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Model Estimation and Inference

We propose a parsimonious survival-convolution model for predicting key statistics of COVID-

19 epidemics (e.g., daily new cases) and evaluate public health intervention effect. We model

the infection rate a(t) as a non-negative piece-wise linear function (linear spline and assume

a(t)≥ 0). For China and South Korea, a(t) is given as follows:

a(t) =

 a+0 t < t1

(a0 +a1(t − t1))+ t ≥ t1
, (s1)

where x+ = max(x,0) and t1 is the calendar time of reporting the first case. That is, before

the first case is reported, the public is unaware and the infection is latent, so the infection

rate is assumed to be a constant; however, once the first case is reported, the public is alerted
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and various response strategies are gradually introduced and take effect, so that we expect the

infection rate will decrease (i.e., a1 ≤ 0). In this simple model, there are three parameters that

will be estimated from data, including t0 (the date of the first case), a0, and a1.

When a massive public health intervention (e.g., nation-wide lockdown) is introduced at

some particular date, we further add an additional linear function after this date and introduce

a new slope parameter. Thus, the difference in the rate of change in a(t) before and after an

intervention reflects its effect on reducing disease transmission (i.e., “flattening the curve”).

Furthermore, since the intervention effect may diminish over time, we introduce slope parame-

ters two weeks after the intervention to capture the longer-term effect. Therefore, for Italy and

US we place additional knots at t2 (the date of national lockdown for Italy and the declaration

of national emergency for US) and t3 (two weeks after t2). The infection rate is modeled as:

a(t) =



a+0 t < t1,

(a0 +a1(t − t1))+ t1 ≤ t < t2,

(a0 +a1(t2 − t1)+a2(t − t2))+ t2 ≤ t < t3,

(a0 +a1(t2 − t1)+a2(t3 − t2)+a3(t − t3))+ t ≥ t3.

(s2)

A long observational period is available for Italy. We place another knot four weeks after t2 to

capture potential long-term effect of the intervention.

Let θ denote all parameters in the infection rate a(t) (e.g, a0, · · · ,ak in equations s1 and

s2) and t0. We divide the reported daily new cases into training data for estimating parameters

and testing data for validation. Denote by Yo(t1),Yo(t1 + 1),Yo(t1 + 2), ....,Yo(t2), the training

data consisting of the daily new cases reported from the date of the first reported case, t1, to

the last date in the training set, t2. To estimate θ using the training data, first note that the
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number of daily confirmed tested positive cases is a measure of the number of infected cases

out of transmission due to a positive COVID test (i.e., Y (t)) observed with error (e.g., reporting

error, tested positive but not practicing social distancing). Second, it is plausible that the error

variability is proportional to the underlying true number of cases (e.g., holds for Poisson random

variables). Our model is Yo(t) = Y (t)+
√

Y (t)ε(t), where ε(t) represents a residual term. Let

Y (t;θ) denote the predicted new case number at day t for a given θ using recursive equations

in (1) and (2) in the main manuscript. We minimize the following loss under a square-root

transformation

∑
t1≤t≤t2

[√
Yo(t)−

√
Y (t;θ)

]2
(s3)

to estimate θ . The square-root transformation is applied to the daily cases since it is a variance

stabilizing transformation for Poisson counts. Computationally, we perform a grid search to

estimate t0. For each t0, we apply a gradient-based optimizer with adaptive learning rate (i.e.,

Adam1) to obtain other parameters. The algorithm is implemented in Tensorflow2. We let θ̂

be the minimizer of (s3). With θ̂ , we can use equations (1) and (2) in the main manuscript

to predict any new daily cases in future dates. Furthermore, by comparing the estimated a(t)

(and correspondingly, Rt) before and after a public health intervention is implemented, we can

estimate the intervention effect in terms of the change of infection rates under the longitudinal

pre- and post-intervention design.

For statistical inference such as obtaining confidence intervals of predicted numbers or esti-

mated intervention effects, we assume that the standardized residuals, [Yo(t)−Y (t;θ)]/
√

Y (t;θ),

are exchangeable. Thus, permutation method can be used. We permute the estimated residuals

and reconstruct observed cases by adding permuted residuals multiplied by the square-root of

the observed case numbers. We repeat this process 500 times and re-analyze each set of per-
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muted data to yield a set of estimates for θ , the corresponding set of predictions for Y (t;θ) and

estimated intervention effects. We obtain 95% confidence intervals using empirical quantiles of

the estimates under permutation.

To model the distribution of time to symptom onset since infection, we use the existing

knowledge of SARS-CoV-2 virus incubation period. Previous work3 indicates that the incuba-

tion period for SARS-CoV-2 has an average of 5.2 days, and the longest time to symptom onset

since infection was reported up to 21 days. Thus, we model the survival function of presenting

COVID-19 symptoms as an exponential distribution with a mean of 5.2 truncated at 21, and

use this distribution to approximate S(m) in equations (1) and (2) in the main manuscript. In a

set of sensitivity analyses, we examine the influence of using a longer mean parameter of this

distribution. For the sensitivity analysis of the US, we used a mean value of 5.2+4 = 9.2 (an

average of 4-day lag between symptom onset and reporting of daily new cases was observed in

a CDC report4). For the sensitivity analysis of Italy, we used a mean value of 5.2+5.3 = 10.5

days (an average of 5.3-day lag between symptom onset and reporting of daily new cases was

observed in Italy5). The results in Figure S2 show that the fitted curves of daily new cases under

different parameters of S(m) are identical for US. For Italy, the fitted curves over training data

period are almost identical and there is a slight difference at the tail (Figure S3).
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(B) South Korea
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(C) Italy
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Figure S1: Latent and confirmed cases on each day in each country. Number of latent cases on
day t (i.e., estimated M(t)−Y (t)) includes all pre-symptomatic cases infected k days before but
have not been detected by day t. Solid lines separate observed number of cases and predicted
number of cases.
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Figure S2: Sensitivity analysis of the US. Observed and predicted daily new cases comparing
using an exponential distribution with a mean of 5.2 (grey) and with a mean of 9.2 (orange).
First dashed line indicates the declaration of national emergency (March 13). Second dashed
line indicates two weeks after (March 27). Training data: February 21 to May 1; Testing data:
May 2 to May 10. Fitted curves under different parameters of S(m) are nearly identical.

7



●●●●●●●●●●

●
●
●
●
●●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●●●●●

●
●
●

●●●
●
●

0

2000

4000

6000

Feb−20 Mar−01 Mar−11 Mar−21 Mar−31 Apr−10 Apr−20 Apr−30 May−10 May−20 May−30 Jun−09
Date, 2020

D
ai

ly
 N

ew
 C

as
es

● ●
Training data 
used in model fitting

Testing data 
not included in model fitting Predicted Predicted (sensitivity)

Figure S3: Sensitivity analysis of Italy. Observed and predicted daily new cases comparing
using an exponential distribution with a mean of 5.2 (grey) and with a mean of 10.5 (orange).
First dashed line indicates the national lockdown (March 11). Second and third dashed lines
indicate two weeks after. Training data: February 20 to April 29; Testing data: April 30 to May
10. Fitted curves under different parameters of S(m) are similar.
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