eTable 1. Methods of reference to identify true positives and true negatives.

Test name	Identification of positive subjects	Identification of negative subjects
Lou et al. [4]	SARS-CoV-2 through real-time RT-PCR (rRT-PCR) testing.	SARS-CoV-2 through real-time RT-PCR (rRT-PCR) testing.
Lin et al [5]	Combinations of epidemiological risk factors, clinical features and positive detections of SARS-CoV-2 RNA in respiratory specimens	Combination of epidemiological risks, and persistently negative for SARS-CoV-2 RNA detections in at least three respiratory specimens' tests.
Liu et al. [6]	SARS-CoV-2 through real-time RT-PCR (rRT-PCR) testing at a median of 15 d.p.o. (range. 0–55 days).	Serum samples from 100 healthy blood donors.
Zhao et al. [7]	SARS-CoV-2 by use of real-time RT-PCR (rRT-PCR)	Samples collected from healthy individuals before the outbreak of SARS-CoV-2.
Creative Diagnostics [8]	SARS-CoV-2 by use of real-time RT-PCR (rRT-PCR) after the second week of the onset of the disease.	Normal healthy patients with samples collected prior to the SARS-COV-2 outbreak.
Epitope Diagnostic [9]	SARS-CoV-2 by use of real-time RT-PCR (rRT-PCR) after the second week of the onset of the disease.	Normal healthy patients with samples collected prior to the COVID outbreak.
Lassaunière et al. [10]	SARS-CoV-2 by use of real-time RT-PCR (rRT-PCR)	Samples collected from healthy individuals before the outbreak of SARS-CoV-2.
Ortho-Clinical Diagnostics [11]	SARS-CoV-2 by use of real-time RT-PCR (rRT-PCR)	400 presumed SARS-CoV-2 negative samples from healthy blood donors were tested.
Adams et al. [12]	SARS-CoV-2 through real-time RT-PCR (rRT-PCR)	Plasma samples collected from healthy individuals before the outbreak of SARS-CoV-2.

eFigure 1. Forest plot of the sensitivity of serological test for the detection of anti-SARS-CoV-2 IgM.

Antibody IgM

Author (Kit)							Sensitivity [95% CI]
Zhao Juanjuan et al. (Beijing Wantai kit), 2020					—		0.82 [0.76, 0.87]
Bin Lou et al. ELISA (Beijing Wantai kit), 2020				F		-1	0.92 [0.84, 0.96]
Wanbing Liu et al. (Spike protein), 2020			.				0.77 [0.71, 0.82]
Dachuan Lin et al., 2020			—	-	—		0.82 [0.72, 0.89]
Adams Emily et al., 2020	H						0.70 [0.54, 0.81]
Summary SE					_		0.82 [0.75, 0.88]
l ² =71.5%							
		ı	ı		ı		
	0.5	0.6	0.7	0.8	0.9	1	

eFigure 2. Forest plot of the sensitivity of serological test for the detection of anti-SARS-CoV-2 IgG.

Antibody IgG

Author (Kit)								Sensitivity [95% CI]
Zhao Juanjuan et al. (Beijing Wantai kit), 2020		——	<u> </u>					0.65 [0.57, 0.71]
Wanbing Liu et al. (Spike protein), 2020				<u> </u>				0.74 [0.68, 0.80]
Bin Lou et al. (Beijing Wantai kit), 2020				-				0.88 [0.79, 0.94]
Dachuan Lin et al., 2020			—		—			0.82 [0.72, 0.89]
Ria Lassaunière et al. (Euroimmun kit), 2020	-		-5	——				0.66 [0.49, 0.80]
Adams Emily et al., 2020			<u> </u>					0.84 [0.70, 0.92]
Epitope Diagnostic kit					I			0.98 [0.86, 1.00]
Creative Diagnostics kit				-		-		0.97 [0.77, 1.00]
Summary SE			-					0.85 [0.73, 0.93]
l ² =87.5%								
	0.45	0.6	0.7	8.0	0.9	1		

eFigure 3. Forest plot of the sensitivity of serological test for the detection of anti-SARS-CoV-2 total antibodies.

Total Antibody

								Sensitivity [95% CI]
		-	<u>=</u>					0.82 [0.67, 0.91]
				⊢	4			0.93 [0.88, 0.96]
								0.88 [0.79, 0.94]
•		-						0.66 [0.49, 0.80]
		-						0.85 [0.74, 0.94]
0.5	0.6	0.7	0.8	0.9	1			
	0.5	0.5 0.6	0.5 0.6 0.7	0.5 0.6 0.7 0.8	0.5 0.6 0.7 0.8 0.9	0.5 0.6 0.7 0.8 0.9 1	0.5 0.6 0.7 0.8 0.9 1	0.5 0.6 0.7 0.8 0.9 1

eFigure 4. Forest plot of the specificity of serological test for the detection of anti-SARS-CoV-2 IgM.

Antibody IgM

Author (Kit)					Specificity [95% CI]
Zhao Juanjuan et al. (Beijing Wantai kit), 2020					0.98 [0.96, 0.99]
Bin Lou et al. ELISA (Beijing Wantai kit), 2020				⊷■	1.00 [0.98, 1.00]
Wanbing Liu et al. (Spike protein), 2020					1.00 [0.95, 1.00]
Dachuan Lin et al., 2020			 1		0.81 [0.71, 0.88]
Adams Emily et al., 2020					0.99 [0.91, 1.00]
Summary SP				-	0.98 [0.92, 1.00]
I ² =91.7%					
	0.7	0.8	0.9	1	

eFigure 5. Forest plot of the specificity of serological test for the detection of anti-SARS-CoV-2 IgG.

Antibody IgG

Author (Kit)		Specificity [95% CI]
Zhao Juanjuan et al. (Beijing Wantai kit), 2020	⊢	0.99 [0.96, 1.00]
Wanbing Liu et al. (Spike protein), 2020	⊢■	1.00 [0.95, 1.00]
Bin Lou et al. (Beijing Wantai kit), 2020	⊢ ■	1.00 [0.95, 1.00]
Dachuan Lin et al., 2020		0.97 [0.91, 0.99]
Ria Lassaunière et al. (Euroimmun kit), 2020	⊢—■	0.96 [0.89, 0.98]
Adams Emily et al., 2020	⊢—— ■+	0.99 [0.91, 1.00]
Epitope Diagnostic kit		0.99 [0.92, 1.00]
Creative Diagnostics kit		0.98 [0.86, 1.00]
Summary SP	•	0.99 [0.98, 1.00]
I ² =13.20%		
	0.7 0.8 0.9 1	

eFigure 6. Forest plot of the specificity of serological test for the detection of anti-SARS-CoV-2 total antibodies.

Total Antibody

Author (Kit)		Specificity [95% CI]
Ortho-Clinical Diagnostics kit	•	1.00 [0.99, 1.00]
Zhao Juanjuan et al. (Beijing Wantai kit), 2020	⊢- ■i	0.99 [0.96, 1.00]
Bin Lou et al., ELISA (Beijing Wantai kit), 2020	⊢ •	1.00 [0.95, 1.00]
Ria Lassaunière et al. (Euroimmun kit), 2020		0.96 [0.89, 0.98]
Summary SP	•	0.99 [0.98, 1.00]
I ² =73.8%		
	0.7 0.8 0.9 1	