
| B.1.29

Supplementary Figure 1. Maximum-likelihood phylogeny inferred from 384 SARS-CoV-2 genomes, including 80 from Arizona and 304 representatives from around the world. Tips are colored by origin of sequence, and major lineages assigned by Pangolin, with more than 2 sequence representatives in Arizona, are labeled and indicated by black vertical bars. Orange vertical bars indicate well-supported (Bayesian posterior >0.99 and bootstrap support ≥ 65) sublineages of B.1, which were not uniquely named by Pangolin. The existence of these sublineages, with members from around the world, strongly supports the fact that the "B.1" lineage was introduced to Arizona multiple times. The tree was visualized with a custom Python script that utilized the software package BALTIC (https://github.com/evogytis/baltic).

Supplementary Figure 2. Sequence database representation through time for the 4 introductions with only 1 sequence representative from Arizona. Stacked bars are colored according to location.
Lineages were assigned using Pangolin for all sequences uploaded to GISAID as of 4/16/2020.

Supplementary Table 3. Genome representation from each Arizona county. This does not include all genomes because some are from unknown counties.

County	Number of positive cases*	Number of genomes sequenced
Apache	118	0
Cochise	18	1
Coconino	299	22
Gila	5	0
Graham	2	1
Greenlee	2	0
La Paz	5	1
Maricopa	2,264	31
Mohave	51	1
Navajo	410	4
Pima	760	4
Pinal	197	7
Santa Cruz	14	0
Yavapai	68	3
Yuma	21	1
Totals	4234	
$\begin{aligned} & { }^{*} \text { As of } \\ & 4 / 16 / 2020 \end{aligned}$		

Supplementary Table 4. In silico screen of commonly used primers/probes to detect SARS-CoV-2.

Assay	Forward	Reverse	Probe	Total	Hits	$\begin{array}{\|c} \mid \text { Miss } \\ \text { es } \end{array}$	$\begin{gathered} \text { Ambi } \\ \text { guou } \\ \text { s } \end{gathered}$
Orf1ab	$\begin{aligned} & \hline \text { CCCTGTGGGTTTT } \\ & \text { ACACTTAA } \end{aligned}$	ACGATTGTGCAT CAGCTGA	CCGTCTGCGGTATG TGGAAAGGTTATGG	384	366	0	18
$\begin{gathered} \mathrm{N} \\ \text { (China) } \end{gathered}$	GGGGAACTTCTCC TGCTAGAAT	CAGACATTTTGCT CTCAAGCTG	$\begin{gathered} \text { TTGCTGCTGCTTGA } \\ \text { CAGATT } \end{gathered}$	384	324	57	3
$\mathrm{n}_{\mathrm{n} 1}^{\mathrm{cov}}$	GACCCCAAAATCA GCGAAAT	$\begin{gathered} \text { TCTGGTTACTGC } \\ \text { CAGTTGAAT } \end{gathered}$	ACCCCGCATTACGT TTGGTGGACC	384	375	6	3
$\mathrm{n}_{\mathrm{n} 2}$	TTACAAACATTGG CCGCAAA	GCGCGACATTCC GAAGAA	ACAATTTGCCCCCA GCGCTTCAG	384	382	0	2
$\begin{array}{\|c\|} \hline \text { n_cov_ } \\ \text { n3 } \end{array}$	GGGAGCCTTGAAT ACACCAAAA	TGTAGCACGATT GCAGCATTG	AYCACATTGGCACC CGCAATCCTG	384	382	0	2
E (Sarbec o)	ACAGGTACGTTAA TAGTTAATAGCGT	ATATTGCAGCAG tacGCACACA	ACACTAGCCATCCT TACTGCGCTTCG	384	380	2	2
nsp10 (China)	CCCTGTGGGTTTT ACACTTAA	ACGATTGTGCAT CAGCTGA	CCGTCTGCGGTATG TGGAAAGGTTATGG	384	366	0	18
nsp14	TAATCAGACAAGG AACTGATTA	CGAAGGTGTGAC TTCCATG	GCAAATTGTGCAAT TTGCGG	384	380	2	2
$\begin{gathered} \mathrm{N} \\ (\mathrm{HKU}) \end{gathered}$	TAATCAGACAAGGAA CTGATTA	CGAAGGTGTGACT TCCATG	GCAAATTGTGCAATTT GCGG	384	379	2	3
nsp14 (HKU)	TGGGGYTTTACRGGT AACCT	AACRCGCTTAACAA AGCACTC	TAGTTGTGATGCWATC atgactag	384	381	0	3
$\begin{aligned} & \text { RdRp } \\ & (I P 2) \end{aligned}$	ATGAGCTTAGTCC TGTTG	CTCCCTTTGTTGT GTTGT	AGATGTCTTGTGCT GCCGGTA GCCGGTA	383	383	0	1
$\begin{aligned} & \text { RDRP } \\ & \text { (IP4) } \end{aligned}$	GGTAACTGGTATG ATTTCG	CTGGTCAAGGTT AATATAGG	TCATACAAACCACG CCAGG	384	384	0	0

