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Mendelian randomization methods 

Brief introduction to MR 

MR makes use of genetic variants as “instruments” to represent the exposure of interest, and aims to infer 

causal relationship between the exposure and outcome (1). Susceptibility genetic variants for the exposure are 

usually derived from genome-wide association studies (GWAS), which is still observational in nature. 

However, in an MR analysis, in essence we are considering the ‘genetically predicted’ exposure (e.g. 

genetically-predicted lipid level or probability of a disease) as the risk factor, hence it is different from more 

conventional case-control/cohort studies.  

 

MR is usually much less prone to reverse causation, when compared to conventional case-control or cohort 

studies with (non-genetic) risk factors, as genetic variants are fixed at conception and precedes the outcomes. 

Secondly, conventionally measured exposures are often associated with a wide range of behavioral, social and 

physiological factors that confound associations with outcomes. Genetic variants, in general, are less likely to 

be strongly associated with a wide variety of confounders such as age or environmental factors. Empirical 

evidence suggests that generally there is a lack of substantial confounding of genetic variants with factors that 

usually confound exposures in conventional epidemiological studies (2-4). In addition, in most MR analyses 

(including the present study), multiple genetic variants are usually employed as instruments for the exposure. 

As argued by Smith and Ebrahim (see https://www.ncbi.nlm.nih.gov/books/NBK62433/), this may serve as 

another mechanism to reduce the effects of confounding, as it is unlikely that a large number of instruments 

are all subject to confounding. Heterogeneity/outlier detection tests may also detect violation of instrumental 

variable or MR model assumptions. Such tests were also carried out in this study; we did not find evidence of 

heterogeneity among our significant findings.  

 

However, we note that the above is not foolproof. MR may not achieve the same level of confounding 

control as the ‘gold-standard’ randomized controlled trials (RCT). In addition, MR reflects long-term exposure 

of the risk factor (as genetic variants are fixed at birth), which may not reflect effects in a shorter term. MR 

may provide one way to guide the study of causal relationship between risk factors and outcomes, but there 

are also limitations. For more detailed discussions, we refer the readers to relevant reviews on the topic (2; 

5-8).  
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Approaches to MR analysis 

We conducted MR primarily with the ‘inverse-variance weighted’ (MR-IVW) (9) and Egger regression 

(MR-Egger) (10) approaches, which are among the most widely used MR methods. For exposure with only 

one instrument, the Wald ratio method was used.  One of the concerns of MR is horizontal pleiotropy, in 

which the genetic instruments have effects on the outcome other than through effects on the exposure. Of note, 

MR-Egger gives valid estimates of causal effects in the presence of imbalanced or directional horizontal 

pleiotropy. In addition, significance of the MR-Egger intercept can be used to judge whether significant 

directional/imbalanced pleiotropy is present. 

 

For selected traits with stronger evidence of association, we also performed further analysis by GSMR and 

MR-RAPS. GSMR (http://cnsgenomics.com/software/gsmr/) can take into account of (imbalanced) horizontal 

pleiotropy but is based on a different principle from MR-Egger. It excludes ‘outlier’ or heterogeneous genetic 

instruments that may contribute to pleiotropy, by the ‘HEIDI-outlier’ method (11). GSMR also employed a 

slightly different formula from MR-IVW by modelling variance of both ˆ
XG  and ˆ

YG , and accounts for 

correlated SNPs (11) by modelling linkage disequilibrium (LD) between SNPs. We tried several r2 clumping 

thresholds (r2 =0.001, 0.05, 0.1, 0.15, 0.2) for GSMR, with SNP correlation matrices extracted from 1000 

Genomes European samples. The authors showed by extensive simulations (11) that GSMR produced 

well-calibrated test statistics under the null, and that the causal effect estimates are unbiased under H1. 

 

MR-RAPS is another MR analysis methodology which can take into account multiple weak instruments 

by a robust procedure known as ‘Robust Adjusted Profile Score’ (RAPS). Details of MR-RAPS were 

described in Zhao et al. (12). The authors performed simulations and showed that under certain assumptions, 

the method is able to produce relatively unbiased causal estimates with proper 95% CI coverage rate, while 

also having lower variance in the estimates. More specifically, MR-RAPS is valid under ‘systematic and 

idiosyncratic pleiotropy’, in which most pleiotropic effects are normally distributed with mean zero but some 

SNPs are allowed to exhibit much larger pleiotropic effects (12). Based on the strength of MR-RAPs to 

include weak instruments, we employed a more relaxed p-value threshold for SNP selection (0.01) for 

MR-RAPS. The threshold was chosen as the authors’ simulations showed that unbiased causal estimates can 

be achieved by MR-RAPS, up to a p-threshold of 0.01 [Table 5 of ref(12)].  

 

A note on ethnicity of GWAS samples and MR analysis  

Most GWAS included in this work were based on predominantly European samples. However, subjects of 

other ethnicities were included in some samples. Ancestry can be a potential confounder that may lead to 

violation of MR assumptions, however adjustment for ancestry can be made which can avoid spurious 

associations(5). As shown in Table S2a, proper adjustment by principal component analysis or mixed models 

have been performed for GWAS prior to MR analysis.  

We believe that spurious causal associations are unlikely; however, it is still possible for genetic 



3 
 

associations to differ across ethnicities, which may affect the causal estimates of MR. For example, this may 

occur if some SNP-exposure or SNP-outcome associations are weaker/stronger in one ethnic group than 

another. However, in type 2 diabetes, most studies to date did not detect significant effect heterogeneity across 

ethnicities for the majority of loci (13; 14). In addition, if genetic associations of some SNPs differ 

substantially across ethnicities, we may expect the causal effect conferred by some genetic instruments to 

deviate from others more than expected by chance. This appears to be not the case as we did not observe 

significant heterogeneity in casual estimates across SNPs for most traits (Table 1). However, it is difficult to 

assess the possibility of differential genetic effects across ethnicities for all traits, hence we consider it as a 

potential limitation. 

 

Highlights of pathways (that are enriched for proteins causally linked to ACE2 expression) 

Here we highlight a few pathways which were enriched for proteins causally linked to ACE2 expression in 

MR. Note that this is an exploratory analysis and the definitive role of these pathways remain to be elucidated 

in further experimental studies.   

 

One of the top-ranked pathways is cytokine- cytokine receptor interaction. There was evidence from 

previous studies that inflammatory processes and ACE2 activity are closely related (reviewed in (15)), but 

their relationship is complex. Some experimental studies showed that the ACE2/Angiotensin-(1-7)/Mas 

receptor axis is associated with reduction in cytokine release and inhibition of tissue fibrosis in various 

diseases. Nevertheless, clinical evidence is lacking and the mechanism remains to be understood (16). Another 

highlighted pathway involves HIF (hypoxia-inducible factor) signaling. Interestingly, in a study on pulmonary 

artery smooth muscle cells, Zhang et al. showed that ACE2 mRNA and protein levels increased during the 

early stages of hypoxia. The levels reduced afterwards after HIF-1alpha accumulation (17). 

 

Another pathway involves VEGFA-VEGFR2 Signaling. A recent animal study showed that VEGF could 

influence ACE2. Using CD34+ cells derived from mice, Joshi et al. demonstrated that VEGF could mimic the 

effects of hypoxia on CD34+ cells, leading to increased activity of ACE2 (18). 
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