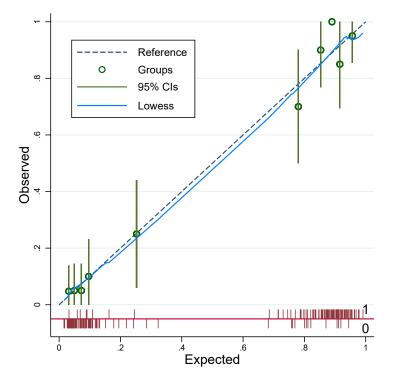
Diagnostic accuracy of a host response point-of-care test in patients

with suspected COVID-19

Tristan W Clark^{1,2,3,4*}, Nathan J Brendish^{1, 2}, Stephen Poole^{1,2,3}, Vasanth V Naidu², Christopher Mansbridge², Nicholas Norton², Helen Wheeler³, Laura Presland³ and Sean Ewings⁵

Online Data Supplement

Viruses	Bacteria
SARS-CoV-2 (Covid-19)	Mycoplasma pneumonia
Influenza A	Legionella pneumophilia
Influenza A subtype H1N1/2009	Bordatella pertussis
Influenza A subtype H1	
Influenza A subtype H3	
Influenza B	
Coronavirus 229E	
Coronavirus HKU1	
Coronavirus NL63	
Coronavirus OC43	
Parainfluenza 1	
Parainfluenza 2	
Parainfluenza 3	
Parainfluenza 4	
Respiratory Syncytial Virus A/B	
Human Metapneumovirus A/B	
Adenovirus	
Bocavirus	
Rhino/Enterovirus	


Table E1. Pathogens tested for by QIAstat-Dx Respiratory SARS-CoV-2 Panel

File E1. Methods and sample size justification for multivariable analysis

To further assess the diagnostic value of FebriDx MxA detection in practice, a multivariable logistic regression model was developed, including FebriDx MxA result, age, sex and prespecified clinical measures of; supplementary O₂, vital signs (respiratory rate and temperature) and symptoms (presence or absence of cough, fever and shortness of breath), with PCR positivity or negativity as the binary outcome. Choice of covariates were informed by clinical expertise and recommendations in the literature. Continuous variables were meancentred and their relationship with outcome was assessed using restricted cubic splines to establish a suitable form for the multivariable model. Overall performance (Nagelkerke's R²; Brier score – sum of squared differences between predicted and observed outcome), discrimination (c-statistic/area under curve) and a calibration plot are presented for this model (perfect fit is represented by all points lying on the 45-degree line). Internal validation was performed using bootstrap resampling to provide optimism-adjusted measures of discrimination (area under the curve; AUC) and calibration (calibration intercept and slope). Analysis was carried out in Stata v16.0.

Nine variables were expected to be included in the multivariable model. Riley et al. suggest three criteria for sample size considerations in multivariable predictive models, where n is chosen to: 1) limit optimism in predictor effects (represented by a shrinkage factor >0.9; this is to avoid overfitting, which can result in a model that performs well in the sample it is derived from, but does not perform well under other samples/external validation), 2) ensure a small difference (≤ 0.05) between apparent and adjusted Nagelkerke's R2 (a measure of proportion of variance explained in the outcome; again to avoid overfitting) and 3) provide a

precise estimate of overall risk. With n=236 and prevalence of 40%, overall risk could be estimated within 6.5%; fixing shrinkage to 0.9 (as recommended) and with R2 of 0.3, the sample size of 236 would meet all three criteria (based on pmsampsize command in Stata). R2 was anticipated to be much higher, given the nature of the diagnostic test; for R2 of 0.65, this would allow all criteria to be met under the assumption that we might estimate 15 parameters based on modelling continuous variables, using restricted cubic splines.

