1	Public events and delayed flight restrictions
2	were the turning point of the COVID-19
3	mitigation policy of Israel
4	
5	Klausner, Ziv PhD ¹ [†] ; Fattal, Eyal PhD ^{1*} [†] ; Hirsch, Eitan PhD ² ;
6	Shapira, Shmuel C., MD, MPH ³
7	
8	¹ Department of Applied Mathematics, Israel Institute for Biological Research, Ness-Ziona, Israel
9 10	² Environmental Sciences Division, Israel Institute for Biological
10	Research, Ness-Ziona, Israel
12	³ Director general, Israel Institute for Biological Research, Ness-Ziona,
13	Israel
14	
15	
16	
17	
18	
19	
20	
21 22	
22	
23	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 35	
35 36	
37	
38 39	* Correspondence to: Applied Math department, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona, 7410001, ISRAEL. Tel.: +972 8 9381794; fax: +972 8 9381432; e-mail: <u>eyalf@iibr.gov.il</u>

^{\ddagger} These two authors contributed equally to the article

41 Supplementary information

The quanrentine-isolation policy of Israel was analyzed using the SEQIJR model (Gumel, et al., 2004). This is a deterministic compartmental model, which was originally developed to analyze the transmission dynamics and control of the SARS epidemics in Toronto, Hong Kong, Singapore and Beijing. The model consists of the following system of equations:

47

48

$$\frac{dS}{dt} = \pi - \beta \frac{S(t)}{N} \left[I(t) + \varepsilon_E E(t) + \varepsilon_Q Q(t) + \varepsilon_J J(t) \right] - \mu S(t)$$
(1)

$$\frac{dE}{dt} = p + \beta \frac{S(t)}{N} \left[I(t) + \varepsilon_E E(t) + \varepsilon_Q Q(t) + \varepsilon_J J(t) \right] - (\gamma_1 + \kappa_1 + \mu) E(t) \quad (2)$$

$$\frac{dQ}{dt} = \gamma_1 E(t) - (\kappa_2 + \mu)Q(t) \tag{3}$$

$$\frac{dI}{dt} = \kappa_1 E(t) - (\gamma_2 + d_1 + \sigma_1 + \mu)I(t)$$
(4)

$$\frac{dJ}{dt} = \gamma_2 I(t) + \kappa_2 Q(t) - (\sigma_2 + d_2 + \mu) J(t)$$
(5)

$$\frac{dR}{dt} = \sigma_1 I(t) + \sigma_2 J(t) - \mu R(t)$$
(6)

$$\frac{dD}{dt} = d_1 I(t) + d_2 J(t) \tag{7}$$

Where, the model's parameters are as follows:

β - Effective contact rate (S→E)
κ₁ - Rate of development of clinical symptoms for the exposed-notquarantined class (E→I)
κ₂ - Rate of development of clinical symptoms for the quarantinedexposed class (Q→J)
γ₁ - Rate of entry into quarantine from the exposed class (E→Q)

55	• γ_2 - Rate of entry into isolation from the symptomatic-not isolated class
56	$(I \rightarrow J)$
57	• σ_1 - Recovery rate from the infectious-not-isolated class (I \rightarrow R)
58	• σ_2 - Recovery rate from the infectious-in-isolation class (J \rightarrow R)
59	• d_1 - Mortality rate from the infectious-not-isolated class (I \rightarrow D)
60	• d_2 - Mortality rate from the infectious-in- isolation class (J \rightarrow R)
61	• μ – natural mortality daily ratio
62	• π - daily net population growth
63	• p – daily number of infected individuals entering undetected into the
64	population
65	• N – total size of the population
66	• ϵ_E – modification factor for the infectivity of the exposed class
67	• ϵ_Q – modification factor for the infectivity of the exposed class
68	• ϵ_J – modification factor for the infectivity of the exposed class
69	
70	R_0 , the basic reproduction rate, which is the expected number of secondary
71	infections produced by a single index case, is defined in the SEQIJR model (equations
72	(1)-(8)) when no control measures are in place, i.e., $\gamma_1 = \gamma_2 = 0$:
	$R_0 = \beta \left[\frac{\varepsilon_E}{\kappa_1 + \mu} + \frac{\kappa_1}{(\kappa_1 + \mu)(d_1 + \sigma_1 + \mu)} \right] $ (8)
73	R_c , the control reproduction number, that represents the reproduction number
74	when the quarantine-isolation policy is fully implemented, is calculated using the
75	following equations:

$$R_{c} = \beta \left[\frac{\varepsilon_{E}}{D_{1}} + \frac{\kappa_{1}}{D_{1}D_{2}} + \frac{\varepsilon_{Q}\gamma_{1}}{D_{1}D_{4}} + \frac{\varepsilon_{J}\kappa_{1}\gamma_{2}}{D_{1}D_{2}D_{3}} + \frac{\varepsilon_{J}\gamma_{1}\kappa_{2}}{D_{1}D_{3}D_{4}} \right]$$
(9)

76 where
$$D_1 = \gamma_1 + \kappa_1 + \mu$$
, $D_2 = \gamma_2 + d_1 + \sigma_1 + \mu$, $D_3 = \sigma_2 + d_2 + \mu$, $D_4 =$
77 $\mu + \gamma_2$

The value of β was determined by using equation (8) with an R₀ value of 3.28, which is the mean R₀ of 12 studies that estimated the basic reproduction number of the COVID-19 pandemic (Liu, et al., 2020).

81 The values of mortality and recovery rates were determined using the 82 following formulae:

$$\sigma^{-1} = (1 - \delta)\tau \tag{10}$$

$$d^{-1} = \delta \tau \tag{11}$$

83 Where δ is the confirmed case fatality rate and τ is the expected time until 84 recovery or death. The COVID-19 case fatality rate is estimated between 5.3%-8.4% 85 (Jung, et al., 2020). In this study, δ was taken as the lower estimated value of 5.3%. τ_1 86 and τ_2 were taken as 14.5 days and 8.6 days, according to the mean time from 87 symptoms' onset to death and the mean time from hospital admission to death 88 (Linton, et al., 2020).

It is plausible to assume that the length of the incubation period is similar,
whether or not the exposed person is in quarantine. Therefore, it is possible to define
γ₁ and κ₂ as a function of κ₁:

$$(\kappa_1)^{-1} = (\gamma_1)^{-1} + (\kappa_2)^{-1} \tag{12}$$

$$(\gamma_1)^{-1} = \phi \cdot (\kappa_1)^{-1} \tag{13}$$

$$(\kappa_2)^{-1} = (1 - \phi) \cdot (\kappa_1)^{-1} \tag{14}$$

92

where ϕ is the ratio dividing the incubation time to the period before and in quarantine. In this study, ϕ was taken as 0.2 (scenario 1) and 0.8 (scenario 2-3).

94

93

95

Parameter	Value	Reference	Notes
β	0.2159 day ⁻¹	Calculated	R_0 of 3.28 is the mean of 12
-		via equation	studies reviewed by Liu, et al
		(9)	(2020)
κ ₁	$(5.6 \text{ days})^{-1}$	Linton, et	mean incubation time including
		al. (2020)	Wuhan residents
к 2	Scenario 1: (4.48	Equations	See explanation in the text.
	days) ⁻¹	(12)-(14)	
	Scenario 2-3:		
	$(1.12 \text{ days})^{-1}$		
γ1	Scenario 1:		
	$(1.12 \text{ days})^{-1}$		
	Scenario 2-3:		
	$(4.48 \text{ days})^{-1}$		
γ2	$(4.3 \text{ days})^{-1}$	Linton, et al	pooled mean time from onset to
		(2020)	hospital
			(for either hospitalization that
			ended with dead or recovery)
σ_1	0.0653 day ⁻¹		See explanation in the text.
σ_2	0.1101 day ⁻¹		See explanation in the text.
d ₁	0.0037 day ⁻¹		See explanation in the text.
d ₂	0.0062 day^{-1}		See explanation in the text.
р	0		
π	465 people/day	Central	
		Bureau of	
		Statistics	
		(2020)	
μ	1.425×10 ⁻⁵	Central	
		Bureau of	
		Statistics	
		(2020)	
ε _E	0.62	Ganyani, et	
		al (2020)	
ЕQ	Scenario 1:		
	0.103 (ε _E /6)		
	Scenario 2:		
	0.207 (ε _E /3)		
	Scenario 3: $0.62 (\varepsilon_E)$		
£J	0.3		

The model parameters' values are as follows:

97

96

 EJ
 0.3

 TABLE. 1. Parameter values for the SEQIJR model

98 The model was programmed in R (R Core Team) using the deSolve package

99 (Soeraert, et al., 2010). R₀ was calculated using the package R0 (Boelle and Obadia,

100 2015).

101 **References**

102	1.	Linton NM, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov AR, Jung SM,
103		Yuan B, Kinoshita R, Nishiura H. Incubation Period and Other
104		Epidemiological Characteristics of 2019 Novel Coronavirus Infections with
105		Right Truncation: A Statistical Analysis of Publicly Available Case Data. J
106		Clin Med. 2020; 17;9(2). pii: E538. doi: 10.3390/jcm9020538.
107	2.	Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of
108		COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020;
109		13;27(2). pii: taaa021. doi: 10.1093/jtm/taaa021.
110	3.	Jung SM, Akhmetzhanov AR, Hayashi K, Linton NM, Yang Y, Yuan B,
111		Kobayashi T, Kinoshita R, Nishiura H. Real-Time Estimation of the Risk of
112		Death from Novel Coronavirus (COVID-19) Infection: Inference Using
113		Exported Cases. J Clin Med. 2020 14;9(2). pii: E523. doi:
114		10.3390/jcm9020523.
115	4.	Ganyani T, Kremer C, Dongxuan C, Torneri A, Faes C, Wallinga J, Hens N.
116		Estimating the generation interval for COVID-19 based on symptom onset
117		data. medRxiv preprint doi:10.1101/2020.03.05.20031815
118	5.	Israel Ministry of Health. Information on confirmed patients and COVID-19
119		press releases. https://govextra.gov.il/ministry-of-health/corona/corona-
120		virus/spokesman-messages-corona/. Accessed Mar 20, 2020.
121	6.	Central Bureau of Statistics. Statistical Abstract of Israel 2019 - No.70.
122		https://www.cbs.gov.il/en/publications/Pages/2019/Statistical-Abstract-of-
123		Israel-2019-No-70.aspx. Accesses Mar 20, 2020.

124	7.	R Core Team. 2019. R: A language and environment for statistical Computing.
125		R Foundation for Statistical Computing, Vienna, Austria. https://www.R-
126		project.org/.
127	8.	Pierre-Yves Boelle and Thomas Obadia. 2015. R_0 : Estimation of R_0 and
128		Real-Time Reproduction Number from Epidemics. R package version 1.2-6.
129		https://CRAN.R-project.org/package=R0
130	9.	Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer. 2010. Solving
131		Differential Equations in R: Package deSolve. Journal of Statistical Software,
132		33(9), 125. URL http://www.jstatsoft.org/v33/i09/ doi:
133		10.18637/jss.v033.i09
134		