
PheWAS-ME in-depth exploration

Appendix A for PheWAS-ME: A web-
app for interactive exploration of mul-
timorbidity patterns in PheWAS

iii

. 4

. 5
. 5
. 5
. 5

. 7
. 7
. 7
. 9
. 9

. 13
. 13
. 13

. 13

. 14

. 15

. 16
. 17

. 17

. 18

. 19

. 21

. 22
. 22

. 23

. 23

. 24

. 31
. 32

. 32

. 32
. 35

0.1 Format
1 What

1.1 The product
1.2 PheWAS
1.3 The data

2 Why
2.1 The need for PheWAS-ME
2.2 Previous methods
2.3 Problems with previous methods
2.4 How does PheWAS-ME fix these problems?

3 How
3.1 Interactivity
3.2 Code selection

3.2.1 Region dragging
3.2.2 Code clicking
3.2.3 Search
3.2.4 Network filtering

3.3 Other interaction
3.3.1 Info tooltips
3.3.2 SNP filtering
3.3.3 Upset pattern highlighting
3.3.4 Upset singleton toggle
3.3.5 Upset minimum pattern frequency slider

3.4 How it’s made
3.4.1 Framework/meToolkit package
3.4.2 State management
3.4.3 R to Javascript communications
3.4.4 Performance

3.5 How can I use the app myself?
3.5.1 Hosted version
3.5.2 An R package

References

This article is a longer-form and less-formal companion to the man-
uscript PheWAS-ME: A web-app for interactive exploration of multimorbidity
patterns in PheWAS and accompanying application.

The PheWAS-ME (short for Phenome Wide Association Study Multi-
morbidity Explorer) project represents a significant collaborative effort
bringing together Electronic Health Records (EHR) and Biobank data
using R and Shiny.

Figure 0.1: The main dashboard view of PheWAS-ME.

0.1 Format

The following is organized into three primary sections: what the app
does, why it does it, and how it works.

5

1 What
1.1 The product

The paper introduces PheWAS-Multimorbidity Explorer (PheWAS-ME):
a Shiny application that we have been producing over the past two
years in collaboration with the Vanderbilt Drug Repurposing team. It is
an interactive data visualization and exploration tool for digging into
PheWAS results and the subject-level data that generated those results.

1.2 PheWAS

PheWAS is a statistical method for finding associations between a given
genetic mutation (often a Single Nucleotide Polymorphism, or SNP) and
phenotypes. It is a sibling to the GWAS (genome-wide association
study). However, whereas in GWAS, you fix your desired phenotype
and scan the genome for associations, in PheWAS, you fix a genetic mu-
tation, and scan the ‘phenome.’

Figure 1.1: Slide from [15]

6 1 What

1.3 The data

Both PheWAS analyses and PheWAS-ME take two types of subject-level
data: First is information on a given genetic mutation. In this case, 0, 1,
or 2 copies of the minor allele of an SNP. The second is the subject’s
‘phenome.’ In this case, a list of every phenotype that they had. In the
paper and this blog post, we have used the Vanderbilt developed ‘Phe-
code,’[7] but any binary phenotype information works.

Note: In this post, the words ‘codes’ and ‘phecodes’ will be used
interchangeably.

7

2 Why
2.1 The need for PheWAS-ME

PheWAS-ME came out of the need for subject-experts to have a fast and
intuitive way to dig through the very high-dimensional results of Phe-
WAS analyses and the individual-level data that lead to those results.
Unlike a typical statistical analysis, which may return just a handful of
p-values or effect-sizes of interest, a PheWAS analysis returns a single p-
value and effect-size for every phenotype in the scanned phenome. In
the case of Phecodes, this is around 1,800 (and goes into the many thou-
sands for more traditional ICD-based encodings).

2.2 Previous methods

In the past, communicating these results was accomplished using two
different tools:

First is a manhattan plot: This is simply a plot of every phenotype in-
vestigated on the x-axis and their significance (as encoded by the nega-
tive log of the p-value) on the y-axis. The manhattan plot allows the
reader to pick out which codes are significant in the results while main-
taining context spatially on the x-axis. (In the case of PheWAS the con-
text is phenotype categories, in GWAS it is genetic location.)

8 2 Why

Figure 2.1: Manhattan plot for PheWAS results. Figure from ???

The second is the ever-present results table. A PheWAS table has col-
umns on all sorts of values of interest such as p-value, effect-size, phe-
notype description, etc. Due to a large number of phenotypes typically
present, these tables frequently get filtered to only includes codes that fit
some criteria, such as significance level.

2.3 Problems with previous methods 9

Figure 2.2: Table of PheWAS results from simulated data provided
with app.

2.3 Problems with previous methods

While looking at the most significantly associated phenotypes is
straightforward, it can mask important aspects of the data. Different
phenotypes across the phenome correlate with each other in complex
ways. These correlations manifest themselves in common patterns of
phenotypes called multi-morbidities (also referred to as comorbidities).
Since PheWAS looks at single SNP and Phenotype associations, these
correlations can be extremely hard to discover and reason about with a
traditional manhattan plot and table report it’s not clear if the same in-
dividuals are contributing to two phenotypes being significant or the
populations generating “significance” are distinct, hinting at potentially
more interesting biological phenomena.

2.4 How does PheWAS-ME fix these problems?

PheWAS-ME helps subject-matter experts parse through the results of a
PheWAS analysis by letting them isolate and explore specific subsets of
phenotypes by looking not only at their p-values and effects-sizes but
also by the subject-level data that generated those results.

The analyst selects a set of phenotypes to explore by dragging a selec-
tion box around a region in a manhattan plot, choosing directly from a
table, or using text-search. Once a desired set of phenotypes is selected,

10 2 Why

the application displays the subject-level data using an interactive force-
directed network plot and an upset plot.

Figure 2.3: Subject-Level plots in app. Note the cluster of phenotypes
in light green. This cluster is caused by the afformentioned phenotype
hierarchy, with each refering to the same broad-level phenotype with
differing levels of specificity.

These subject-level visualizations allow the analyst to see patterns of co-
morbid phenotypes directly and to interrogate their potential causes.
For instance, often, a group of codes are highly correlated because they

2.3 Problems with previous methods 11

are more or less specific definitions of the same phenotype, e.g., cancer -
> lung cancer -> stage 2 lung cancer. Another possibility is multimor-
bidity caused by drug side-effects; e.g., patients taking a drug to treat
the cancer phenotype likely also have the nausea phenotype.

13

3 How
3.1 Interactivity

Interaction in PheWAS-ME centers around one primary thing: a list of
currently selected phenotypes. The typical way to choose these pheno-
types is by using the PheWAS results panel.

Figure 3.1: PheWAS results panel of app.

This panel includes the traditional manhattan plot and results table;
however, unlike normal results plots and tables, these are now interac-
tive with linked state. Codes selected in the manhattan plot are reflected
in the table and vis-versa.

3.2 Code selection

14 3 How

3.2.1 Region dragging

The user can drag a box around a region in the manhattan plot, select-
ing the codes within. Adding another region to the selection is accom-
plished by holding down the ‘a’ key (for add) and dragging another
box. Conversely, removing a region of codes from the selection can be
done by holding down the ‘d’ key and dragging a box.

Figure 3.2: Codes in manhattan plot can be selected by dragging a box
over a region.

3.2.2 Code clicking

Clicking individual phenotypes in either the plot or the table toggles
their selected-ness. This slower but more precise method allows for fine-
grained tuning of the selected codes.

3.1 Interactivity 15

Figure 3.3: Fine-grain selection of individuals codes is possible by
clicking code in manhattan plot or PheWAS table.

3.2.3 Search

Above the results table is a search bar. The user can search for pheno-
types by name or description. Codes that match a supplied search query
are raised to the top of the results table and highlighted. The user can
then select codes as needed.

16 3 How

Figure 3.4: Keyword searches can be used to find specific codes by id,
description, or category. Here a user has searched for ‘ankle and foo’
and the top result, phecode 801.00 is highlighted and placed at the top
of the table for easy selection.

3.2.4 Network filtering

In the subject-level network plot, nodes corresponding to phenotypes
can be used to filter the selection further. After selecting codes in the
network plot by clicking, users can delete from the current selection,
isolate a subset, or invert (this flips the definition of a connection to a
phenotype in the network to the lack of that phenotype in a subject’s
phenome).

3.3 Other interaction 17

Figure 3.5: The network plot can be used to filter selected codes, allow-
ing quick deletion of unwanted codes or isolation of interesting ones.
Here, two phecodes have been selected. The app then prompts the
user for filtering methods. The codes can be removed from current se-
lection, or the selection can be isolated to just those codes.

3.3 Other interaction

Outside of phenotype selection, there are a few other forms of
interaction.

3.3.1 Info tooltips

In both the manhattan plot and the network plot, when a given pheno-
type’s point is moused-over, a tooltip with all the supplied information
for that phenotype appears. This allows quick reference to metadata
about the phenotype without having to refer to the results table or exter-
nal resources.

18 3 How

Figure 3.6: A tooltip with information about a given phecode is dis-
played when the mouse is hovered over that phecode’s point in both
the manhattan and network plots.

3.3.2 SNP filtering

A check-box by the network plot allows the user to show only carriers
of the minor allele of interest in the network plot. This helps differenti-
ate between genetics-driven network patterns and simply population
trends.

3.3 Other interaction 19

Figure 3.7: Network and upset plots an be reduced to just showing
data for individuals who have one or more copies of the SNP minor
allele.

20 3 How

3.3.3 Upset pattern highlighting

When a user clicks on a given pattern in the Upset Plot panel, the net-
work plot updates to highlight the subjects who have that pattern. Simi-
larly, if a phenotype node in the network plot itself is moused over, the
subjects connected to that phenotype are highlighted.

3.3 Other interaction 21

Figure 3.8: When a comorbidity pattern is selected in the upset plot,
individuals with a given pattern are highligted in the network plot.
Here the pattern of phecodes 327.30 and 627.00 is selected and all pa-
tients with those two phenotypes are shown below.

22 3 How

3.3.4 Upset singleton toggle

A toggle in the upset plot allows the hiding of single-phenotype pat-
terns (i.e., subjects who had just a single phenotype). Often these single-
tons can crowd out the more interesting comorbidity patterns, so by
hiding them, the user can focus on patterns.

Figure 3.9: The upset plot display can be filtered to only show comor-
bidities of two or more phecodes, and the minimum frequency to
show a pattern can be adjusted.

3.3.5 Upset minimum pattern frequency slider

Second, a slider allows the user to set the threshold for inclusion in the
plot based on the number of times a pattern appears. Often there will be
patterns of phenotypes that are only had by one or two subjects. Be-
cause of their tiny sample-sizes, these are usually not of interest, so fil-
tering them out can again improve the plot’s effectiveness.

3.4 How it’s made

There is a lot of exciting tech going on behind the scenes of PheWAS-
ME.

3.4 How it’s made 23

3.4.1 Framework/meToolkit package

The main app is built using the Shiny [4] package/framework in R. An
R package was created to ease deployment and customization. There are
two main functions in the package: run_me() which takes dataframes
of all necessary information as input and starts at the main dashboard;
and also build_me_app() which returns an app that starts at a data-
loading screen where the user can either load data by uploading spread-
sheets, or by picking from a list of pre-loaded datasets. All individual
plots and panels exported by the package are exposed functions pro-
ducing shiny modules [3]. This modular format eases the creation of
customized versions of PheWAS-ME by allowing apps to be built by
composing the desired modules.

3.4.2 State management

The reactivity protocol of Shiny works great if you have a single compo-
nent of your app that listens to and modifies unique parts of your apps
state. However, in PheWAS-ME, multiple components listen to the same
state variables (for instance, both the PheWAS results table and the net-
work plot modify the currently selected codes). A state management
system inspired by Javascript’s Redux [1] was built to keep each compo-
nent pure and modular.

Figure 3.10: Broad level idea of how Redux works, via [12].

24 3 How

In this system, a single message-passing reactive value is supplied to all
of the separate components. When a component needs to modify the
state, it sends a message through that reactive value to the main app,
which then passes the new state down to all components of the applica-
tion that depend on it.

As an example, if the user removes a code using the network plot. The
network plot module sends a list to the message passing reactive vari-
able containing an action type: 'delete code', and then a payload:
'008.12'. Then at the main app level, an observeEvent() chunk
that watches that message passing reactive reads the message and mod-
ifies the appropriate state variables, in this case, the selected codes list.

By isolating all state modification in a single observable chunk, the pri-
mary app state is only ever modified in a single place. This isolation re-
duces the amount of overhead required to reason about state changes,
both for Shiny and the programmer.

3.4.3 R to Javascript communications

Every visual in the app is built using custom javascript and HTML. The
fantastic package R2D3[14] is used to facilitate the hand-off of data be-
tween R/Shiny and the javascript visualization code.

3.4.3.1 Manhattan plot

The manhattan plot is built using d3js [2], the popular javascript visu-
alization library. With such a large number of points plotted, finding
points within a selected area can be very slow when naively searching
through every point.

3.4 How it’s made 25

Figure 3.11: A 2d quadree storing datapoints. These subdividing boxes
are stored as in a tree-structure, which is always a big-O help. Figure
from [18]

To provide a responsive interface, the javascript code utilizes a special
data structure known as a quad-tree [18] to speed up retrieving codes
within a region. By storing data in a hierarchical location-aware tree, the
quad-tree data-structure only searches through points near the selection,
cutting down on the computation needed and speeding up app reaction
times.

3.4.3.2 PheWAS table

Like the manhattan plot, the PheWAS table has tricks to help keep the
app responsive while also showing large amounts of data. The browser
stores all the elements on a webpage in a text-based format called the
DOM (or Document Object Model). (What you get when you right-click
and say ‘view source’ on a web page.) When a browser renders the
page, it parses through the DOM and figures out how to place that ele-
ment on the screen. Because the browser has to parse through all
present elements every time it wants to update the screen, there are lim-
its to how many elements can be stored in the DOM before things start

26 3 How

slowing down. Displaying a table of more than 1,800 phenotypes, along
with 5+ columns, quickly hits that limit.

Figure 3.12: Recomendations from Google lighthouse [8] for optimal
DOM performance.

The trick used to display a large table while not overloading the DOM is
only rendering a small portion of the table at a time. At any moment,
only 50 rows of the table are actually in the DOM. As the user scrolls
down, the javascript writes new rows at the bottom and removes old
rows from the top. To maintain a scroll bar for fast scrolling and visual
feedback on where the user is in the table, hidden elements are placed
above and below the visible rows that expand and contract to simulate a
table with every row filled in. The user sees a table just like it was full of
1,800 rows, but the browser only has to render 50. Implementing this
optimization resulted in interaction latency dropping by ~4 times.

Figure 3.13: Performance improvements in results table after imple-
menting smart-table. Via the Chrome devtool’s lighthose audits [8].

3.4 How it’s made 27

3.4.3.3 UpSet plot

Like the manhattan plot, the upset plot is drawn using d3. Unlike the
results table, there are not too many elements to draw here, so no fancy
tricks are needed to speed it up.

3.4.3.4 Network plot

The network plot was where a majority of optimization effort was spent
in PheWAS-ME. The result is a plot that can show very large subsets of
individual-level data and calculate layout simulations without slowing
down the app and hindering interactivity.

Drawing lots of points and lines

Often the displayed individual-level data for the app state contains tens
of thousands of individuals along with many times that number of con-
nections to the selected phecodes. To plot this amount of data often re-
quires upwards of 100 thousand points and lines to be drawn.

Plotting lots of points and lines using javascript has a relatively simple
solution: The Canvas element [5,19]. Unlike SVG[6,9] - which uses the
DOM - canvas allows the user to draw to the screen at the pixel-level,
basically coding an image. Because the Canvas element is just a raster
image, it only takes up a single entry in the DOM and has very little
performance impact.

Adding interactivity

Interactivity with the phenotypes (e.g., mouse-over and selection) is a
very important part of PheWAS-ME. A limitation of the canvas element
is there’s no programming interface provided to detect if a component
of the chart is interacted with by the user. To solve this, interactivity for
the network plot is provided by overlaying an SVG element on top of
the Canvas element. The SVG element draws only the phenotype nodes.
By rendering this small portion of the plot in SVG, the application can
use the built-in intersection observers to detect interaction.

28 3 How

Figure 3.14: Both the Canvas and the SVG are absolutely positioned
within the parent to make sure they overlap properly.

Exporting publication-ready plots

One goal of PheWAS-ME is to assist the processing of PheWAS data for
publications. To better enable this, the ability to export a high-resolution
version of network plot for use in a publication was added. Since canvas
elements are just raster-images, they don’t scale well when exported. To
allow for clean high-res exports, an ‘export mode’ that switches all ren-
dering to the SVG (which is vector-based) and adds a download button
is provided. When in export mode, annotations of present phenotypes is
available via a “callout” mode. When a user presses the download but-
ton, the SVG element is converted to the SVG file format and down-
loaded the user’s computer. Adobe Illustrator or other vector-based
tools can be used to insert the plot into a figure or PDF.

3.4 How it’s made 29

Figure 3.15: An export mode for the network plot allows the export of
vector rendered version of current network plot along with optional
adjustable labels for phecode ids.

Calculating a force-layout in real time

As the data displayed in the network plot is dependent upon user inter-
action, the computationally intensive task of generating a force-directed
network layout [10] must be calculated on-the-fly as new data is dis-
played. Javascript uses the same thread for both computation and page
rendering. Due to the single-threaded nature of the javascript event-
loop, computationally intensive tasks like force-layout simulations can
majorly impact the responsiveness of application.

PheWAS-MEs runs force-layout simulations for the network plot in real-
time while maintaining a responsive user-experience by offloading the
layout calculation to another thread using the web technology web
workers[11,13].

30 3 How

Figure 3.16: Web workers are there own threads with their own event
loops, so they don’t slow down your main page. Source [11]

Web workers allow javascript code to run on another thread and com-
municate with the main thread through a series of asynchronous call-
backs. PheWAS-ME calculates the layout for the network plot on this
separate thread using the network sub-module of D3.js and the follow-
ing API:

When the network plot receives new data, it spins up one of these web
worker threads, sends the data to it to run the layout simulation. The
simulation web worker sends back occasional updates on the node posi-
tions to the main thread to update the plot, assuring the user it is doing
something and not frozen. This adaptation meant that massive net-
works could be laid out and rendered without causing any perceivable
slowdowns on the main app.

3.4 How it’s made 31

Figure 3.17: As the computationaly intensive layout simulation is run
on a seperate thread, the network plot let’s the user know the progress
of simulation.

3.4.4 Performance

As with any web application performance is not straightforward to re-
port for PheWAS-ME. This is because the performance of the server
hosting the Shiny app, the performance of the client viewing the app,
and speed of the networks for both the server and client all play impor-
tant roles in the “speed” of the app.

Some of the optimizations used in constructing the app were discussed
in the previous sections, but here we provide a basic anecdotal bench-
mark of the performance of the app.

3.4.4.1 The setup:

For these tests a PheWAS-ME application was hosted locally using the
function meToolkit::build_me_dashboard running on the includ-
ed simulated dataset. A Macbook Pro (2019 16 inch) with a 2.6 GHz 6-
Core Intel Core i7 was used to both serve and view the application. The
RStudio IDE (v1.3.820) was used to serve the app and Google Chrome
(v81.0.4044.138) was used for viewing. All runtime results were ob-
tained via the performance panel in Chrome’s developers tools.

32 3 How

3.4.4.2 Results:

Starting the application from page-load to full interaction with all plots,
took 2.6 seconds (with 1.8 of those seconds used for the transfer of data
between the server and client.)

Making a large selection of 40 codes (resulting in the transfer of 6,024
individual’s data) from the initial load state took 4.18 seconds (3.82 for
network transfer).

Peak memory usage for the 40-code selection was 384 megabytes for the
server and 19 megabytes for the client.

3.4.4.3 Optimizing the app:

The largest performance bottleneck comes from data transfer between
the server and the client. To optimize an application for lower-power
machines, a PheWAS-ME administrator can set the maximum allowed
selection via the argument max_allowed_codes in the application cre-
ation function build_me_dashboard(). For more details run ?
build_me_dashboard.

3.5 How can I use the app myself?

There are two main methods for using PheWAS-ME.

3.5.1 Hosted version

A version of Phewas-ME is available at https://prod.tbilab.org/phe-
was_me/. Anyone can use this to load their data and use the applica-
tion. There is a simulated dataset for exploration along with a data load-
ing screen where new data can be uploaded.

3.5.2 An R package

If the data to be explored, a more secure method of running PheWAS-
ME is doing it locally by downloading the R-Package, meToolkit [16].
Setting up a local version of the application is as easy as installing the
package from GitHub using…

…and then starting an app up with the function run_me().

https://prod.tbilab.org/phewas_me/

3.5 How can I use the app myself? 33

If you want to learn how to make an app that loads directly to a given
dataset or pre-load data, check out the online documentation for the
package at https://prod.tbilab.org/phewas_me_manual.

Figure 3.18: meToolkit package website, generated with [17]

https://prod.tbilab.org/phewas_me_manual

35

References
[1] Dan Abramov and contributors. 2020. Redux: Predictable state con-
tainer for javascript apps. GitHub repository.

[2] Mike Bostock. 2019. D3.js - data-driven documents. Retrieved Sep-
tember 20, 2019 from https://d3js.org/

[3] Winston Chang. 2019. Modularizing shiny app code. Retrieved from
https://shiny.rstudio.com/articles/modules.html

[4] Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie, and Jonathan
McPherson. 2019. Shiny: Web application framework for r. Retrieved from
https://CRAN.R-project.org/package=shiny

[5] MDN contributors. 2020. Canvas api. Retrieved from https://devel-
oper.mozilla.org/en-US/docs/Web/API/Canvas_API

[6] MDN contributors. 2020. SVG: Scalable vector graphics. Retrieved from
https://developer.mozilla.org/en-US/docs/Web/SVG

[7] Joshua C Denny, Lisa Bastarache, and Dan M Roden. 2016. Phenome-
wide association studies as a tool to advance precision medicine. Annual
review of genomics and human genetics 17, (2016), 353–373.

[8] Chrome Developers. 2020. Lighthouse. Retrieved from
https://developers.google.com/web/tools/lighthouse/

[9] Jon Ferraiolo. 2001. Scalable vector graphics (SVG) 1.0 specification.
W3C.

[10] Thomas MJ Fruchterman and Edward M Reingold. 1991. Graph
drawing by force-directed placement. Software: Practice and experience 21,
11 (1991), 1129–1164.

[11] Jaime González García. 2015. Barbaric basics: Web workers. Retrieved
from https://www.barbarianmeetscoding.com/blog/2015/02/13/bar-
baric-basics-web-workers

[12] Thomas Greco. 2017. Becoming familiar with redux. Retrieved from
https://blog.jscrambler.com/becoming-familiar-with-redux/

[13] Ian Hickson. 2015. Web workers. W3C.

https://d3js.org/
https://shiny.rstudio.com/articles/modules.html
https://cran.r-project.org/package=shiny
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/SVG
https://developers.google.com/web/tools/lighthouse/
https://www.barbarianmeetscoding.com/blog/2015/02/13/barbaric-basics-web-workers
https://blog.jscrambler.com/becoming-familiar-with-redux/

36 References

[14] Javier Luraschi and JJ Allaire. 2018. R2d3: Interface to ’d3’ visualiza-
tions. Retrieved from https://CRAN.R-project.org/package=r2d3

[15] Nick Strayer. 2019. Taking a network view of ehr and biobank data to find
explainable multivariate patterns. Retrieved from
http://nickstrayer.me/biostat_seminar/

[16] Nick Strayer. 2020. MeToolkit: Build and customize phewas multimor-
bidity explorer apps. Retrieved from
https://github.com/tbilab/meToolkit

[17] Hadley Wickham and Jay Hesselberth. 2019. Pkgdown: Make static
html documentation for a package. Retrieved from https://CRAN.R-
project.org/package=pkgdown

[18] Wikipedia. 2020. Quadtree, wikipedia, the free encyclopedia.

[19] Tom Wiltzius, Jay Munro, Jatinder Mann, Ian Hickson, and Rik Ca-
banier. 2015. HTML canvas 2D context. W3C.

https://cran.r-project.org/package=r2d3
http://nickstrayer.me/biostat_seminar/
https://github.com/tbilab/meToolkit
https://cran.r-project.org/package=pkgdown

