138
111	5457	136	5284	161	5258	186	5313
112	5492	137	5235	162	5327	187	5404
113	5485	138	5582	163	5398	188	5269
114	5408	139	5454	164	5296	189	5379
115	5392	140	5095	165	5371	190	5281
116	5535	141	5462	166	5412	191	5356
117	5450	142	5386	167	5302	192	5186
118	5352	143	5307	168	5414	193	5358
119	5304	144	5258	169	5260	194	5210
120	5481	145	5362	170	5258	195	5400
121	5228	146	5239	171	5359	196	5545
122	5231	147	5420	172	5304	197	5236
123	5511	148	5312	173	5173	198	5292
124	5181	149	5216	174	5143	199	5395
125	5294	150	5194	175	5447	$\mathbf{2 0 0}$	5404
126	5367	151	5333	176	5287		
127	5386	152	5273	177	5312		

2.3 Characterization of the biotinylated peptides

Biotin-155.55: N'-Biotin-PEG-His-Val-Asn-Asn-Ser-Tyr-Glu-Cys-Asp-Ile-Pro-Ile-Gly-Ala-Gly-Ile-Cys-Ala-C'

$\left(\mathrm{C}_{95} \mathrm{H}_{147} \mathrm{~N}_{25} \mathrm{O}_{32} \mathrm{~S}_{3}\right) \mathrm{M}^{+}$Isotopic peaks with relative distribution: 2247.99 (100.0\%), 2246.99 (97.3\%), 2248.99 (41.6\%)

Scrambled Biotin-155.55: N'-Biotin-x-Cys-Asn-Glu-His-Ala-Ile-Tyr-Asn-Asp-Gly-Ser-Ala-Ile-Val-Cys-Ile-Gly-Pro-C'

$\left(\mathrm{C}_{95} \mathrm{H}_{147} \mathrm{~N}_{25} \mathrm{O}_{32} \mathrm{~S}_{3}\right) \mathrm{M}^{+}$Isotopic peaks with relative distribution: 2247.99 (100.0\%), 2246.99 (97.3\%), 2249.00 (41.6\%)

2.4 Design and characterization of the sequences for 155 Ala Scan

Ala-1: N^{\prime} - AAGCGTGGGTCGGC - PEG - hvnnsyecdipigagica - C^{\prime}	MW=5895
Ala-2: N^{\prime} - AGAGACGGCCCGGC - PEG - avnnsyecdipigagica - C^{\prime}	MW=5782
Ala-3: N'- AGAGGCAACGCGGC - PEG - hannsyecdipigagica - C'	MW=5845
Ala-4: N^{\prime} - GCAGAGCAGCCGGC - PEG - hvansyecdipigagica - C'	MW=5806
Ala-5: N^{\prime} - CGGACGACGGCGGC - PEG - hvnasyecdipigagica - C'	MW=5822
Ala-6: N'- CGGAACGGGTCGGC - PEG - hvnnayecdipigagica - C'	MW=5864
Ala-7: N^{\prime} - GCAGGCAGCCCGGG - PEG - hvnnsaecdipigagica -C'	MW=5733
Ala-8: N^{\prime} - GCAGGTGACGCGGC - PEG - hvnnsyacdipigagica - C'	MW=5822
Ala-9: N^{\prime} - AAGCCGAAGCCGGC - PEG - hvnnsyeadipigagica - C^{\prime}	MW=5801
Ala-10: N^{\prime} - AGAGGTGCGGCGGC - PEG - hvnnsyecaipigagica - C'	MW=5876
Ala-11: N^{\prime} - CGGAGCAGGTCGGC - PEG - hvnnsyecdapigagica - C'	MW=5838
Ala-12: N^{\prime} - AAGCAGCGCCCGGC - PEG - hvnnsyecdiaigagica - C^{\prime}	$\mathrm{MW}=5783$
Ala-13: N^{\prime} - AGAGAGCGGTCGGC - PEG - hvnnsyecdipagagica - C^{\prime}	MW=5862
Ala-14: N^{\prime} - AGAGCGAGGTCGGC - PEG - hvnnsyecdipiaagica - C'	$M W=5918$
Ala-15: N^{\prime} - GCAGCGAGCCCGGC - PEG - hvnnsyecdipigaaica - C'	MW=5839
Ala-16: N^{\prime} - AAGCGCACGGCGGC - PEG - hvnnsyecdipigagaca - C^{\prime}	MW=5807
Ala-17: N^{\prime} - CGGAGTGAGCCGGC - PEG - hvnnsyecdipigagiaa - C'	MW=5848

3. Microarray screening

3.1 - Hybridization of the PNA-Peptide library
$1.0 \mu \mathrm{~L}$ of a $20 \mu \mathrm{M}$ solution of PNA-peptide library in DMSO was mixed with $50 \mu \mathrm{~L}$ of hybridization buffer ($1.2 \mathrm{mM} \mathrm{LiCl}, 300 \mathrm{mM}$ Li-MES pH 6.1) 12mM EDTA and 3% Lithium Dodecyl Sulfate), $50 \mu \mathrm{~L}$ of Triton X-100 (Sigma-Aldrich Ref: 93443) and $1.0 \mu \mathrm{~L}$ of Salmon sperm DNA (Sigma-Aldrich Ref: D9156). This sample was heated at 95으 for 5 minutes and centrifuged 2 minutes at 15,000g. Finally, $82 \mu \mathrm{~L}$ of the library solution were added into each array of the slide and hybridized overnight at $60{ }^{\circ} \mathrm{C}$. After hybridization, the slides were washed for 5 minutes with SSC buffer $2 \times 0.1 \%$ SDS, 5 minutes with SSC buffer $0.2 \times 0.1 \%$ SDS and finally 30 seconds in water prior to drying by centrifugation 3 minutes at $1,000 \mathrm{~g}$.
3.2 - Incubation with patient's plasma samples

Analysis samples were prepared by diluting $15 \mu \mathrm{~L}$ of the plasma into $90 \mu \mathrm{~L}$ of PBS with Protease inhibitors (Promega G6521). From this diluted plasma, $5.0 \mu \mathrm{~L}$, was further diluted into $100 \mu \mathrm{~L}$ of PBS-t-0.5\%BSA and $1.0 \mu \mathrm{~L}$ of salmon sperm DNA to make a final dilution of $1: 150$. The mixture was centrifuged for 1 minute at $15,000 \mathrm{~g}$ and $82 \mu \mathrm{~L}$ were added into the microarray and incubated for 1 hour at room temperature.

After incubation, the slide was washed for 5 minutes with PBS-t and 30 seconds with water. Finally, the slide was dried by centrifugation for 1 minute at 1000 g and ready for next step.
3.3 - Incubation of the secondary antibody $1.0 \mu \mathrm{~L}$ of Goat Anti-Human IgG H\&L Cy3 (ab97170 from Abcam) was diluted with $450 \mu \mathrm{~L}$ of PBS-t and $50 \mu \mathrm{~L}$ of BSA 5% and centrifuged for 1 minute at 12 krpm . This mixture, 82 $\mu \mathrm{L}$, was added into the microarray and incubated for 30 minutes at room temperature. After incubation, the slide was washed for 5 minutes with PBS-t and 30 seconds with de
ionized water. The slide was finally dried by centrifugation for 3 minutes at 1000 g and scanned on the Cy3 channel with GenePix 4100A Microarray Scanner.

3.4 - Data Analysis

Heat map of fluorescence intensity (Cy3 channel) for the screen of 200 peptide -PNA encoded library of linear epitopes from the Spike protein. The fluorescence is the median of 23 values of fluorescence quantification and then normalized to background.

4. On beads hit validation

$0.3 \mu \mathrm{~L}$ of Pierce ${ }^{\text {TM }}$ High-Capacity Streptavidin Agarose Beads (Cat $\mathrm{n}=$: 20357) were mixed with $50 \mu \mathrm{~L}$ of the biotinylated peptide $10 \mu \mathrm{M}$ in PBS-t. The beads were incubated for 20^{\prime} and thereafter blocked with $200 \mu \mathrm{~L}$ of Fetal bovine plasma for 10 '. The beads were then washed once with $100 \mu \mathrm{~L}$ PBS-t and $5 \mu \mathrm{~L}$ of plasma from either positive or negative patients was added together with $450 \mu \mathrm{~L}$ of PBS-t and $50 \mu \mathrm{~L}$ of fetal bovine plasma. The beads were incubated for 90^{\prime} and after washed 4 times with $100 \mu \mathrm{~L}$ of PBS-t in order to remove all the non-binders. Finally, $200 \mu \mathrm{~L}$ of a 163 nM solution of anti-human IgG-FITC (ref: ab6854) in PBS-t with 0.5% BSA was added and incubated for 1 h. The excess of secondary antibody is washed away by washing 3 times with $100 \mu \mathrm{~L}$ of PBS-t and finally the beads are imaged with Leica SP8 inverted confocal microscope (laser intensity: filters:). Quantification of FITC fluorescence was done with ImageJ by quantifying 10 different points of 10 different beads in the same image.

Images with its corresponding bright field:

5. ELISA assay

$100 \mu \mathrm{~L}$ of a 80 nM solution of Streptavidin (Sigma Aldrich ref:S0677) in PBS were added to a Corning ${ }^{\circledR} 96$-well Clear Flat Bottom Polystyrene High Bind Microplate (Corning, Catalog \# 9018) and incubated overnight at $4^{\circ} \mathrm{C}$. The plate was then washed three times with $300 \mu \mathrm{~L}$ of PBS-T ($1^{\prime}, \mathrm{rt}$) and 200 uL of an 800 nM solution of biotinylated peptide in PBS-T were added and incubated for 90^{\prime} at $36^{\circ} \mathrm{C}$. The plate was then blocked with $300 \mu \mathrm{~L}$ of PBS-T with 0.5% non-fat dry milk (60^{\prime} at $36^{\circ} \mathrm{C}$). The plate was washed 3 times with $300 \mu \mathrm{~L}$ of PBS-T ($1^{\prime}, \mathrm{rt}$) and a 1:300 diluted plasma in PBS-T-0.5\% non-fat dry milk was added to each well and incubated for 90^{\prime} at $36^{\circ} \mathrm{C}$. After incubation of the plasma, the plate was washed 3 times with $300 \mu \mathrm{~L}$ PBS-T ($1^{\prime}, \mathrm{rt}$), 1 time with PBS-T 0.5% non-fat dry milk ($60^{\prime}, 37{ }^{\circ} \mathrm{C}$) and again 3 times with $300 \mu \mathrm{~L}$ PBS-T ($\left.1^{\prime}, ~ r t\right)$. $100 \mu \mathrm{~L}$ of Goat Anti-HumanIgG HRP conjugated (ref: ab97175) 1:10000 diluted in PBS-T 0.5\% BSA were added to each well and incubated for 90^{\prime} at $37^{\circ} \mathrm{C}$. The plate was then washed 3 times with PBS-T ($1^{\prime}, \mathrm{rt}$) and $200 \mu \mathrm{~L}$ of a 0.41 mM solution of $3,3^{\prime}, 5,5^{\prime}$-Tetramethylbenzidine (TMB) (Sigma Aldrich ref: 860336) in a " $50 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4}, 25 \mathrm{mM}$ citric acid, pH 5.5 and $0.0024 \% \mathrm{H}_{2} \mathrm{O}_{2}{ }^{\text {" }}$ solution were added to the plate and incubated for 20^{\prime} at $37{ }^{\circ} \mathrm{C}$. Finally, $50 \mu \mathrm{~L}$ of a 1 M sulfuric acid solution were added and the absorbance was measured at 450 nm with a plate reader. For each sample, triplicates were done and the fluorescence value are the average of 3 reads.
6. Expended image of heat map with peptide sequence numbers

References

1. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9.

[^0]: 1 mfvflvllpl vssqcvnltt rtqlppaytn sftrgvyypd kvfrssvlhs tqdlflpffs
 61 nvtwfhaihv sgtngtkrfd npvlpfndgv yfasteksni irgwifgttl dsktqslliv
 121 nnatnvvikv cefqfcndpf lgvyyhknnk swmesefrvy ssannctfey vsqpflmdle
 181 gkqgnfknlr efvfknidgy fkiyskhtpi nlvrdlpqgf saleplvdlp iginitrfqt
 241 llalhrsylt pgdsssgwta gaaayyvgyl qprtfllkyn engtitdavd caldplsetk
 301 ctlksftvek giyqtsnfrv qptesivrfp nitnlcpfge vfnatrfasv yawnrkrisn
 361 cvadysvlyn sasfstfkcy gvsptklndl cftnvyadsf virgdevrqi apgqtgkiad
 421 ynyklpddft gcviawnsnn ldskvggnyn ylyrlfrksn lkpferdist eiyqagstpc
 481 ngvegfncyf plqsygfqpt ngvgyqpyrv vvlsfellha patvcgpkks tnlvknkcvn
 541 fnfngltgtg vltesnkkfl pfqqfgrdia dttdavrdpq tleilditpc sfggvsvitp
 601 gtntsnqvav lyqdvnctev pvaihadqlt ptwrvystgs nvfqtragcl igaehvnnsy
 661 ecdipigagi casyqtqtns prrarsvasq siiaytmslg aensvaysnn siaiptnfti
 721 svtteilpvs mtktsvdctm yicgdstecs nlllqygsfc tqlnraltgi aveqdkntqe
 781 vfaqvkqiyk tppikdfggf nfsqilpdps kpskrsfied llfnkvtlad agfikqygdc
 841 lgdiaardli caqkfngltv lpplltdemi aqytsallag titsgwtfga gaalqipfam
 901 qmayrfngig vtqnvlyenq klianqfnsa igkiqdslss tasalgklqd vvnqnaqaln
 961 tlvkqlssnf gaissvlndi lsrldkveae vqidrlitgr lqslqtyvtq qliraaeira
 1021 sanlaatkms ecvlgqskrv dfcgkgyhlm sfpqsaphgv vflhvtyvpa qeknfttapa
 1081 ichdgkahfp regvfvsngt hwfvtqrnfy epqiittdnt fvsgncdvvi givnntvydp
 1141 lqpeldsfke eldkyfknht spdvdlgdis ginasvvniq keidrlneva knlneslidl
 1201 qelgkyeqyi kwpwyiwlgf iagliaivmv timlccmtsc csclkgccsc gscckfdedd
 1261 sepvlkgvkl hyt

