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1 Probabilistic reformulation of Susceptible-Infected-
Removed model

The SIR model (1) is a deterministic model based on the set of ordinary
differential equations. The deterministic SIR, DSIR in short, is quite useful
to grasp the essential quantitative nature of an epidemic dynamics. It is,
however, not ready to use for analysis of an empirical data of an epidemic
dynamics with noise, especially when a large body of the characteristics of
the epidemic nature for the following reasons.

First, DSIR does not offer a systematic treatment for statistical noise
which any empirical data inevitably contains.

Second, DSIR has three essential parameters (N, β, γ) and the variables
(S(t), I(t), R(t)), but only effectively observeable variable is the cumulative
number of infectious individuals F (t) := N − S(t). The effective number of
susceptive individuals S(t) and the effective whole population N are neither
observeable directly, but its difference F (t) can be (partially) observeable.
The whole population size N as well as S(0) does not necessarily match with
a whole in a country nor region. As the size of an effective social network
of interest, in which an infectious individual can move over, can depend
on various factors such as individual behaviors, govermental policy, custom,
and culture, it is not easy to estimate alone. The infectious individuals I(t)
at a certain time point t can be partially observeable as a report on new
increase in the cumulative number F (t), but it also depends on unknown
parameters γ which reflects the average recovery (removal) rate.
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Third, empirical dynamics of an epidemic cannot be necessarily explaine-
able by a epidemic model alone, due to social and political means taken by a
community under the threat of epidemics. For example, a lockdown, which
shut down a major body of social activity in a community or a whole coun-
try, may have a large impact in a epidemic dynamics – the latent parameters
(N, β, γ) may be changed by the policy. Thus, it is preferable to constructe a
model, which allows a dynamic change or mixture in the system parameters.

Given these problems of DSIR, we propose a novel modeling framework
based on Bayes statistical model. We call this Bayesian SIR ( BSIR ) model
as a remedy for it. BSIR is a probabilistic reformulation of DSIR, in which
the three state variables (St, It, Rt) are defined as discrete variables over
discrete time t = 0, 1, . . .. BSIR is designed to offer a statistical estima-
tor of the unknown parameters (N, β, γ) as well as unobserveable variables
(S(t), I(t), R(t)) only from the observation of a short time series of cumu-
lative number of infectious individuals F = (F1, F2, . . . , FT ). Given a set
of estimated parameters, BSIR also offers a generative model to predict a
timeseries of FT+1, FT+2, . . . in future. If we identify the difference equations
of the expectation of the state variables in BSIR as continuous state vari-
ables over continuous time in DSIR, BSIR is a faithful statistical replication
of the original DSIR. Thus, an estimate of the parameters (N, β, γ) in BSIR
is interpretable the parameters in DSIR as well, up to a time constant.

2 Deterministic SIR model

The deterministic SIR model is the set of the following differential equations,
with a (S(0), I(0), R(0)) constrained by S(0) + I(0) +R(0) = N .

dS
dt = − β

N IS
dI
dt = β

N IS − γI
dR
dt = −γI

, (1)

where

• S(t) is a quantity indicating susceptive population size,

• I(t) is a quantity indicating infectious population size,

• S(t) is a quantity indicating removed population size,

• N is the system parameter indicating the whole population size S(t)+
I(t) +R(t) = N at any time t,
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• β is the system parameter indicating the rate of infection that each
infectious individual produces a new infectious individual,

• γ is the system parameter indicating the rate of recovery or removal
of infected individuals from the infectious group.

R0 :=
β
γ is called basic reproduction number, which is the critical parameter

characterizing the SIR dynamics. The SIR dynamics is a “outbreak”, which
means an broad spread of infection over the given population at the initial
state, if

R0 =
β

γ
>

N

S(0)
,

which implies an increase of the infectious population size with dI
dt > 0 at

t = 0. Otherwise, the infectious population decrease to zero, and it shows
non-outbreak dynamics. Thus, the basic reproduction number R0 as well
as the thresholding parameters N

S(t) are the critical variables, with respect

to the evolution of the epidemic. Although N
S(0) ≈ 1 is often assumed at

initial state as S(0) is quite small at begining, both N and S(t) need to be
estimated on the middle of on-going epidemic in order to judge whether the
epidemic size is increasing or decreasing.

3 Baysian SIR model

Comparable with the differential equation (1) of the state variables (S(t), I(t), R(t)) ∈
R3, Baysian SIR model has the three discrete system variables (St, It, Rt) ∈
Z3 over discrete time t = 0, 1, . . ..

The Baysian SIR model is designed to capture the essential nature of
the differential equation (1) by the difference equations for any t = 1, 2, . . .

St − St−1 = − β

N
St−1 It−1

It − It−1 = β

N
St−1 It−1 − γIt−1

Rt −Rt−1 = γIt−1

, (2)

where X denotes the expectation of random variable X. BSIR consists of
these three random variables as well as auxilary random variables

Ft = N − St (3)

Dt = Ft − Ft−1, (4)
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where Ft and Dt are only observeable variables indicating the cumulative
number of infected individuals and the difference between its two consequtive
time points, available as a data respectively. As a series F = (F0, F1, . . . , FT )
is supposed given as a observeable data, a dependent variable such as St =
N − Ft is replaced with N − Ft. As the number of removed individuals
Rt is a passive variable which does not affect the other variables, we do
not explicitly model this variable in this formulaiton. Then the remaining
variables explicitly treated includes N,Ft, Dt, It.

BSIR is a generative model, meaning that it probabilisticly generates a
data of timeseries of Ft with a set of parameters and initial variables. BSIR
has the following initial variables:

• the whole population size N ∈ N,

• the rate of person-to-person contact β ∈ R,

• the rate of removal γ ∈ [0, 1],

• the initial cumulative number of infectious cases F0 ∈ Z,

• the initial increase in number of infectious cases D0 ∈ Z,

• and the initial unobserved number of infectious cases I0 ∈ Z.

As the notational convention in this formulation of BSIR, we denote every
integer-valued random variable by a capital letter N,Ft, Dt, It and others,
and every real-valued random variable by a greek letter β, γ and others,
and every set of variables by a capital greek letter. As an additional set of
auxiliary random variables, which eases the statistical computation involving
integral, we introduce the following variables.

• the number of non-removed infected individuals Ht ∈ Z from It.

• the rate of infection depending on the infected population It at time
t: λt ∈ N,

• the number of contacts Ct,i ∈ Z, indicating ith susceptible individuals
contact other individuals at t.

Given an initial state variables (S0, I0, R0) and the system parameter
Θ = (N, β, γ) (as well as the auxilary variables F0, D0), a series of random
variables F1, F2, . . . is generated in the following scheme. For any integer
t > 0, the random variables It, λt, Ct,i, Dt, Ft in this order are drawn as
follows.
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1. The latent cumulative number of infectious people It ∈ Z is decided by
the random variable Ht−1 := It−Dt−1 ∈ Z, which follows the binomial
distribution Bin(Ht−1 | It−1, (1− γ)).

2. The latent rate of new infection λt ∈ [0, 1] follows the beta distribution
Beta (λt | It, N − It).

3. The non-negative number of ith individual’s contacts at time t Ct,i ∈ Z
follows the Poisson distribution Po (Ct,i | β).

4. The new reported number of infectious cases Dt ∈ Z follows the
Poisson-binomial distribution PB(Dt | θt), where

θt =
(
1− (1− λt)

Ct,i
)N−Ft−1

i=1
∈ [0, 1]N−Ft−1

.

5. The cumulative number of infectious cases adds up the new reported
number: Ft = Ft−1 +Dt.

In the above, the probability mass/ density distribution function is defined
by

Bin(K | N, θ) :=

(
N

K

)
θK(1− θ)N−K ,

Beta(θ | K0,K1) :=
θK0−1(1− θ)K1−1

B (K0,K1)
,

Po(K | θ) := αK

K!
e−α,

and

PB(K | (θ1, θ2, . . . , θM )) :=
∑

∑M
i=1 Ci=K

M∏
i=1

θCi
i (1− θi)

1−Ci ,

where
(
n
k

)
= n!

k!(n−k)! is the number of combinations to draw k from n,

B (n0, n1) =
Γ(n0)Γ(n1)
Γ(n0+n1)

is the beta function, and Γ (n) is the gamma function.

In a special case, it holds Γ (n) = (n− 1)! for any non-negative integer n.
By repeating this sampling scheme for t = 1, 2, . . . , T , a time series of an
arbitrary length T , F1, F2, . . . , FT is generated with the initial parameters
described above. In BSIR , the parameterN , β, γ are also random variables,
and each of them has the prior distribution

P (N) ∝ N−1δ(N ∈ N ), (5)
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P (β) = Gamma(β | n0, β0), (6)

and
P (γ) = Beta(γ | γ0, γ0), (7)

where

Gamma(α | K, θ) :=
αK−1e

α
θ

θKΓ(K)
,

δ(q) =

{
1 if the propositionq is true,

0 otherwise
,

and N = {Nmin, Nmin + 1, . . . , Nmax} is the set of integers with Nmin = FT

and Nmax is the reported population in a given country or domestic region.
We set n0 = β0 = γ0 = 1. These prior distributions are designed to give
little prior information on N , β and γ. For even a modestly large dataset,
this choice of prior has little impact on an estimate of the parameters in
BSIR .

In summary, Figure 1 shows the graphical model of BSIR illustrating the
dependency among random variables. BSIR has three major components
removal and addition of infected individuals, infection rate, contact frequency
and infection sample, which gives a statistical implmentation of the spirit of
the original DSIR model. In the removal and addition of infected individuals
(corresponding the sampling process 1. above), a γ ∈ [0, 1] portion of the
number of infected individuals It−1 is removed from the infectious pool,
and the newly reported number of infected individuals is added to it. The
expected number of infected individuals is

It = (1− γ)It−1 +Dt−1 = Ht−1 +Dt−1. (8)

In infection rate (corresponding to the sampling process 2. above), the
latent infection rate λt ∈ [0, 1] is decided according to the number of infected
individuals It and the whole population size N . The expected infection rate
is

λt =
It

N
. (9)

In the contact frequency (corresponding to the sampling process 3. above),
the contact frequencies Ct,i for the ith susceptible individual at time t is de-
cided depending on the contact rate β > 0. This contact frequency is not
explicit in DSIR. BSIR considers that the rate of contact β characterizes
the susceptible individuals’ behavioral tendency to contact other individu-
als, which is a factor deciding infection, which is only possible with at least
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one contact between infected and susceptive individuals. The number of
contacts Ct,i is decided by the contact rate:

Ct,i = β. (10)

In the infection sample (corresponding to the sampling process 4. above),
the number of newly reported infected individuals Dt is decided according
to the infection rate λt, the number of susceptible individuals N − Ft−1,
and the contact frequency Ct,i of each susceptible individuals. As the ith

susceptible individual has Ct,i times of contacts other individuals (without
knowing who is infected), the probability to contact at least one infected
individual among Ct,i contacts is 1− (1−λt)

Ct,i . As this contact is mutually
independent, the expected number of new infection is

Dt = N − Ft−1 −
N−Ft−1∑

i=1

(1− λt)Ct,i . (11)

Lastly, the cumulative number of infected individuals adds up

Ft = Ft−1 +Dt. (12)

In total, the expectation of these random variables (8), (9), (10), (11) and
(12) reproduce a part of the difference equation (2), with

Dt ≈ (N − Ft−1)λt β = St−1
It

N
β.

for a sufficiently small λt ≪ 1.

3.1 Posterior distribution

We estimate the parameters in BSIR using Gibbs sampler of the posterior
distribution Q(ΘT | F,D) of

Ω = (N, β, γ),ΘT = (I1, . . . , IT , λ1, . . . , λT , C1,1, . . . , Ci,T )

given time series (F,D) = (F0, . . . , FT , D0, . . . , DT ). Specifically the poste-
rior probability is

Q(Ω,ΘT |F,D) ∝ P (Ω)
T∏
t=1

Bin(Ht = It+1 −Dt|It = Ht−1 +Dt−1, (1− γ))

× Beta(λt | It = Ht−1 +Dt−1, N − It)

N−Ft−1∏
i=1

Po(Ct,i | β)

× PB(Dt | θt) (13)
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Figure 1: The hierarchical Bayesian generative model of the cumulative
infected population size Ft and daily new reported number of infected indi-
viduals Dt, based on the whole population size N , daily removal probability
γ, the latent cumulative number of infected individuals It, the rate of infec-
tion λt at each time step t in the form of the mutual dependence depicted
by this graphical model. The random variables depicted by the circles are
random variables to be estimated, and those depicted by the squares are
given and fixed in estimation.

where P (Ω) = P (N)P (β)P (γ) is the product of the prior probability defined
by (5), (6), (7), and

θt = (1− (1− λt)
C1,t , . . . , 1− (1− λt)

CN−Ft−1,t) ∈ [0, 1]N−Ft−1 .
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Explicitly writing down, the posterior probability is

Q(Ω,ΘT |F,D) ∝ P (Ω)
T∏
t=1

(
Ht−1 +Dt−1

Ht

)
(1− γ)HtγDt−1+Ht−1−Ht

× λ
Ht−1+Dt−1−1
t (1− λt)

N−(Ht−1+Dt−1)−1

B (Ht−1 +Dt−1, N − (Ht−1 +Dt−1))

N−Ft−1∏
i=1

βCt,i

(Ct,i)!
e−β

×
∑

Dt=
∑N−Ft−1

i=1 Zt,i

N−Ft−1∏
i=1

θ
Zt,i

t,i (1− θt,i)
1−Zi , (14)

where the variable Zt,i ∈ {0, 1} being 0/ 1 indicates non-infection/ infection
of the ith individual at t, and θt,i := 1− (1− γ)Ct,i ∈ [0, 1] is the probability
for the ith individual to be infected at t.

Denote the sum of the non-infected/ infected individuals by contacting

Ct,i times by Kt,k,j :=
∑N−Ft−1

i=1 δ(Ct,i = k ∧ Zt,i = j), and the probability
of non-infection and infection by

µt,k,0 =
βk

k!
e−β(1− λt)

k ∈ [0, 1] and µt,k,1 =
βk

k!
e−β

(
1− (1− λt)

k
)
∈ [0, 1].

Then we have identity

∑
Dt=

∑N−Ft−1
i=1 Zi

N−Ft−1∏
i=1

βCt,i

(Ct,i)!
e−βθZi

t,i (1− θt,i)
1−Zi = (N − Ft−1)!

∞∏
k=0

µ
Kt,k,0

t,k,0 µ
Kt,k,1

t,k,1

(Kt,k,0)! (Kt,k,1)!
(15)

=

(
N − Ft−1

Dt

)
µ
N−Ft−1−Dt

t,0 µDt
t,1

(N − Ft−1 −Dt)!∏∞
k=0 (Kt,k,0)!

∞∏
k=0

(
µt,k,0

µt,0

)Kt,k,0 (Dt)!∏∞
k=0 (Kt,k,1)!

∞∏
k=1

(
µt,k,1

µt,1

)Kt,k,1

(16)

where µt,0 :=
∑∞

k=0 µ
Kt,k,0

t,k,0 = e−βλt µt,1 :=
∑∞

k=0 µ
Kt,k,1

t,k,1 = 1 − e−βλt Thus,
summing out the random variables Kt,k,j , we have

Q(Ω,ΘT |F,D) ∝ P (Ω)
T∏
t=1

(
Ht−1 +Dt−1

Ht

)
(1− γ)HtγDt−1+Ht−1−Ht

× λ
Ht−1+Dt−1−1
t (1− λt)

N−(Ht−1+Dt−1)−1

B (Ht−1 +Dt−1, N − (Ht−1 +Dt−1))

×
(
N − Ft−1

Dt

)
e−βλt(N−Ft−1−Dt)(1− e−βλt)Dt (17)

9



3.2 Estimation: Gibbs sampler

We employed Gibbs sampler to draw a sample from the posterior distribution
Q(Θ,ΩT | F, T ) by conditioning with each variable in Θ,Ω. Denote the set of
all variables but X by Θ−X : {X ∈ Θ∪ΩT ∪{F,D}\{X}}. The conditional
posterior distribution of γ is

Q(γ | Θ−γ) = Beta

(
γ | γ0 +

T∑
t=1

(Dt−1 +Ht−1 −Ht) , γ0 +
T∑
t=1

Ht

)
. (18)

The conditional posterior distribution of β is

Q(β | Θ−β) ∝ Gamma

β | n0 +

T∑
t=1

∞∑
k=1

∑
j=0,1

kKt,j,k,

(
β−1
0 +

T∑
t=1

(N − Ft−1)

)−1
 .

(19)
The conditional posterior distribution of λt is

Q(λt | Θ−λt) ∝ λIt−1
t (1− λt)

N−It−1+
∑∞

k=0 kKt,k,0

∞∏
k=1

(
1− (1− λt)

k
)Kt,k,1

.

The conditional posterior distribution of N is

Q(N) ∝ P (N)

T∏
t=1

λHt+Dt−1
t (1− λt)

N−(Ht+Dt)−1

B (Ht +Dt, N − (Ht +Dt))

(
N − Ft−1

Dt

)
e−βλt(N−Ft−1−Dt)(1− e−βλt)Dt(20)

∝ P (N)

T∏
t=1

{
(1− λt)e

−βλt
}N

Γ (N) Γ (N − Ft−1 + 1)

Γ (N − (Ht +Dt)) Γ (N − Ft−1 −Dt + 1)
. (21)

For max(0,Ht+1 −Dt) ≤ Ht ≤ Ht−1 +Dt−1, The conditional posterior
distribution of Ht is

Q(Ht|F,D) ∝

(
λt+1(1−γ)

(1−λt+1)γδ(t=T )

)Ht
(

λt+1

(1−λt+1)

)Htδ(t<T ) (
Ht+Dt

Ht+1

)δ(t<T )

Γ (Ht +Dt) Γ (N − (Ht +Dt)) Γ (Ht + 1)Γ (Ht−1 +Dt−1 −Ht + 1)
.

3.3 Special case β = 1

Although the full model described in the previous section is attractive to
estimate all the parameters of BSIR, it is quite technically dense to sample
from its posterior distribution. As an approximation to the full model, we
also offer a computationally-light special case of the full model by fixing β =
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1. With this additional assumption, we can marginalize out the continuous
random variables γ and λt, which both follows the beta distributions, and
that make the sampling drastically simple. In this case, the conditional
posterior distribution for N and Ht are as follows.

Q(Ht|N,HT,−tF,D) ∝ B

(
1 +

T∑
t=1

Ht, 1 + FT−1 +H0 −HT

)

× δ(Ht ∈ Ht)

(
It−1 +Ht−1

Ht

)(
It +Ht

Ht+1

)δ(t<T )

(22)

× B (It +Ht, 2(N − Ft−1)−Ht − It)

B (Ht, N − Ft−1 −Ht)
,

and

Q(N |HT , F,D) ∝ P (N)

T∏
t=1

(
N − Ft−1

It

)
× B (It +Ht, 2(N − Ft−1)−Ht − It)

B (Ht, N − Ft−1 −Ht)

With the conditional posterior probabilities above, we estimate them
specifically by the following algorithm. For initial parameter Ω′

T , we resorted
a grid search over the parameter space (N,α) ∈ N × [0, 1] to generate HT

and tentatively maximize the posterior distribution Q(ΩT |F, T ). Then, we
repeated two sampling scheme alternatively: (1) Given N and HT,−t :=
(H0, . . . , Ht−1,Ht+1, . . . , HT ), sample Ht from the marginalized posterior
distribution Q(Ht|N,HT,−1) for every t = 1, . . . , T . (2) Given N , sample
N from the marginalized posterior distribution Q(N |HT ). We found this
sampling scheme typically mixed quickly, and we discarded the first 100
sample of Ω′

T as a burn-in period, and used the rest of 1000 samples of it
for statistical estimation of the posterior distribution.

4 Numerical validation: Bayesian estimator vs lin-
ear regression

To test our model, we simulated by generating 100 synthetic timeseries
datasets following the BSIR model, and applied the Bayesian estimator
proposed in the previous section. In this test, we fixed the parameters to
N = 106, β = 1, γ = 0.4, and changed the sample size (observed cumula-
tive number of infected individuals). The estimator is supposed to capture
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the true parameters within its credible interval (the counterpart concept for
the confident interval in Bayesian statistics). Figure 2 showed the median,
mean, mode (MAP) estimate of N as well as the averaged 95% credible
interval based on the 1000 samples drawn from the posterior distribution of
N .

As expected, even with a small sample size such as 1% observed data out
of of N , the median estimate of N is close to the true N . Although the cred-
ible interval is quite large for a small sample size, the bias of the estimator
is reasonably small. None of the estimates of the credible intervals missed
the true parameter. Since the posterior distribution of N is quite skewed
and has a long tail in general, the maximum a posteriori (MAP) estimate
tended to underestimate the parameter N . Similarly, the mean estimate
tended to overestimate it. Therefore, we choosed the median estimate of
the parameters, for a point estimate of the BSIR model.

For comparison, we also estimated the whole population size N by a
linear regression of the cumulative-to-difference (CD) relationship in data
(Ft,

Ft+1−Ft

Ft−1
) (see also Section 6). Since the CD ratio Ft+1−Ft

Ft−1
is supposed

to approach a first order polynomial function of Ft, this linear regression is
one of the simplest ways to estimate the final outbreak size, which can be a
proxy of the whole population N . The estimated N by the linear regression
was showed as the broken line in Figure 2. The estimated N by the linear
regression is quite poor – at best, it is just correlated to the observed sample
size. Thus, this result suggests that linear-regression estimate cannot be ef-

fective with noisy data, even though the series of the CD ratio
(
Ft,

Ft+1−Ft

Ft−1

)
approachs to an asymptotic “line” in theory.

Moreover, this naive linear-regression estimator did not work for most
of datasets. Since the linear regression is not constrained to give a set of re-
gression coefficients, which is “valid” to esimate N , most of estimates based
on the linear regression was “invalid”. A valid estimate of N is neither in-
finite (in case the slope of the line is non-nengative) nor smaller than the
observed cumulative number of infected individuals max(F ). The probabil-
ity of “valid” estimate provided by the linear regression is shown at each
point in the broken line in Figure 2.

This osbservation is quite suggestive – it is important to develop a reli-
able statistical estimator in order to utilize the information underlying the
cumulative number of infected individuals.
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Figure 2: The validation of the proposed estimator for the BSIR. We fixed
the parameters to N = 106, β = 1, γ = 0.4, and changed the sample size
(observed cumulative number of infected individuals). The estimated popu-
lation size N is converged into the true value after the sample size max(F )
is 16 of N .

5 Simulated analysis with empirical data

Next, the predictive accuracy was analyzed more systematically for US and
Italy data using the day with more than 100 infected cases for each country.
For each country, we performed three different types of analyses: (1) Pre-
diction of the cumulative number of infected cases on each date up to April
22nd, using each of datasets before the date of prediction target. If the tar-
get date is March 31st, for example, prediction using the data up to March
12th, that using the data up to March 13th, and so forth until March 30th,
were calculated and take their geometric mean to give the grand prediction
on March 31st. (2) Prediction of the newly reported number of infected
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cases on each date up to April 22nd. We did the same procedure for this
as well. (3) Prediction of the particular date April 22nd was targetted, and
each dataset up to each date before then was used to make prediction. The
first two analyses tested the bias and variance of prediction averaged across
multiple days before the targetted day. The third analysis tested how far
in future the prediction is successful. For both US and Italy, their general
trend in these three types of analyses are similar. The first two analyses on
prediction of cumulative and new infectious cases in both countries showed
predictions showed small bias up to three weeks to a month away from the
observed time point. The third analysis gives consistent results for both
countries – prediction was reasonably accurate using the dataset of three
weeks before the targetted date. In summary, these analyses suggest that
the proposed method is likely to give a reliable prediction up to a month
long future.
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Figure 3: Prediction of the cumulative number of infected individuals in
the US (from March 13th to April 22nd). The prediction of date X is the
geometric mean of all prediction from March 12th to the date X − 1.
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Figure 4: Prediction of the daily new reported number of infected individuals
in the US (from March 13th to April 22nd). The prediction of date X is the
geometric mean of all prediction from March 12th to the date X − 1.

6 Cumulative-to-difference identity for the expected
values in BSIR

In this section, all random variables X are treated by its expected value X,
and thus we simplify the notation of expected value of random variable X by
just writing it X. In our paper, we provided the identity for the cumulative
number of individuals Ft and the system parameters N, β, γ:

Ft+1 − Ft =
β

N

(
N − Ft

)
gt−1(γ, F ).

This identity can be derived by (2) as follows.
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Figure 5: Prediction of the cumulative number of infected individuals in US
on April 22nd. Each prediction was based on the data up to March 12th,
March 13th, .., April 21st.

Lemma 1. If the difference equation (2) of the expected values holds
St − St−1 = − β

N St−1 It−1

It − It−1 = β
N St−1 It−1 − γIt−1

Rt −Rt−1 = γIt−1,

for any t = 1, 2, . . ., then we have

Ft+1 − Ft =
β

N
(N − Ft) gt−1(γ, F ), (23)

where

gt−1(γ, F ) = Ft−1 − γ
t−2∑
s=0

(1− γ)t−2−sFs

for any t = 2, 3, . . ..
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Figure 6: Prediction of the cumulative number of infected individuals in
the Italy (from March 4th to April 22nd). The prediction of date X is the
geometric mean of all prediction from March 3rd to the date X − 1.

Proof. Let us define γ̂ := 1− γ, the vectors

Itt′ :=


It
It−1
...
It′

 , Dt
t′ :=


Dt−1

Dt−2
...

Dt′

 , St
t′ :=


St−1

St−2
...
St′

 , F t
t′ :=


Ft−1

Ft−2
...
Ft′

 , (24)

and the matrices

At(a) :=


1 a . . . at−1

0 1 . . . at−2

...
...

. . .
...

0 0 . . . 1

 ∈ Rt×t, Bt



x1
x2
...
xt


 :=


x1 x2 . . . xt
0 x2 . . . xt
...

...
. . .

...
0 0 . . . xt

 ∈ Rt×t

(25)
for any a, x1, . . . , xt ∈ R.
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Figure 7: Prediction of the daily new reported number of infected individuals
in the Italy (from March 4th to April 22nd). The prediction of date X is
the geometric mean of all prediction from March 3rd to the date X − 1.

By the difference equation (2), we have

Dt = St−1 − St =
β

N
St−1It−1, (26)

and

Ft =
t∑

s=0

Ds =
β

N

(
St−1
0

)⊤
It−1
0 , (27)

where x⊤ denotes the transpose of the vector x.
By applying It = Dt−1 + γ̂It−1 recursively, we have

It = Dt−1+ γ̂(Dt−2+ γ̂It−2) = Dt−1+ γ̂Dt−2+ . . .+ γ̂t−1D0+ γ̂t−1I0. (28)

and thus, for any t > 0 we have

It1 = At (γ̂)D
t−1
0 . (29)
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Figure 8: Prediction of the cumulative number of infected individuals in
Italy on April 22nd. Each prediction was based on the data up to March
3th, March 13th, .., April 21st.

With (27) and (29), we have

FT+1 =
β

N
(ST

1 )
⊤AT (γ̂)D

T−1
0 . (30)

Ct is the inverse matrix of At(1), by defining

Ct :=


1 −1 0 . . . 0
0 1 −1 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 ∈ Rt×t,

we have

FT+1 =
β

N
(ST

1 )
⊤AT (γ̂)CTAT (1)D

T−1
0 . (31)
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As AT (1)D
T−1
0 = F T−1

0 ,

FT+1 =
β

N
(ST

1 )
⊤


1 −γ −γγ̂ . . . −γγ̂T−2

0 1 −γ . . . −γγ̂T−3

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

F T−1
0 . (32)

Take the differene FT+1 − FT , we have

FT+1 − FT =
β

N
ST

(
1 −γ −γγ̂ . . . −γγ̂T−3

)
F T−1
0 . (33)

By calculating the inter product of the vectors explicitly and replace ST =
N − FT , we have (23):

FT+1 − FT =
β

N
(N − FT )

(
FT−1 − γ

T−2∑
t=0

(1− γ)T−2−tFt

)
. (34)
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